

Existing evidence on the impact of changes in marine ecosystem structure and functioning on ecosystem service delivery: A systematic map Authors' contacts

Carole Sylvie Campagne, Laurie-Anne Roy, Joseph Langridge, Joachim Claudet, Rémi Mongruel, Damien Beillouin, Éric Thiébaut

▶ To cite this version:

Carole Sylvie Campagne, Laurie-Anne Roy, Joseph Langridge, Joachim Claudet, Rémi Mongruel, et al.. Existing evidence on the impact of changes in marine ecosystem structure and functioning on ecosystem service delivery: A systematic map Authors' contacts. Environmental Evidence, 2023, 12 (1), pp.13. 10.1186/s13750-023-00306-1. hal-04173079

HAL Id: hal-04173079 https://hal.science/hal-04173079v1

Submitted on 28 Jul 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

- 1 Existing evidence on the impact of changes in marine
- 2 ecosystem structure and functioning on ecosystem service
- **3 delivery: A systematic map**

4 Authors' contacts

C. Sylvie Campagne^{1,2}, Laurie-Anne Roy¹, Joseph Langridge², Joachim Claudet³, Rémi Mongruel⁴, Damien
 Beillouin^{5,6}, Éric Thiébaut¹

- ¹Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, Adaptation et Diversité en Milieu Marin,
 Place Georges Teissier, F-29680 Roscoff, France
- 9 ² Fondation pour la Recherche sur la Biodiversité, Centre de Synthèse et d'Analyse sur la Biodiversité (FRB-
- 10 Cesab), 5 rue de l'école de médecine 34000 Montpellier, France
- ³ National Center for Scientific Research, PSL Université Paris, CRIOBE, CNRS-EPHE-UPVD, Maison de l'Océan,
- 12 195 rue Saint-Jacques, 75005 Paris, France
- 13 ⁴ Ifremer, Univ Brest, CNRS, UMR 6308, AMURE, Unité d'Economie Maritime, IUEM, F-29280, Plouzané, France
- 14 ⁵CIRAD, UPR Hortsys, F-97285 Le Lamentin, Martinique, France
- 15⁶ HortSys, Univ Montpellier, CIRAD, Montpellier, France
- 16

17 Abstract

18 Background The current biodiversity crisis underscores the urgent need for sustainable management 19 of the human uses of nature. In the context of sustainability management, adopting the ecosystem 20 service (ES) concept, i.e., the benefits humans obtain from nature, can support decisions aimed at 21 benefiting both nature and people. However, marine ecosystems in particular endure numerous direct 22 drivers of change (i.e., habitat loss and degradation, overexploitation, pollution, climate change, and 23 introduction of non-indigenous species) all of which threaten ecosystem structure, functioning, and 24 the provision of ES. Marine ecosystems have received less attention than terrestrial ecosystems in ES 25 literature, and knowledge on marine ES is hindered by the highly heterogeneous scientific literature 26 with regard to the different types of marine ecosystem, ES, and their correlates. Here, we constructed 27 a systematic map of the existing literature to highlight knowledge clusters and knowledge gaps on how 28 changes in marine ecosystems influence the provision of marine ES.

29 Method We searched for all evidence documenting how changes in structure and functioning of 30 marine ecosystems affect the delivery of ES in academic and grey literature sources. In addition to 31 Scopus, Web of Science, and Google Scholar, we searched 6 online databases from intergovernmental 32 agencies, supranational or national organizations, and NGOs. We screened English-language 33 documents using predefined inclusion criteria on titles, abstracts, and then full texts, without any 34 geographic or temporal limitations. All qualifying literature was coded and metadata were extracted. 35 No formal validity appraisal was undertaken. We identified knowledge clusters and gaps in terms of 36 which ecosystem types, biodiversity components, or ES types have been studied and how these 37 categories are linked.FAO

Review findings Our searches identified 41 884 articles published since 1968 of which 12 140 were
duplicates; 25 747 articles were excluded at the title-screening stage, then 2 774 at the abstract stage.
After full-text screening, a total of 653 articles—having met the eligibility criteria—were included in
the final database, spanning from 1977 to July 2021. The number of studies was unevenly distributed
across geographic boundaries, ecosystem types, ES, and types of pressure.

43 The most studied ecosystems were pelagic ecosystems on continental shelves and intertidal 44 ecosystems, and deep-sea habitats and ice-associated ecosystems were the least studied. Food 45 provision was the major focus of ES articles across all types of marine ecosystem (67%), followed by 46 climate regulation (28%), and recreation and tourism (14 and 13%). Biophysical values were assessed 47 in 98% of the analysed papers, 34% assessed economic values, but only 7% assessed socio-cultural 48 values. Regarding the type of impact on ecosystems, management effects were the most studied, 49 followed by overexploitation and climate change (with increase in seawater temperature being the 50 most commonly assessed climate change pressure). Lastly, the introduction of non-indigenous species 51 and deoxygenation were the least studied.

52 **Conclusions** This systematic map provides, in addition to a database, knowledge gaps and clusters on 53 how marine ecosystem changes impact ES provision. The lack of knowledge is a danger for the 54 sustainability of human actions and knowledge-based nature conservation. The knowledge gaps and 55 clusters highlighted here could guide future research and impact the beneficial development of policy 56 and management practises.

57 Keywords

- 58 Coastal habitats; Biodiversity; Nature's contribution to people; Spatio-temporal dynamics; Human
- 59 *impacts; Management*

60 Background

61 In the context of the current biodiversity erosion crisis, there is an increasingly urgent need to manage 62 anthropogenic activities sustainably to conserve and protect nature's potential to contribute 63 ecosystem services for the benefit of present and future generations [1]. Ecosystem services (ES) and 64 nature's contribution to people (NCP) concepts have gained interest in their ability to highlight our 65 dependency on nature and all the services we extract from it [2–4]. The concept of ES is relatively 66 recent—being introduced in the late 1970s—and has its roots in the recognition that ecosystems 67 provide irreplaceable goods and services [5,6]. It has since been largely popularized by the Millennium 68 Ecosystem Assessment as a way of thinking about the relationships between humans and nature [7]. Defined as "the benefits humans obtain from nature" [7], the ES concept helps to produce knowledge 69 70 to support decisions aimed at promoting nature conservation. The related concept of NCP, defined as 71 "all the contributions, both positive and negative, of living nature to people's quality of life" [1,2], 72 popularized first by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem 73 Services (IPBES) regional assessments, goes beyond ES by integrating a wider range of specific values 74 and the consideration of negative contributions of nature (also called disservices [8,9]). Specific values defined by IPBES consider the "judgements regarding the importance of nature in particular situations" 75 76 and differentiate instrumental, intrinsic, and relational values [10].

77 These concepts allow for studying socio-ecological systems, which require rigorous approaches across 78 different scientific disciplines-ecology (e.g., [11,12]), economics (e.g., [13]), anthropology (e.g., 79 [14,15]), politics (e.g., [16,17]), or geography (e.g., [18])—to analyse and describe the numerous 80 interactions between living components (i.e., humans and non-humans). The ES concept can improve 81 interactions between disciplines and also among scientists, managers, stakeholders, and politicians by 82 redefining the existing debates on the conflicts between development and conservation [19]. The 83 different ES can be divided into three main categories: (1) provisioning services, which are products 84 obtained from ecosystems (e.g., foods, raw materials for industry); (2) regulation and maintenance 85 services, which are benefits obtained from ecosystems (e.g., climate regulation, coastal protection); 86 and (3) cultural services, which are non-material benefits obtained from ecosystems (e.g., recreative 87 activities) [20-23].

88 Marine ecosystems provide a wide range of ES. Several lists are available in the literature such as Bordt 89 and Sander [24], Kermagoret et al. [25], Barbier [26], and Mongruel et al. [15], generally inspired by 90 the classification proposed in Liquete et al. [22] and Beaumont et al. [27]. For instance, based on the 91 Common International Classification for Ecosystem Services (CICES) [28] and Liquete et al. [22], the 92 French platform for the evaluation of ecosystems and ecosystem services listed the ES provided by 93 marine ecosystems [15] as follows: food provision; raw materials from aquaculture; macroalgae 94 production; molecule production; coastal protection; climate regulation; nutrient regulation; pest and 95 disease control; symbolic, emblematic, and aesthetic values; recreation and tourism; landscape amenity; and knowledge production. This study also considered "nursery function" and "maintenance 96 97 of food webs" in its assessment, even if these are sometimes considered as functions [15]or as 98 regulating services [22]. Although we also included "nursery function" and "maintenance of food 99 webs", ecological functions, such as primary and secondary production provided by marine ecosystems 100 and sometimes defined as support services, were not included in this review [25,29,30].

101 Marine ecosystems endure numerous direct drivers of change, mainly habitat loss and degradation, 102 overexploitation, pollution, climate change, and introduction of non-indigenous species, all of which 103 threaten the future sustainability of marine and coastal areas [31]. Climate change affects marine 104 ecosystems with different impacts on ES through changes in sea surface temperature, acidification, 105 more extreme events, or sea level rise [32]. The magnitude of the direct drivers may also depend on 106 indirect drivers such as demographic pressure, sociocultural context, economy, technological 107 development, institutions and governance, and conflicts and epidemics. In 2008, a multi-driver analysis 108 showed that no area of the global ocean is unaffected by human influence and that more than 40% of 109 the ocean, mainly in coastal areas (e.g., NE USA, NW Europe, East Asia, Eastern Caribbean) are strongly 110 affected [32]. From 2008 to 2013, "66% of the ocean experienced increases in cumulative human 111 impact [...], especially in tropical, subtropical and coastal regions, while only 13% experienced 112 decreases in response to management measures" [33]. Indeed, threats and pressures sustained in 113 marine ecosystems induce changes that have affected the delivery of marine ES, and negatively 114 impacted human health and well-being, especially indigenous peoples and local communities who 115 depend on fisheries [31]. For example, Selim et al. [34] highlighted pathways linking fishing and climate 116 (drivers) to spawning stock biomass and recruitment of three demersal fish species (ecosystem 117 processes) and the consequences for delivery of these fisheries and ultimately on food provision 118 (ecosystem services).

119 In response to growing anthropogenic pressures, marine ecosystems are increasingly included in 120 national and international agendas to counteract the negative impacts of human activities and 121 promote the sustainable use of marine ecosystems (see, for instance, the targets of the Convention on 122 the Biological Diversity or the Sustainable Development Goals of the 2030 Agenda for Sustainable 123 Development adopted by the United Nations). These initiatives are reflected in the implementation of 124 legislation regarding, for example, fisheries management, water quality control, or the establishment 125 of marine protected areas. However, the need to develop effective conservation and protection 126 strategies remains. For instance, marine protected areas involve only about 8% of the marine realm, 127 only partly covering important sites for biodiversity and are not fully ecologically representative, well-128 connected, or effectively managed [35]. It is therefore crucial to apply rigorous sustainable 129 management practices to help guarantee the delivery of ES and conserve the multiple benefits 130 provided by marine ecosystems that so many people rely on [35,36]. Hence, it is particularly vital to 131 better understand such ecosystems and highlight the related socio-ecological aspects.

132 Liquete et al. [22] identified, defined, and reviewed the marine ES literature and found 145 articles 133 that specifically assessed marine and coastal ES. That review highlighted that, of the numerous ES 134 provided by marine ecosystems, food provision (i.e., fisheries and offshore aquaculture) seems to be 135 by far the most intensively studied marine ES. Furthermore, it revealed that case studies focused on 136 mangroves and coastal wetlands and were mainly concentrated in Europe and North America. In 137 addition, other specific ecosystems are also frequently spotlighted, such as coral reefs, mudflats, and 138 seagrass beds [15]. Also, knowledge on marine ecosystems seems to decrease with distance from the 139 coastline [15]. Only a few articles have explored ES in deep-sea ecosystems [37]. More recently, 140 systematic maps have been published on the ES provided by the ecosystems in the Baltic Sea (Stories 141 et al. [38] and Kuhn et al. [39]), revealing cultural services as the most assessed ES category. Likewise, 142 food provision and recreation have been significantly studied in the Baltic Sea, in addition to 143 eutrophication mitigation. The primary focus on food provision stems from the fact that some marine 144 species groups are more assessed and studied, such as commercial species and top predator fish stocks 145 [35]. The ES literature has also been reviewed in IPBES reports and demonstrates, for example, that 146 potential/capacity or the supply component are the central foci in many assessments.

147 While there are reviews and meta-analyses on marine ES, none deal with the evidence on how ES 148 delivery is affected by changes in marine ecosystems structure and functioning. The need to consider 149 the temporal dynamics in studies is highlighted [40], but the literature seems to focus on snapshot 150 assessments instead on multi-time assessments in relation to ecological dynamics. Thus, our current map was constructed to focus on the literature assessing the impacts of spatio-temporal dynamics of marine ecosystems on the very ES they provide. In addition, we looked at the drivers of change at the origin of marine ecosystems' dynamics, such as changes in land/sea use, direct exploitation, pollution, climate change, and introduction of non-indigenous species, as well as management effects. We also examined more specifically drivers related to climate change in marine ecosystems with consideration of extreme events (e.g., flood events), sea level rise, warming waters, deoxygenation, or ocean acidification.

The heterogeneity of knowledge in marine and coastal ecosystems and their services is a major obstacle to the effective use of scientific results by decision-makers. A systematic map offers the advantage of structuring existing knowledge to produce results that are useful for decision-making. Following the protocol in Campagne et al. [41], we carried out a systematic evidence mapping exercise to highlight the knowledge clusters and knowledge gaps on how changes in the structure and functioning of marine ecosystems affect the provision of marine ES.

164 Stakeholder engagement

165 Producing this systematic map was part of the InDySEM project (Influence of ecological Dynamics on 166 production and demand for marine Ecosystem Services, funded by the French Foundation for Research on Biodiversity-Centre for Biodiversity Synthesis and Analysis (FRB-CESAB)) and was overseen by both 167 168 a scientific and a methods team. The scientific team was composed of researchers with expertise on 169 marine ecology, economy, and sociology. The scientific team developed and built the project and 170 advised the project leader and the project officer during regular meetings, who validated any 171 adjustments made to the research topic, the PECO elements (Population, Exposure, Comparator, 172 Outcomes), the search strings as well as all the ROSES elements (see below). The methods team was 173 composed of systematic review and data analysis experts, who followed all the Collaboration for 174 Environmental Evidence (CEE) methodological steps for systematic maps. The FRB-CESAB is a research 175 organization with an international scope whose objective is to implement innovative work on the 176 synthesis and analysis of existing data sets in the field of biodiversity.

177 **Objective of the Review**

178 The main goal of this review was to map existing evidence concerning our primary question: what are

- the impacts of changes in ecosystem structure and functioning on the services that ecosystemsprovide?
- 181 In addition, the systematic map summarized the evidence database in terms of the following secondary182 questions:
- What is the existing evidence on how do the spatio-temporal dynamics of marine biodiversity affectecosystem disservices?
- What is the existing evidence on how are marine ecosystem services and disservices linked to naturalor anthropogenic drivers of change?
- 187 Thus, to highlight knowledge gaps on how changes in marine ecosystems affect marine ES, we 188 structured a systematic map according to specific PECO components (Table 1). We focused on changes 189 in biodiversity from the species to the ecosystem level, including functional and structural diversity, 190 and how these changes influence the services provided (i.e., provisioning, regulation, and cultural 191 services). The associated disservices—negative benefits of nature as perceived by humans—were also

- 192 considered when studied. We focused our systematic map on studies presenting new results of ES
- 193 change, thus on papers with quantitative or qualitative data, and excluded narrative analyses or papers
- 194 (e.g., policy reports or reviews without new ES values).

PECO elemen	t	Definition(s)							
Population	Marine biodiversity	Includes all types of marine ecosystems and the							
	(ecosystems and species)	species that they contain							
Exposure	Changes in marine	All changes at all levels, from species to							
	biodiversity	ecosystem, functional and structural							
Comparator	Spatial difference —	Articles with data at different place (spatial							
	temporal difference	difference) or data on different time (temporal							
		difference)							
Outcomes	Marine ecosystem services	All qualitative or quantitative values of marine							
	(and disservices)	ecosystem services and disservices							

Table 1: Components of the systematic map used in this study

196 Methods

- 197 The construction of this systematic map followed the methodological guidelines in accordance with
- 198 the CEE Guidelines and Standards for Evidence Synthesis [42] and conforms to the RepOrting standards
- 199 for Systematic Evidence Syntheses (ROSES) for Systematic Map Reports presented by Haddaway *et al.*
- 200 [43] (See Additional file 1 for the ROSES systematic map reports of this study). We followed the same
- 201 methodological protocol as that presented in Campagne *et al.* [41].

202 Search for articles

203 Search string

- The search string was composed in accordance with the key components of the question representing Population, Exposure, and Outcomes as planned in the protocol [41] and Table 1. The search string used on the Web of Science in "exact search" mode is presented in Table 2. The asterisk (*) at the end of a search term/word was used to accept any variant of a base term. The dollar sign (\$) was used to accept single or no added characters, useful for retrieving plural and singular forms. Quotation marks were used to search the exact word order.
- 210 The search terms used for the substring on ES types included different synonyms for each ES in order 211 to be as inclusive as possible, inspired by different lists of marine ES based on Mongruel et al. [15], the 212 Global Ocean Accounts Partnership [21] and Liquete et al. [22]. The search terms for the substring on 213 Exposure, which involves changes in biodiversity (from species to ecosystems) were composed of key 214 words synonymous to "change". The search string was tested and constructed in the Web of Science 215 Core Collection (WOS) to obtain the highest efficiency and the best comprehensiveness related to the 216 test list (see Additional file 2 for search string construction details and comprehensiveness). Searches 217 were performed using English terms only. All relevant international literature published in English was 218 included in this systematic map, including diverse bibliographic documents (e.g., books, journal 219 articles, theses and technical reports).

220 Search sources

- 221 Publication databases, on-line search engine, and the organizational websites were searched without
- any time restriction (e.g., since 1788 for Scopus). All searches were undertaken between July and
- 223 August 2021 (Table 2).

224 Bibliographic databases

- 225 Title, abstract and keywords of the Scopus and WOS publication databases were searched using the
- search tags "TITLE-ABS-KEY" and "TS", respectively. All databases were accessed with the subscription
- 227 of the French National Centre for Scientific Research (CNRS).

228 Search engine

229 A supplementary search in Google Scholar, with the aid of Publish and Perish [44] software, was used 230 to retrieve additional literature. Google Scholar's use of Boolean characters differs from WOS and 231 Scopus and is limited in terms of the number of characters, and thus search terms [45]. Therefore, we 232 adapted the search string to correspond to what the review team deemed as the most important 233 keywords and used the "keywords" field to search the title, abstract, and body of text with the 234 following keywords: "(marine OR coastal OR ocean) AND (species OR biodiversity OR ecosystem) AND 235 "ecosystem services" AND change". We exported the first 300 search hits, in line with the 236 recommendations by Haddaway et al. [45].

237 Grey literature searches

Six specialist organization websites were searched (cf. Table 4) to collect technical reports with primary data related to our question. For each organizational website, the use of specific keywords with manual-searches varied between website as presented in the methodological protocol (Campagne *et al.* [41]) and as listed in Table 2.

242 The keywords used were "marine ecosystem services", which contains the keywords for the Population 243 and the Outcomes components. Adaptation of the keywords used depended on the main topic of the 244 organizational website. For example, because NOAA focuses on marine ecosystems, the search string 245 was only "ecosystem services". For the FAO, the main keywords did not lead to any results, so we focused on one ecosystem service: "fishery". Again, the main keywords did not lead to any results in 246 247 the IUCN publication websites, so we focused only on "ecosystem service". Other websites were tested 248 such as the Intergovernmental Panel on Climate Change (IPCC) and the IPBES websites. Nevertheless, 249 the main keywords of our search string did not lead to any results. These intergovernmental websites 250 only offered review reports and no records with primary results. A maximum of 50 references was 251 considered for each organizational website.

252

253 Table 2: Search strings and search hits

	Name	Search field	Search string	Search hits	Date of search (DD/MM/YYYY)
	Web of science	TS	((marine OR coast* OR ocean OR sea OR littoral OR maritime) AND (species OR biodiversity OR ecosystem OR ecological) AND	17329	20/07/2021
LITERATURE DATABASES	Scopus	TITLE-ABS-KEY	("ecosystem service\$" OR "contribution to people" OR "ecosystem function\$" OR "ecosystem process" OR "landscape service\$" OR disservice\$ OR "provisioning service\$" OR ((provision OR production OR exploitation) AND (food OR fisher* OR macroalgae\$ OR molecules)) OR "biomass for nutrition" OR "biomass for materials" OR "genetic materials" OR "raw materials" OR "maintain* food webs" OR "life cycle maintenance and habitat protection" OR "habitat provision" OR "nursery function" OR "regulation service\$" OR "climate regulation" OR "carbon sequestration" OR "weather regulation" OR "atmospheric composition and conditions" OR "air quality regulation" OR "coastal protection" OR "water retention" OR "nutrient regulation" OR "nutrient cycling" OR "pathogen regulation" OR "mediation of mass" OR "cultural service\$" OR "intellectual interaction\$" OR tourism OR recreation OR "experiential interaction\$" OR tourism OR recreation OR memity OR aesthetic OR heritage OR symbolic OR "cognitive effect\$"OR "knowledge production" OR variation\$ OR interaction\$ OR impact\$ OR effect\$ OR variation\$ OR interaction\$ OR or change\$)).	24051	20/07/2021
ONLINE SEARCH ENGINE	Google Scholar	keywords	(marine OR coastal OR ocean) AND (species OR biodiversity OR ecosystem) AND "ecosystem services" AND change	300	22/07/2021
	FAO	Language: "English"	fishery	50	27/08/2021
L WEBSITES	UNESC O	Filter: language: "English" - source: "UNESCO" - AuthoCorporate-en-s: "Intergovernmental Oceanographic Commission" - nature of content: "guide" AND "manuals and handbooks"	marine ecosystem service	50	19/08/2021
DRGANIZATIONAL WEBSITES	UNEP	Filters: "Reports and publications" AND "Publication" AND "Report", "Ecosystems and biodiversity" AND "oceans and seas"	marine ecosystem service	50	19/08/2021
Ģ	US NOAA		ecosystem service	15	19/08/2021
	EEA		marine ecosystem service	7	19/08/2021
	IUCN		ecosystem service	32	27/08/2021

254

255 Estimating the comprehensiveness of the search

256 The search terms were tested in WOS. The review team compiled a list of 30 articles that we considered 257 as important and relevant for our respective fields and the research topic. These articles are listed in 258 Additional file 3. Search terms were modified and refined until these benchmark publications were 259 retrieved. For example, words related to Population, Outcome and Exposure were progressively added 260 as described in Additional file 2. In WOS, 25 out of the 30 articles in our test list were retrieved with 261 the final search terms, with 2 articles were not found due to the search string and 3 out of the 30 articles were not found at all in WOS but only in other literature database. With all the results extracted 262 263 (WOS, Scopus and Google Scholar), 29 out of the 30 articles in our test list were retrieved, indicating a 264 96.7% comprehensiveness (Additional file 3). The only article we did not retrieve was Roessig et al. 265 [46]. We tried different search strings; nevertheless the numbers of documents found with other search strings retrieving Roessig et al. [46] were either unmanageably high or other documents in the 266

test list were not found. The current search string at 96.7% comprehensiveness was assumed to be thebest compromise.

269 Assembling and managing search results

- 270 Once the extraction of records from each database and website was completed, we reassembled all
- records from all the different sources into one spreadsheet file. To do so, records from Scopus, WOS,
- and Google Scholar were re-exported from Zotero and Mendeley to import the same file types into
- 273 the R environment for correct merging of records from the different sources and formatting of data
- 274 columns. Records from organizational websites were manually added in the final Excel files.

We removed clear and partial duplicates based on similar DOI and similar titles using R package revtools [47] and the "find_duplicates" function. In addition, we used the "check duplicates" function in Microsoft Excel software for a double verification.

278 Article screening and study eligibility criteria

279 Screening process

A three-stage filtering process was undertaken in accordance with pre-defined screening and study
 eligibility criteria [41]. Titles were screened first, followed by abstracts, then full texts.

Full texts were sought for all selected abstracts using the journal subscriptions via the CNRS and Sorbonne University. If the articles were not retrievable, requests for full texts were made via ResearchGate (www.researchgate.net), or the authors were contacted directly through ResearchGate or by email. We integrated full texts found or received until 28 February 2022. Unretrievable full texts of accepted abstracts were not screened. Incomplete texts were considered as not found. They are listed in Additional file 4.

We applied a conservative approach: titles or abstracts that did not clearly fit the inclusion criteria or did not clearly fit the exclusion criteria (details below in the Eligibility criteria section) were kept for the next eligibility screening stage.

To test the consistency of the screening process, Cohen's kappa coefficient [48] was calculated. But before the statistical tests were run, a training phrase was undertaken. The two screeners met to practice, discuss and adapt the eligibility criteria on 100 test titles and then on the abstracts of these accepted test titles. The goal of these meetings was to verify the understanding of the eligibility criteria.

The kappa tests were then run on 1 000 titles out of the 41 884 records (2.38%) (due to resource limitations and the considerable number of records within all databases used, it was not possible to run the kappa test on 10% of the titles). Cohen's kappa coefficient for the title screening stage was 0.83. At the abstract screening stage, we tested 402 of the 3 999 titles (10%) selected and Cohen's kappa coefficient was 0.70. Finally, on 116 full texts of the 1 119 full texts retrieved (10%) Cohen's kappa coefficient was 0.87. At each screening stage, the reviewers met to discuss all remaining discrepancies.

303 Eligibility criteria

The selection of records depended on the inclusion and exclusion criteria presented in Table 3. The inclusion/exclusion decisions were reported at each screening stage. In line with the guideline recommendations, reasons for exclusion during the full-text screening were also reported (see Additional file 5).

308 Regarding title screening, only articles with a clear mention of "marine ecosystems" and "ecosystem 309 services" with the wording of ES or ES-related concepts directly mentioning an ES were accepted (see 310 list in Liquete et al. [22], or Préat [20] for a list of marine ES). In the abstract screening process, in 311 addition to the previous criteria, we considered Exposure and Comparator. If an article fit the inclusion 312 criteria based on Population, Exposure and Outcome, but not Comparator - (i.e., article on marine 313 ecosystem and ES but without evidence of spatial or temporal differences), the article was excluded 314 (Table 2). Because we were targeting primary studies with ES values, we did not consider documents 315 on methods, reviews or on policy analysis without defined ES values in the studies. The full-text screening fit the previous criteria and also considered whether qualitative or quantitative ES values of 316 317 marine ES and disservices were present. Thus, review papers without ES values or review papers only 318 with ES values from other papers without new analyses were not included.

319

320 Table 3: Eligibility criteria to select articles to include in the systematic map

Criterion	Screening step	Inclusion criteria	Exclusion criteria
Population	Title	Articles whose title deals with biodiversity, i.e., species, habitats, and/or ecosystems in marine environments. Non-exhaustive examples may include open-ocean, continental shelf, coastal areas, seagrass meadows, estuaries, mangroves, coral reefs, etc.	Articles whose title explicitly only refers to terrestrial and/or freshwater biodiversity, species, habitats or ecosystems, i.e., articles regarding exclusively aquatic species and habitats (e.g., lakes, floodplains, rivers, subterranean habitats, etc.) or to terrestrial species and habitats (e.g., forest, agricultural ecosystems, etc.)
0.4	T '41-	Articles dealing with marine ecosystem services (as well as related terms such as "nature's contributions to people"). (e.g., marine blue sequestration, snorkelling, whale watching)	Articles dealing solely with function or structure processes and not related to effects on ecosystem services (e.g., primary production, photosynthesis)
Outcomes	Title	Articles dealing with the marine ecosystem service of food supply in terms of indicators of stock or population size of commercial species (e.g., fishery stock)	Studies only addressing species criteria with indicators other than the stock or the population size of the species (e.g., species distribution)
Exposure	Abstract	Any article or study exposing marine biodiversity, i.e., species, habitats, and ecosystems, to a change in structure and/functioning over time caused by an agent of change, i.e., human activity (e.g., direct/overexploitation, land/sea use change, etc.) or a change caused by different spatial area studied	Articles presenting no exposure to a change
Comparator	Abstract	Articles studying changes in ecosystem services through time or space (i.e., temporal or spatial comparisons). This may mean a different study type as detailed in Table 4. Accepted with synchronic comparators (same time, different sites).	Articles only assessing ecosystem services at one time or in one site/area
Temporal period	Abstract	Articles analysing relevant outcomes with data covering periods of at least part of the 20 th century and/or the 21 st century	Articles analysing data covering periods ending before 1900 (e.g., palaeoecology analysis).
Outcomes	Full text	Articles analysing relevant outcomes containing qualitative or quantitative values of marine ecosystem services and disservices	Articles without qualitative or quantitative values of marine ecosystem services and disservices (e.g., narrative review, opinion paper, policy paper without new quantitative or qualitative values defined).

- 322 Articles relating to aquaculture formed a special case in the selection process. The majority of articles
- 323 related to aquaculture tested technical improvements to enhance the provision of the service of food
- provision and not the effects of changing environmental conditions. Regarding the eligibility criteria
- 325 for the full-text screening, most articles on aquaculture were excluded and only articles corresponding
- to two contrasting situations were selected: (1) when aquaculture was a driver of change of the marine
- ecosystems and affected the delivery of another marine ES (e.g., impact of pollution generated by fish
- farming which impact specific ES); (2) when aquaculture was the provisioning service affected by a
- driver of change of the marine ecosystem (e.g., oyster farming exposed to eutrophication).
- 330

331 Study validity assessment

The validity of evidence was not assessed in this systematic map, but information was coded regarding study design elements that may provide some preliminary indication of internal validity. Also, 'bibliographic content' was coded with categories of study, review and meta-analysis. Articles producing primary data were coded as such. This information is not intended to provide a comprehensive assessment of study quality, but to highlight details on study type.

337 **Deviations from the protocol**

The protocol [42] was followed. Nevertheless, when we tested the coding strategy (see "Data coding strategy" section), the protocol classification and categories showed some limitations. They were thus more precisely defined or adapted if necessary, according to the coding test process. We refined some categories of metadata and added some new information (i.e., columns) in the evidence base and thus coded all the information presented in Table 4 (see Additional file 6 for the updated metadata categories).

Item	Description	Referen ces	Adaptation from the protocol
Population			
Ecosystem type*	Intertidal rock and other hard substrates; Intertidal sediment; Subtidal rock and other hard substrates; Subtidal sediment; Deep-sea habitats; Pelagic habitats - continental shelf; Pelagic habitats - open sea; Pelagic habitats - estuarine waters; Ice-associated marine habitats + free space for other ecosystem types	Classificatio n EUNIS Niveau 2 - European Commission	"Circalittoral rock and other hard substrates" were integrated in "Subtidal rock and other hard substrates" because it was difficult if not impossible to differentiate these two categories in most articles
Specific ecosystem*	Tidal marsh; Seagrass; Coral reefs; Mangroves; Kelp forests; Beach - dune strip; Estuary + free space for others specific ecosystem types	Mongruel <i>et</i> <i>al.</i> [15]	Addition of "Beach - dune strip"; "Estuary"
Level of biological organization*	The level of biological organization considered in the study: - Species: Species populations (distributions and abundances) or species traits (morphology, physiology, phenology, movement, reproduction); - Community: community composition (community abundance, taxonomic/phylogenetic diversity, trait diversity, interaction diversity); - Ecosystem: functioning and structure	Pereira <i>et</i> <i>al.</i> [41]	We did not code "population", but "ecosystem" instead because it was more relevant for our map
Characteristics of biodiversity	If any characteristics of biodiversity were assessed in the study, we reported the type of Biodiversity indicator following the definition proposed by Lausch <i>et al.</i> [49]: - Taxonomic: the number of different biotic entities (e.g., individuals, populations, species, communities, ecosystems, landscapes); - Structural: the arrangement and distribution (composition and configuration) of biotic entities (e.g., population structure, community structure and landscape patterns);	Lausch <i>et</i> <i>al.</i> [49]	None

344 Table 4: Metadata (adapted from the protocol in Campagne *et al.* [42]; ES: ecosystem services)

	- Functional: the diversity of functions and processes (species processes, community processes and landscape processes)		
Biodiversity species**	Free space to record the name of species considered in the study, if any		New category of coded names of species studies focused on
Outcomes			
Number of ES per Categories	Number of ES for the following ES categories: Provisioning services; Regulating services; Cultural services; Disservices		None
ES	Food provision; Raw materials; Genetic materials; Water provision; Water purification; Air quality regulation; Coastal protection; Climate regulation; Weather regulation; Nutrient cycling; Habitat provision; Pest and disease control; Symbolic and aesthetic values; Recreation and tourism; Cognitive effects; Educational opportunities (related ES terms would be considered in each ES type) + free space for other ES and for the name of all ecosystem services and disservices in the study with the name as in the study	Préat [20]	None
ES components*	The ES values defined in the study represent the ES potential/ capacity/ supply; "the provision of a service by a particular ecosystem, irrespective of its actual use. It can be determined for a specified period of time (such as a year) in the present, past, or future." ([50] page 154) the ES use/flow; "the amount of ES that are actually mobilised in a specific area and time." ([50] page 155). the ES demand "the need for specific ES by society, particular stakeholder groups or individuals. It depends on several factors such as culturally- dependent desires and needs, availability of alternatives, or means to fulfil these needs. It also covers preferences for specific attributes of a service and relates to risk awareness". ([50] page 156). (Indication were added if it is preferences/desires; the ES benefits or another form of demand or when the ES demand is not specified)	Following definitions in Burkhard and Maes [50]	We grouped the ES components differently because definitions vary among authors; we grouped components with closed definitions
ES values	The ES values defined in the study are coded following the IPBES Values Assessment Report 2022: - "Economic values are based on individual preferences, reflecting individual needs, wants, perceptions, and worldviews, as well as the scarcities imposed by nature and by the social and economic contexts within which people live"; - Sociocultural valuation methods aim "to value nature and its contributions to people by discovering the psychological, historical, cultural, social, ecological, and political contexts and conditions, as well as the worldviews and social perceptions that shape individually held or commonly shared values"; - "Biophysical approaches assess value based on the intrinsic properties of objects by measuring underlying physical parameters. They generally aim to examine the ecological importance of attributes, qualities, and quantities characterizing nature's condition and functioning."	Following definitions in IPBES Values Assessment Report p. 17 [51]	None
Exposure / Comparator			
Scale of study area	Subnational; National; Supranational; Continental; Global; No case study	Liquete et al. [22]	"Local" was integrated in "subnational" because it depended on the size of the study in the article and the country involved
Study country	Country included in the study; global		None
Study ocean locality*	Ocean included in the study based on the case study		New category
Study sea locality*	Sea included in the study based on the case study or NA		New category
Specific location	Free space for the name of the case study site	1	None
Number of sites	Number of case study sites reported in the study		New category
Temporal scale	Interval of time elapsed between successive temporal replicates of the	Ì	Distinguishes information in
interval raw data*	raw data (i.e., the data used for the analysis in the article, e.g., data used		terms of raw data (which we
	to calibrate a prediction)		defined as the data used for the
Temporal scale duration raw data*	Duration of time elapsed between first and last temporal replicates of the raw data analysis		analysis in the article, e.g., data used to calibrate a prediction)
Temporal scale interval result data*	Interval of time elapsed between successive temporal replicates of the result data (i.e., the data results of each study, e.g., the results from a prediction model)		and the results data (i.e., the data results of each study, e.g., the results from a prediction
Temporal scale duration result data*	Duration of time elapsed between first and last temporal replicates of the result data analysis		model)
Time frame*	 Past: data prior to 3 years before the date of publication Present: data in the last 3 years before publication Future: data after the publication 		None

Time data*	 Observation and descriptive study with measurement of a specific parameter; Experimentation and demonstrative study with experiments showing causality effects between factors; Prediction/projection: definition of potential values in the future based on models. Projection is future when a change/pressure happens. Prediction is futures when nothing influences the evolution. 	Adapted from Sordello <i>et</i> <i>al.</i> [52]	Addition of "experimentation" and addition of "projection" with "prediction"
Pressure type*	Land/sea use change; Direct/overexploitation; Pollution; Introduction of non-indigenous species; Management effects; Climate change (CC); CC extreme events; CC - sea level rise; CC - Warming waters; CC - Deoxygenation; CC - ocean acidification; CC - other pressure + free space for other pressures (related to climate change, e.g., the impact of El Nino Southern Oscillation);	IPBES [1] and Halpern [32]	We added Climate change pressures adapted from detailed Halpern [32] as it is a specific focus we wanted
Type of management*	Marine protected area; Water quality management; Fishery management		We changed this item to specify the type of management or the presence of a marine protected area
Complementary inform	mation		
Type of data*	 Primary data: data was created and not based on other studies; Quantitative data: empirical or observational data or biophysical or economic indicators; Qualitative data: data from interviews or public perceptions from questionnaires; Data variability: when an indicator of the variability is presented in the article 	Following Langridge <i>et</i> <i>al.</i> [53]	Added categories
Study design**	 Control-impact design: two or more ecosystems/areas/species with at least one with the driver of change and at least one without the driver of change, both studied at one point in time; Before-after design: one ecosystem/area/species studied before and after an event (e.g., a new driver of change or a sudden event as an extreme climate event); Before-after control-impact design: two ecosystems/areas/species; one with the driver of change and one without, both at two time points: before and after the event; Multiple before-after control-impact design: two or more ecosystems/areas/species: two or more with the driver of change and several without, all at several time points, before and after the event; Multiple impact design: two or more ecosystems/areas/species with different characteristics (e.g., exposed to different drivers of change) compared at one time point; Multiple impact design - a temporal series: two or more ecosystems/areas/species or several studied over time when exposed to a chronic disturbance; Temporal series post-disturbance: one ecosystem/area/species or several studied over time post-disturbance; Correlation analysis: correlations between the magnitude of a driver of change and one or several ecosystems/areas/species characteristics 	Adapted from Sordello <i>et</i> <i>al.</i> [52]	New category

345 *Category modified from the protocol Campagne *et al.* [42]

346 **New category; not in the protocol Campagne *et al.* [42]

347

348 Data coding strategy

349 The metadata from all included articles were coded in a standardized data extraction form. The

350 metadata is detailed in a codebook sheet in Additional file 6. For each article, we extracted information

351 on 1) bibliographic information; 2) ecosystem type, specific ecosystem, and biodiversity; 3) ecosystem

352 service; 4) spatial scale of the study, location of the study, temporal scale of the study; 5) driver type,

353 management type; and 6) data type and study design.

354 The coding was undertaken in three steps.

First, coding was tested on three articles by three reviewers (SC, LAR, ET) during a face-to-face meeting. This meeting ensured that each reviewer understood the metadata and refined the metadata and its categories when necessary.

Secondly, two reviewers (SC, LAR), each separately coded a test sample of 30 articles, and compared their extracted data interpretations. Differences were discussed and new adjustments were made when needed. Note that differences only occurred in terms of the way in which to code metadata and how to deal with ambiguous articles.

Finally, SC and LAR coded all 653 articles, with ET cross-checking specific articles identified as difficult to code. We strove to avoid interpreting information in the article, and concentrated on extracting raw information. To verify consistency throughout the whole coding process, LAR coded a sample of 25 articles twice, at the beginning and at the end of the coding process. Cohen's kappa coefficient was 0.99, confirming consistency.

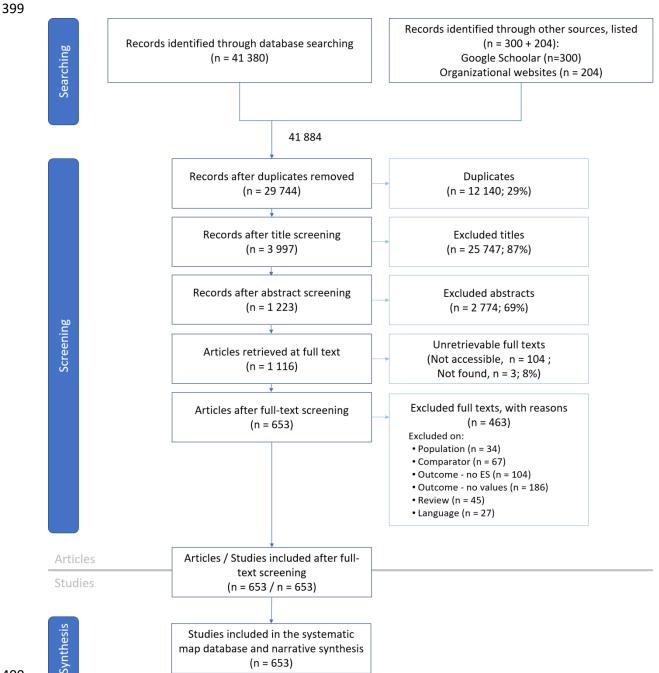
367 Data mapping method

The database was managed and analysed in Microsoft Excel software using tables and graphs. While many representations were done in Microsoft Excel, we also used MapChart (<u>https://www.mapchart.net/world.html</u>) for the world map.

Once coding was completed, we checked that our map was a list of publications (i.e., the formats in which authors present their research) all containing only one study unit (i.e., one unique investigation) following James *et al.* [54]. Nevertheless, an article may be classified across several categories of the metadata. For example, an article may involve several ecosystems and/or several ES, but was still one study unit because it was one unique investigation [54]. Consequently, the total number of articles in the different categories of metadata in the results section may be greater than the number of selected articles.

The database contained the mention "unknown" if information was not given by the authors, and "NA" if the coding information was not applicable.

380


381 **Review findings**

382 Review descriptive statistics

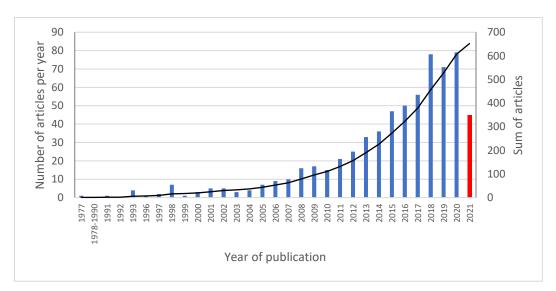
The number of records selected at each stage of the review process is presented in Figure 1. A total of 41 380 records were identified through database searches, and 504 additional records were identified through Google Scholar and organizational websites. We detected 12 140 duplicate records. The titles and the abstracts were screened separately, resulting in the removal of 25 747 and 2 774 records, respectively. The full texts of 1 116 records were screened; 106 full texts were unretrievable (listed in Additional file 4).

Full-text screening led to the exclusion of a further 453 articles (listed in Additional file 5). The main reasons were the lack of ES values in the articles or the lack of ES assessment (cf. eligibility criteria). For instance, even if a title or abstract mentioned an ecosystem service, the object of the assessment was often not about an ecosystem service. Similarly observed by Storie *et al.* [38], several papers mentioned the term "ecosystem services", but did not mention what kind of services were 394 provided/involved. Other reasons for exclusion were, in the order of the number of articles excluded: 395 lack of spatial and/or temporal differences (Comparator); review papers either without ES values 396 altogether, or presenting only existing ES values from other papers without new analyses; missing 397 marine ecosystem (Population) and full text not in English ("Language") (Figure 1).

398 Finally, a total of 653 full texts were selected for coding and are listed in Additional file 6.

400

Figure 1: ROSES flow chart for the systematic map showing the number of records included at each stage ofthe review process


403

404 **Descriptive information**

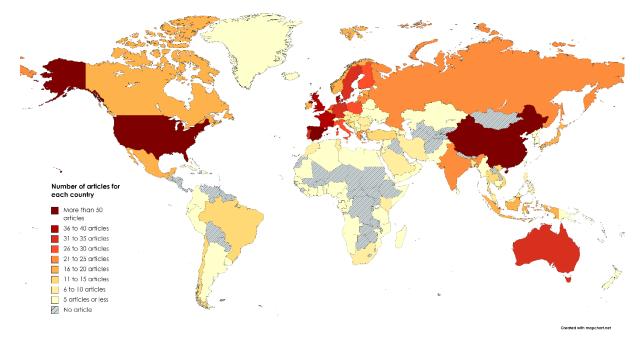
405 1) Bibliographic information

406 The ultimately selected articles covered a period from January 1977 to July 2021 (date of the records 407 searched) with an increase in the number of articles published during the last 20 years (Figure 2). This 408 trend has been highlighted in many reviews (e.g., [55]), being correlated with the increase of articles 409 published in all fields. A similar pattern was revealed in the temporal evolution of the number of 410 published articles in the 41 380 records identified through database searching (Figure 1 in Additional 411 file 7). The increase in studies on ES has already been reported in McDonough et al. [56], noting an 412 increase in the number of articles published each year citing the term "ecosystem services" in the title, 413 keywords or abstracts between 2005 and 2016.

- 414 Incidentally, all selected records were journal articles, except one that was a technical report. Although
- 415 we thoroughly searched the grey literature, only one record met all eligibility criteria. In terms of
- 416 content, four articles were reviews and one article was a discussion paper. No book chapters or other
- 417 types of content were included in the final database of documents (e.g., meeting abstracts, news,
- 418 editorials, commentaries, correspondence, communication, etc.).

419

421 Figure 2: Temporal trend of the number of published articles (no selected article was published between

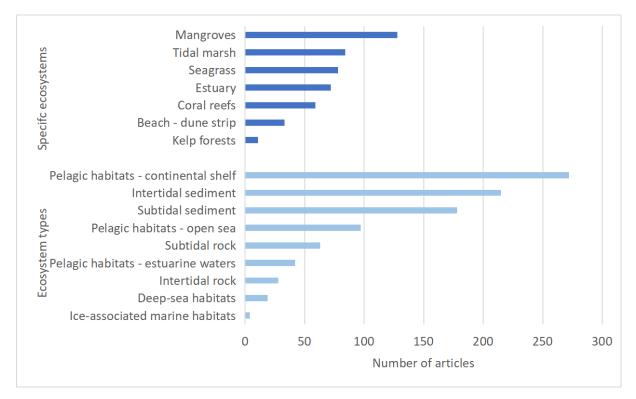

422 1978 and 1990), with the number of articles published per year in blue (2021 is shown in red to indicate the
 423 year is incomplete: literature search was conducted in July) and the black line shows the increase in number

- 424 of articles published.
- The Atlantic Ocean was the most studied ocean (290 articles), followed by the Pacific Ocean (187 articles) and the Indian Ocean (107 articles). The Arctic and Antarctic oceans were included in only five and one study, respectively.
- 428 Study location was coded with the country identified in the articles and related to the study sites 429 presented in the articles. If the article presented a global analysis without a related country, we coded 430 it as "global". If no study site was mentioned, we coded it as "No case study". The USA presented the 431 highest number of articles (79 articles), followed by Spain and China (53 and 52 articles, Figure 3). The 432 USA and China were also in the top three countries along with the United Kingdom (UK) for the highest

number of published articles (2005–2016) containing the term "ecosystem services" in the
McDonough *et al.* [56] analysis and in a review (1998–2017) on water ES (ref. [55]). While the UK was
the fifth country in terms of number of articles in our map, Spain seems to actively publish articles on
marine ES, particularly in light of our results and compared with those of McDonough *et al.* [56] and
Aznar-Sánchez *et al.* [55].

In this map, we observed a high number of articles involving North America, Europe, Asia and Australia, but few or none in the countries of South America, Africa, the Middle East and Oceania (except Australia). These results follow a trend similar to the global distribution of valuation articles observed in McDonough *et al.* [56] and more recently in the IPBES Values Assessment reports [10], which showed the highest number of articles to be from Europe, North America, and then Asia.

- Changes in ES services were analysed mainly at subnational scales, with 61% of the articles (399
 articles). Only 16% of the articles (104 articles) involved studies at a national scale, 15% (100 articles)
 at a supranational scale, 2.5% (16 articles) at a continental scale, and 9% (56 articles) were at the global
 scale. Again, these proportions, in terms of the spatial scale of the analyses, follow a pattern similar to
- that highlighted in IPBES [10], which showed 72% of subnational-scale articles, 11% at national scale,
 9% at cross-regional/national scales, and 6% at the global scale. Liquete *et al.* [22] also showed a
- 449 relatively high proportion of local (i.e., subnational) marine and coastal studies.


450

451 Figure 3: Spatial distribution of the number of articles per country

452 **2)** Population: studied ecosystems and biodiversity indicators

The main ecosystems studied (categories adapted from the "EUNIS level 2 Classification" by the European Commission) were pelagic ecosystems on the continental shelves, and intertidal and subtidal soft-sediment ecosystems (Figure 4). Few articles dealt with intertidal and subtidal hard substrates and the fewest retrieved articles addressed deep-sea ecosystems and ice-associated ecosystems.

457 About half of the articles (49%) focused on specific coastal ecosystems (e.g., mangroves, seagrass) 458 (Figure 4). This focus on specific ecosystems (also called remarkable habitats) has been already highlighted in France [15] and these particular habitats are the subject of disproportionally research
studies (e.g., [57]). In these specific ecosystems, mangroves have received the most attention (19%)
followed by tidal marshes and seagrass meadows (13% and 12%, respectively). Surprisingly, coral reefs
were featured in only 59 articles. Less attention was given to kelp forests, with only 11 articles (2%).

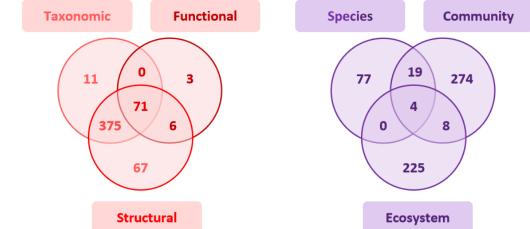
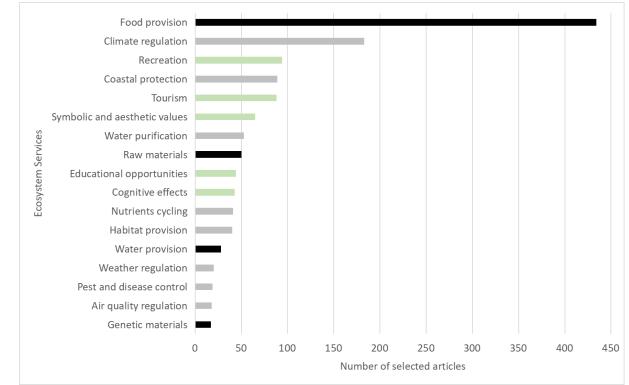


Figure 4: Distribution of articles according to specific marine ecosystems (in dark blue) and ecosystem types (in light blue)

463


466 To describe which facet of marine biodiversity was monitored to depict its changes, we coded essential 467 biodiversity variables (i.e., species, community and ecosystem; cf. Table 4.) [58] and the three essential 468 characteristics of diversity (i.e., taxonomic diversity, structural diversity and functional diversity) [49], 469 all detailed in Table 4. Thus, in terms of distribution, community composition [58] was monitored in 470 301 articles and ecosystem structure in 247 articles, and species' populations were monitored in 89 of 471 the articles (Figure 5). The structural diversity (i.e., the distribution of biological entities [49]) and the 472 taxonomic diversity (i.e., the number of different biotic entities like species richness [49]) were the 473 main characteristics of diversity analysed in 375 articles (Figure 5). Note that not all articles included 474 marine biodiversity elements, so the total in Table 5 is less than the 653 analysed articles.

A qualitative description of the species studied highlights that some charismatic species are often
studied, including exploited fish and shellfish species, such as cod *Gadus morhua*, red mullet *Mullus surmuletus* and Norway lobster *Nephros norvegicus*, and foundation species such as mangrove species *Avicennia marina* and *Avicennia germinans*, and the seagrass species *Posidonia oceanica* and *Zostera marina*.

480

- 481 Figure 5: Number of articles per indicator of marine biodiversity monitored per essential
- 482 biodiversity variable (left panel) and essential characteristic of diversity (right panel)

483 3) Outcomes: ecosystem services

484

Figure 6: Distribution of the number of articles per ecosystem service. Provisioning services are shown in black, regulating services in grey, and cultural services in green.

Provisioning services were assessed in 68% (447 articles), regulation services in 39% (252 articles) and cultural services in 18% (120 articles) of the articles. The main ES studied was food provision (67%; number of articles in Figure 6) mainly related to fisheries, followed by climate regulation, with 28% of the articles. Recreation and tourism were the subject of 14% and 13% of the articles, respectively. The least analysed ES were pest and disease control, air quality regulation, and genetic materials. Only five articles included disservices (i.e., negative impacts on human well-being; for example, related to the proliferation of harmful species like jellyfish [59]). Over time, the literature has focused mainly on food 494 provision, then progressively covering all the different ES since 2007 (Figure 3 and 4 in Additional file495 6).

The ES are mainly assessed through the potential, capacity or the supply component (89%; number of articles in Table 3), followed by use or flow, which were assessed in 45% of the articles. Preferences, desires, benefits or other forms of demand were assessed in only 8% of the articles. Over time, the proportion of articles considering ES use or flow varied, stabilizing at around 30% during the last decade, during which the number of articles has increased (Figure 5 in Additional file 6). While 57% of the articles assessed only one ES component, 42% assessed two components, which were mainly in a

502 "supply/use approach". Only three articles assessed the three ES components simultaneously.

- 503 In the different ES categories, potential, capacity or supply was assessed in between 94 and 100% of 504 the articles, except for the ES food provision, in which they were assessed in only 85% of the articles 505 (Table 5). The ES food provision was assessed through use or flow in 68% of the articles (293 articles),
- 505 (Table 5). The ES food provision was assessed through use of now in 66% of the articles (295 articles)
- 506 which is different from all the other ES for which use or flow was only assessed in 20% or less of the
- articles (Table 5). The demand component was also heterogeneous, involving more than 20% of the
- 508 cultural ES, water purification and air quality regulation, but only 7% and 8% articles on food provision
- and climate regulation and 10% of articles on weather regulation and nutrient cycling. All ES showed a
 higher proportion of articles on their benefits than on preferences or desires.
- 511 Following the ES definitions and indicators presented in the articles and their individual definitions, 79%

of the articles analysed only one ecosystem service (516 articles). The number of articles decreased

- 513 with the number of ES identified in the articles, with 7% of the articles (47 articles) analysing two ES
- and only 7% of the articles (46 articles) analysing more than five ES.

515 Table 5: Distribution of the number of articles per ecosystem service values and components (cells are 516 shaded according to the high (dark) and low (light) values for each column separately)

		Food provision	Raw materials	Genetic materials	Water provision	Water purification	Air quality regulation	Coastal protection	Climate regulation	Weather regulation	Nutrients cycling	Habitat provision	Pest and disease control	Symbolic and aesthetic	Recreation	Tourism	Cognitive effects	Educational opportunities
	Total	433	50	17	28	53	18	89	183	20	41	40	19	64	93	87	42	43
Economic	213	155	39	13	18	32	14	49	52	12	17	22	13	42	60	58	29	31
Socio-cultural values	39	28	9	5	6	8	3	8	6	3	2	5	6	14	16	19	10	9
Biophysical	633	419	44	15	24	49	16	82	176	19	39	36	18	53	80	76	36	36

Potential/capacity/supply	583	366	49	16	27	50	17	88	181	20	41	39	18	63	89	85	41	42
Use/flow	297	293	10	2	3	4	3	6	10	1	3	6	1	5	18	17	3	4
All demands	52	30	7	3	4	12	4	13	14	2	4	6	4	15	23	21	12	11
Preferences/desires	18	9	1	1	1	5	1	1	2	0	0	2	2	7	11	10	8	7
Benefits	35	21	6	2	3	8	3	12	11	1	3	4	4	9	13	14	7	6
Other forms of demand	2	2	1	1	1	1	1	1	1	1	1	1	0	1	2	0	0	0

- 517 The ES were almost always assessed using biophysical values (97% of the articles, Table 5). Economic
- values of ES were assessed in 33% of the articles. They were measured using socio-cultural values in
- only 6% of the articles. Over time, the proportion of articles considering ES economic values varied,
- 520 stabilizing at between 12 and 28% during the last decade, during which the (absolute) number of
- 521 articles increased (Figure 6 in Additional file 6). The assessment of sociocultural ES values started only
- 522 in 2006 based on our selection of articles.
- 523 Biophysical assessments of ES dominated the assessment of ES in the Baltic Sea (47.5% of articles in 524 [39]). The IPBES report [42] showed that 50% of studies are based on a biophysical assessment, 26% 525 on a monetary assessment and 21% on a socio-cultural approach.
- Biophysical and economic ES values were jointly assessed in 26% of the articles. A small number of articles combined sociocultural and biophysical values (1%) or combined all three assessment methods (28 articles; 4%). Two articles considered sociocultural values alone and no study combined sociocultural and economic values. We agree with Kuhn *et al.* [46], that "the predominant focus on biophysical research is emphasized by the fact that the vast majority of publications is focused on ES
- 531 supply, neglecting the demand side and leaving out the societal request for ES".
- Although biophysical value was assessed for all types of ES, the economic and socio-cultural values were more common for some specific ES (Table 5). For instance, economic values were frequently assessed (more than 70%) in articles on raw materials, genetic materials, and air quality regulation. Sociocultural values were considered for almost 30% of the ES related to genetic materials and pest and disease control. The economic and socio-cultural values were the least frequently assessed values for the ES climate regulation, food provision, and nutrient cycling.

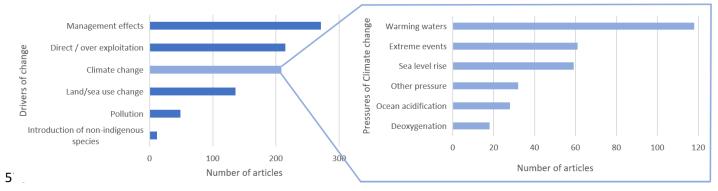
538 4) Comparator: spatial and temporal scale

- 539 In our map, the spatial scale of the analysis of ES changes was measured using the number of case
- 540 study sites. For instance, 247 articles involved one site (37% of the articles), 275 articles analysed more 541 than one site (41%) and 187 articles (28%) more than three sites, with a maximum number of sites
- than one site (41%) and 187 articles (28%) more than three sites, with a maximum number of sites
 (536 sites) in a study on coastal tourism under climate change on beaches all over Japan [60].
- Temporal dynamics were coded with the interval and the time covered by the raw and the results data.
 While we did not consider articles with data covering periods ending before 1900 (cf. eligibility criteria),
- data acquisition varied from 1 to 2500 years, e.g., from 500 BC to 2000 in Finney et al. [61]. A large majority of articles (83%) covered a period of more than one year (Figure 2 in Additional file 7). The duration of the period studied was longer in the results data, because the raw data were used in simulation models, i.e., for prediction. A total of 170 articles (26%) studied more than one site with data covering more than a year.
- 550 In terms of the study period, 490 articles (76%) analysed data from the past (i.e., prior to 3 years before
- the date of publication), and 446 articles (69%) reported the situation in the last 3 years before
- publication and 146 articles (22%) analysed services in the future (i.e., after the year of publication).

553 5) Drivers of change

554 Coastal and marine ecosystems are affected by several drivers of change, which in turn affect the 555 delivery of marine ES [26]. About 60% of global marine ecosystems have been degraded or unsustainably used [49], and the percentage of stocks fished at biologically unsustainable levels has
increased from 10% in 1974 to 34.2% in 2017 [63]. Within the six coded classes of driver types (Figure
7), 48% of the articles (315 articles) identified only one driver and 38% (247) identified more than one
driver, 13% did not identify or mention a driver of change at all. Finally, 57% (376 articles) integrated

- 560 data regarding drivers of change into their analyses and 29% (187) integrated data from the ecosystem
- 561 condition or processes into their analyses.


562 Within the different coded types of drivers of change, the management effect was the most analysed 563 driver (41%; Figure 7), followed by direct/overexploitation, analysed in 33% of the articles. Climate

change was analysed in 31% of the articles and land/sea use and change in 21% of the articles. In terms

of climate change pressures, warming waters was the most analysed driver. The introduction of nonindigenous species and deoxygenation (related to climate change) were the least frequently analysed

567 pressures.

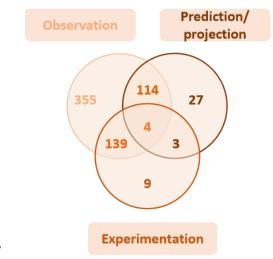
568 Regarding management, fishery management concerned 32% of the articles, water quality 569 management 6% and finally marine protected areas, 9%.

571 Figure 7: Distribution of the number of articles for the types of drivers of change (on the left) with

572 distribution for the pressures related to climate change (on the right). Article can concerned several drivers 573 of change or pressures of climate change.

574 6) Data and study types

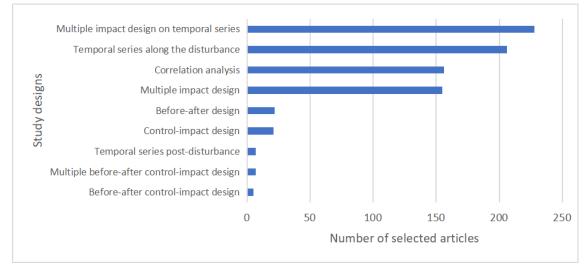
575 Almost all articles were based on quantitative data (98%; 637 articles); qualitative data were exploited


576 in 5% of the articles. The dominance of quantitative data is also highlighted in Liquete *et al.* [22], 577 reporting 56% of quantitative assessments and 10% of qualitative assessments.

578 Within the different ES, qualitative data primarily addressed cultural services, accounting for 13 to 17% 579 of the articles (Table 1 of Additional file 1). Overall, 55% of all articles presented primary data with the 580 fewest primary data articles for the food provision and genetic materials ES (respectively 47.8% and 581 7.1%). With a view to carry out a meta-analysis after the systematic map, the presence of measures of 582 variability, such as standard errors or standard deviations of ES values, was coded: information on 583 variability was provided in 57% of the articles. The information on variability was not present in the 584 same proportions across the ES (Table 1 of Additional file 1): fewer than 24% of the articles on genetic 585 materials and water provision provided values of variability, but 66% of the articles on climate 586 regulation did.

587 The data were mostly based on observation and descriptive approaches with measurement of a 588 specific parameter (90%, 698 articles), representing 100% of the articles on genetic materials, water 589 provision, air quality regulation, weather regulation, and pest and disease control (Table 1 of Additional

- 590 file 1). Projection or prediction approaches (definition of potential values in the future based on models;
- 591 projection is futures when a change/pressure happens; prediction is futures when nothing influences
- the evolution) were used in 22% of the articles (146 articles) and experimentation (experiments
- showing causality effects between factors) was used in 23% (153 articles). A mixture of observation,
- 594 prediction or projection, and experiment data was reported in four articles. Experimentation alone
- 595 was present in 9 articles (Figure 8).


596

597

599

598 Figure 8: Number of articles per type of data

600 Figure 9: Distribution of the number of articles for the types of study design across case studies

601 The main types of study design were multiple impact design on temporal series, which refers to two 602 or more ecosystems/areas/species with different characteristics compared over time (35% of the 603 articles, Figure 9). Temporal series during a disturbance (i.e., one ecosystem/area/species or several 604 studied over time during a disturbance) followed, with 32% of the articles. A multiple impact design 605 (i.e., two or more ecosystems/areas/species with different characteristics to compare at one time 606 point) was used in 24% of the articles. Correlation analysis between drivers and one or several 607 ecosystems/areas/species was provided in 24% of the articles. The study design with analyses before 608 and after an event or sudden driver of change were the least studied.

- 609 Within the different ES, the proportion of the different study types was homogenous with the mean
- of all ES (Table 1 of Additional file 1), except for pest and disease control, symbolic and aesthetic values,
- 611 recreation and tourism which were assessed more frequently in studies with a multiple impact design
- 612 (two or several ecosystems/areas/species with different characteristics to compare at one time).

613 7) Cross-category analyses

The number and proportion of articles on the different ES showed a similar pattern for the different marine ecosystems, with the intertidal sediment and subtidal sediment ecosystems being the focus of most articles (Table 6). An exception was articles on food provision, which especially involved pelagic habitats on continental shelves. For the specific marine ecosystems, mangroves attracted the most articles examining the various ES. However, estuaries and tidal marshes had proportionally more articles on air quality regulation. Articles on cultural services account for around 20% of the articles on beach - dune strip, mangroves and coral reef.

621

623 Table 6: Distribution of the number of articles per ecosystem service, ecosystem type, and biodiversity

624 component (cells are shaded according to the high (dark) and low (light) values for each column separately)

										Ecosy	stem	servic	e						
			Food provision	Raw materials	Genetic materials	Water provision	Water purification	Air quality regulation	Coastal protection	Climate regulation	Weather regulation	Nutrient cycling	Habitat provision	Pest and disease control	Symbolic and aesthetic values	Recreation	Tourism	Cognitive effects	Educational opportunities
		TOTAL	433	50	17	28	53	18	89	183	20	41	40	19	64	93	87	42	43
	Ice-associated marine habitats	4	3	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0
	Deep-sea habitats	19	19	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
u	Intertidal rock and other hard substrates	28	19	3	2	3	3	3	5	4	0	1	4	2	10	12	9	5	5
Type of ecosystem	Pelagic habitats - estuarine waters	42	32	5	1	2	4	2	6	9	1	2	4	1	5	5	7	3	3
of eco	Subtidal rock and other hard substrates	63	55	1	1	2	2	1	4	4	0	1	3	1	5	10	6	3	4
Type	Pelagic habitats - open sea	97	96	0	0	0	1	0	0	1	0	0	0	0	0	2	1	0	0
	Subtidal sediment	178	106	12	4	6	14	2	28	51	3	10	9	5	18	27	23	14	14
	Intertidal sediment	215	62	23	6	11	20	5	59	126	7	20	17	9	25	30	26	14	13
	Pelagic habitats - continental shelf	272	265	4	2	1	3	0	5	7	0	3	8	2	7	15	21	5	6
	Kelp forests	11	5	1	1	0	1	0	3	4	1	2	2	1	2	4	3	1	2
tem	Beach - dune strip	33	10	4	2	3	5	2	11	6	1	1	4	4	12	18	17	8	8
Specific ecosystem	Coral reefs	59	44	9	3	3	8	1	16	10	4	3	7	4	12	20	18	10	10
ecc	Estuary	72	38	9	3	5	7	4	13	30	3	7	7	4	8	11	10	5	6
cific	Seagrass	78	20	4	2	2	8	0	16	50	2	11	4	3	9	11	9	9	9
Spe	Tidal marsh	84	14	8	3	5	9	4	27	54	4	13	6	3	9	10	7	4	4
	Mangroves	128	36	17	4	8	14	2	35	82	7	10	11	5	16	19	15	12	11
	Species or population		74					•		0	•	6		•	2		-		
>	Ecosystem	90	74	1	1	0	1	0	1	9	0	6	4	0	2	4	5	1	1
rsit	Community	254 306	64 288	29 7	6 3	13 3	29 7	6 0	65 5	154 14	12 1	26 6	19 9	9 2	34 9	45 18	41 19	25 4	26 5
Biodiversity	Functional	80	59	0	3 0	3	1	0	4	21	1	6 4	9	0	9	2	4	1	1
Bio	Taxonomic	465	321	14	4	7	14	1	33	113	4	19	17	2	18	26	31	11	12
	Structural	528	363	14	4	8	14	1	44	123	5	24	19	3	20	28	31	13	12
1	625	·																	

622

Table 7: Distribution of the number of articles per ecosystem service and type of driver of change (cells are

627 shaded according to the high (dark) and low (light) values for each column separately)

									Ec	osyst	em s	ervice	es						
			Food provision	Raw materials	Genetic materials	Water provision	Water purification	Air quality regulation	Coastal protection	Climate regulation	Weather regulation	Nutrient cycling	Habitat provision	Pest and disease control	Symbolic and aesthetic values	Recreation	Tourism	Cognitive effects	Educational opportunities
		Total	433	50	17	28	53	18	89	183	20	41	40	19	64	93	87	42	43
	Introduction of non- indigenous species	12	4	2	0	1	2	1	5	5	1	2	0	2	2	2	2	2	2
	Pollution	49	27	7	2	3	7	2	7	19	3	5	5	3	9	14	14	6	7
	Land/sea use change	136	53	28	8	18	29	10	40	71	10	12	22	10	28	36	32	20	20
	Climate Change (CC)	204	141	14	4	10	12	3	43	42	5	16	11	6	15	22	22	9	10
3	Direct/overexploitation	215	209	6	3	2	7	0	8	6	3	6	8	3	10	19	19	9	9
5	Management effects	271	209	13	7	8	20	2	28	40	6	11	18	9	28	42	47	19	17
	CC - deoxygenation	18	15	0	0	0	0	0	0	2	0	2	0	0	0	1	3	0	0
5	CC - ocean acidification	28	24	2	0	1	2	0	4	4	0	1	1	1	3	5	5	3	3
	CC - other pressure	32	24	1	0	1	3	0	4	11	1	2	2	1	3	5	4	3	3
	CC - sea level rise	59	23	8	4	6	5	3	29	19	2	9	4	5	10	11	12	4	4
	CC - extreme events	61	42	7	2	6	4	1	24	5	2	4	6	3	6	8	7	3	3
	CC - warming waters	118	77	5	2	3	7	2	12	28	2	5	9	2	7	10	14	4	4

628

Driver of change

The coded biodiversity indicators showed similar patterns within the ES (Table 6). Ecosystem structure was the most monitored biodiversity indicator across all articles on different ES, except for food provision which was particularly studied in terms of community composition. Structural diversity and taxonomic diversity [49] showed similar patterns within the different ES. Functional diversity, which is the diversity of functions or functional traits, was generally the least studied across all ES.

634 The heat map on Table 7 demonstrates that 48% of the articles on food provision studied the impacts 635 of management effects and/or direct/overexploitation. For the other ecosystems, the impacts of land/sea use change were most studied, involving 37 to 64% of studies depending of the ES, ranging 636 637 from 18 out of 28 articles on water purification to 36 out of 87 articles on recreation. Nutrient cycling 638 and coastal protection were relatively more frequently studied in relation to climate change impacts 639 (39 and 48%). Regarding the specific climate change-related pressures, warming waters and sea level 640 rise were the focus of most articles, with extreme events supplanting either of these top two pressures 641 or coming in at a close third place for the articles on raw materials, water provision, coastal protection 642 and pest and disease control (Table 7).

643

644 Comparison with other evidence syntheses

To our knowledge, no other systematic map has been published on the evidence of how ecosystem
 service delivery is affected by changes in marine ecosystem structure and functioning. Nevertheless,
 evidence syntheses published on related subjects were used to compare our map results. The final

648 number of analysed articles (653) is close to that reported for maps on the impact of agroforestry on 649 ES and human well-being in high-income countries [64] and on the analysis of publication trends on 650 water ES [55], but higher than other evidence syntheses on related subjects (Table 8). Our number of 651 articles is low compared with the review of the overall ES literature [65], i.e., not restricted to marine 652 ecosystems and their dynamics.

We analysed more articles than Liquete *et al.* [22], likely due to the publication date range: we considered all articles up to July 2021 and Liquete *et al.* considered articles only up to 2012. Our selection of articles from this 8-year interval contains 496 articles. Thus, our database up to 2012 contains 157 articles, a figure close to the 145 articles considered in Liquete *et al.*

657

658 Table 8: Comparing other evidence syntheses to our current map. (WOS: Web of Science)

Citation	Scope of review	Nature of synthesis	Search databases	No. of other literature sources	Publication date range of included articles	No. of included articles
Our systematic map	Impact of changes in marine ecosystem structure and functioning on ecosystem service delivery	systematic map	3 (WOS, Scopus, Google Scholar)	6	1977 to 2021 (July)	653
Castle <i>et al.</i> 2022 [64]	Impacts of agroforestry on ecosystem services and human well-being in high-income countries	systematic map	5 (WOS, Scopus, EBSCO: Agricola, Econlit, CAB Abstracts and Global Health, AGRIS)	24	1990 to 2020 (June)	632
Inácio <i>et al.</i> 2022 [65]	Mapping lake ecosystem services	systematic review	3 (WOS, Scopus, Google Scholar)	0	2000 to 2021	30
Storie <i>et al.</i> 2021 [38]	Impact of Baltic Sea ecosystems on human health and well-being	systematic map	17	7	1975 to 2020	67
Aznar- Sánchez <i>et</i> <i>al.</i> 2019 [55]	The worldwide research trends on water ecosystem services	bibliometric analysis	2 (WOS and Scopus)	0	1998 to 2017	782
McDonough <i>et al.</i> 2017 [56]	Analysis of publication trends in ecosystem services research	bibliometric analysis	4 (Scopus, WOS; CABI: CAB Abstracts, and Environmental Sciences and Pollution Management)	0	2005 to 2016	Approxim ately 3000
Liquete <i>et al.</i> 2013 [22]	Current status and future prospects for the assessment of marine and coastal ecosystem services	systematic review	1 (SciVerse Scopus)	0	1823 to 2012	145

659 Limitations of the map

660 Limitations in searching

661 The search string and the articles accepted were only in English. Like for most of the maps or reviews,

this restriction biased the distribution of the articles, with around 30% of the articles coming from

663 English-speaking countries, as reported in Collins *et al.* [66]. Integrating an additional language (e.g.,

664 French or Spanish) would have increased the range of the map, but also introduced other potential

biases by focusing on some countries at the expense of others; an exhaustive search should ideally

include all or the mainly used languages around the world but we did not have the resources or the

time to integrate additional searches in other languages.

668 While the searches obviously depend on the search terms and the databases used, we adopted a 669 comprehensive approach to limit this dependency.

670 Limitations in screening

671 The kappa coefficient at the title screening step was calculated on only 2.38% instead of 10% of titles 672 given the high number of records (29 744 records) screened at the title step. Due to resource and time 673 limitations, we chose to screen 1001 records by two screeners. The CEE recommends pilot testing on 674 10%, which is considered as the necessary proportion to thoroughly test and ensure that criteria are 675 correctly defined so that no relevant evidence is missed during screening. Although we were not able 676 to abide by this guideline, we carried out a thorough training phrase and applied a conservative 677 approach during all screening steps. In addition, we chose to apply relatively strict criteria at the 678 abstract screening stage, based on the absence of the Comparators item. This pragmatic decision was 679 taken in light of the very large volume of literature and limited human resources. We conducted a 680 posteriori crosscheck checking if abstracts have information about the Comparator (e.g., information 681 of ES change), which confirmed in principle that abstracts provided the required information.

682

683 Limitations in coding

The test of the coding procedure highlighted some limits of the coding categories of the protocol [41], such as the difficulty of differentiating a "local" scale of analysis from a "subnational" scale, depending on the size of the study and the country involved. To overcome this limit, we grouped these two levels into a single level ("subnational") in our analysis. All improvements on the categories coded are detailed in Table 4.

689 Coding was generally strictly based on the data in the article, but the EUNIS ecosystem classification 690 and the ES classification were coded based on interpretation of the information in the articles. When 691 difficulties were encountered, the reviewers held discussions and reached decisions together. If the 692 same hesitations or difficulty in coding came up more than once, we strove to find overall solutions to 693 apply across the board and maintain coding consistency throughout the analysis.

694

695 **Conclusions**

This map highlights knowledge clusters and gaps on the impacts of the spatio-temporal dynamics of marine ecosystems and biodiversity on the ecosystem services they provide. A high number of records was identified in our search (29 744 records without the duplicates) with 2.3% (653) selected for the systematic map. This low number of mapped articles can be linked to the frequent use of keywords relating to ES for articles covering very different subjects, a point also highlighted in [38] and [67].

We focused on the ES affected by marine ecosystem dynamics, but our map's results show that 9 years after the well-cited Liquete *et al.* [22] article, similar knowledge clusters and gaps in the marine and coastal ecosystems remain. Nevertheless, some efforts can be highlighted, such as the recent increase in the number of articles on the different values of ES, e.g., ES benefits and preferences.

Our systematic map combines a large amount of information on ecosystems, ES with their values and components, types of temporal and spatial dynamics, drivers of change, study type and data type. Compared with other reviews on marine ES, we introduced new information on marine ES literature, such as the type of study design and the type of temporal and spatial dynamics.

709 Implications for future research

Marine ecosystems receive much less attention than terrestrial ecosystems in ES research [37,68]. In our review of the literature on ES affected by marine ecosystem dynamics, we highlighted differences among articles within the marine ecosystems and the marine ES, revealing different levels of interest and knowledge.

714 The proportion of articles within the different ES categories in this systematic map with 68% of 715 provisioning services, 39% of articles on regulation services and 18% on cultural services differ studies 716 on other studies. Systematic maps on marine and coastal ES in the Baltic Sea showed different patterns, 717 with cultural services as the most assessed ES categories [38,39]. Studies on ES provided by lake 718 ecosystems [65] and on terrestrial ecosystems [69–72] reported that regulation services were the most 719 assessed. Nevertheless, the knowledge gap on marine cultural services has already been highlighted 720 [73,74] as well as the focus of cultural ES research on land-based assessments [75] which can generally 721 be related to the difficulties identifying and appraising intangible attributes [73], such as aesthetic, 722 symbolic, and bequest values [73]. Also, methods to quantify indicators of cultural services generally 723 only capture a discrete, snapshot value, for lack of measures of changes over time [73], and therefore 724 do not include the dynamics of the marine ecosystems. Recreation and tourism are the most studied 725 cultural services, likely due to their socio-economic importance and the fact they are easier to assess 726 and quantify [73,76]. Even though the importance of recreation and tourism is unquestionable, other 727 cultural services need to be considered more extensively and assessed [73,76]. The dominance of 728 potential/capacity or the supply component (90%, 599 articles) was also observed in Kuhn et al. [39], 729 Inácio et al. [65] and IPBES [10].

730 Food provision was the most studied marine ES, particularly for fisheries. Our results were influenced 731 by the high proportion of articles on food provision (i.e., fisheries), which is an important ecosystem 732 service that marine ecosystems provide, having high economic importance for humans. Some marine 733 species groups are more frequently assessed and studied such as commercial species and top predator 734 fish stocks [30]. Regarding tourism or recreation, our screening process retrieved literature on the 735 impact of tourism and/or recreation activities on the ecosystems, which we excluded as out of scope. 736 Furthermore, the existing ES analyses have not integrated how the impact of tourism and/or recreation 737 activities on the ecosystems also affects all ES as well as the tourism and/or recreation activities 738 themselves, thus shaping the sustainability of these activities. For example, Apps et al. [77] studied 739 how scuba diving can impact the behaviour of the grey nurse shark and Harriott et al. [78] studied 740 recreational diving and its impact in marine protected areas in Eastern Australia. However, neither of 741 these studies explored how these impacts affected the sustainability of the recreational activities as a 742 feedback loop.

743 Knowledge on marine ecosystems decreases with distance from the coastline, as previously shown in 744 [79]. Knowledge clusters are concentrated in the pelagic ecosystems on continental shelves and 745 intertidal and subtidal soft-sediment ecosystems, and less attention has been given to deep-sea 746 ecosystems [37,80] and ice-associated marine ecosystems [81]. The relatively low volume of ES 747 literature for these latter two ecosystems can be explained by their relatively less accessible habitats. 748 They may also be ecosystems that—by nature—provide fewer ES in terms of diversity and in quantity 749 compared with other marine or terrestrial ecosystems. Deep-sea research incurs high costs, difficulties 750 and risks associated with the ecosystem characteristics [82]. However, deep-sea ecosystems are 751 growing centres of interest for extracting mineral resources [83] and, although some studies have 752 analysed the potential impact of mining on deep-sea biodiversity, research efforts also need to be 753 directed at estimating the potential impact of human activities on their ecological conditions and 754 ecosystem service provisions. Recent publications have addressed the impacts of deep-sea mining on 755 microbial ES [83] and how to incorporate ES into the environmental management of deep-seabed 756 mining [84]. Articles on deep-sea ES highlight many ecosystem "functions" and "support services" such 757 as habitat provision and nutrient cycling [82]. Mangroves are the most studied specific ecosystem, 758 followed by tidal marshes and seagrass meadows, also highlighted by [15], and kelp forests are the 759 least studied. As shown in Jacquemont et al. [85], the capacity to provide ES and the volume of papers 760 are not related to the global surface area of the habitat. For instance, in contrast to soft-sediment 761 habitats, mangrove ecosystems provide a high quantity of ES per unit area and have been intensely 762 studied, even though they represent a small surface area on the globe [85]. Among specific ecosystems, 763 macroalgae have received little attention, but current focus is turning to kelp forests in light of the 764 growing interest in blue carbon [86].

765 Most drivers of change directly affect the ecosystem status and functioning and therefore its ability to 766 provide ES, but management effects may either consist in reducing the pressures or even the very 767 provision for some ES. When effective, management is expected to lead to positive results regarding 768 ecosystem preservation and sustainable ES consumption. Across the different types of drivers of 769 change, management effects, followed by direct/overexploitation and climate change, are the most 770 studied. IPBES [87] has shown that the highest relative impact of direct drivers on the marine realm 771 based in terms of essential biodiversity variables is direct exploitation (management effects are not a 772 category of direct anthropogenic drivers in IPBES), followed by land/sea use change and then climate 773 change. Therefore, the pattern of knowledge clusters closely reflects the relative impacts of the drivers 774 of change. The introduction of non-indigenous species and pollution have the lowest relative impact 775 on the marine realm [87], but it is nevertheless important to grow knowledge on their impact on 776 marine ES given their increasing frequency [68]. The need to develop the knowledge base on the 777 efficiency of management actions in marine ecosystems has been highlighted [15]. Management 778 effects have the highest number of articles within the types of drivers of change so that the database 779 of our systematic map could be used to analyse management efficiency.

780

781 Time-series study designs are common, but control-impact and/or before-after designs are the least 782 implemented study designs. This discrepancy can be attributed to the spatial scales at which ES are 783 provided and affected by the drivers of change on marine ecosystems. With regard to the questions 784 raised in our study, the establishment of long-term time series is better suited to the study of ES than 785 the development of experimental approaches or control-impact and before-after study designs. For 786 example, it is difficult to design experiments to follow the responses of fisheries to climate change or 787 overexploitation; in contrast, time-series analyses and prediction or projection are more suitable and 788 more frequently implemented. One interesting perspective is to extend the scope of the systematic 789 map to the feedback loop of ES variation on other ES and on human demand. For example, drivers of 790 change impact marine ES, which affect ES uses, which in turn also affect their sustainability. In addition, 791 the multifunctionality and the bundles of services are not sufficiently studied [15] and have only been 792 rarely studied in marine realm.

This systematic map confirms hypotheses and results on marine ES knowledge presented throughout
 this paper, although our systematic map focuses on marine ES affected by marine ecosystem dynamics.
 The database presents detailed information on the knowledge within the ES and ecosystems
 categories, thereby identifying very specific knowledge gaps for future research. The database can thus

- be used as a source of articles for a meta-analysis on related topics. As for future prospects for the systematic map defined here, we agree with Collins *et al.* [66] on the interest to explore the use of computer algorithms to construct and update the maps, particularly in light of the high and increasing number of articles to search, screen and code in the systematic map process.
- 801

802 Implications for policy/management

803 The ES concept is increasingly used and implemented in policy and management tools, because it is 804 known to increase the consideration of nature and its contributions to people into land or marine 805 planning [68]. This concept is increasingly cited in international and national regulations and policies, 806 but its implementation is challenging, requiring further solid scientific knowledge [68]. Indeed, 807 "[f]future efforts should be aimed at developing solid evidence linking decisions to the anthropogenic 808 impacts on ecosystems and generated services and, as a consequence, to human well-being; working 809 with leaders in governments, businesses, and civil society to develop and provide knowledge and tools 810 to effectively integrate ecosystem services into decision-making processes; and reforming policies and 811 institutions, and building capacities to better align with private, short-term goals and with societal, 812 long-term goals" [68].

813 The lack of knowledge is a danger for the sustainability of human actions and knowledge-based nature 814 conservation. The knowledge gaps and clusters highlighted here have an impact on the beneficial 815 development of policy and management practises. For example, limited evidence on the efficiency of 816 management actions in marine ecosystems has been highlighted [15,73]. Given that management 817 effects have the highest number of articles among the types of drivers of change coded, the database 818 of this systematic map could be used to analyse management efficiency further. While management 819 actions concerned many fisheries regulations now more regulation are applied. Marine protected 820 areas (MPAs) are a key tool increasingly used for marine protection and conservation [67,88]. 821 Nevertheless, the number of articles on MPAs in the map is low, despite the growing number of articles 822 over the last 10 years. Studies on MPAs primarily assess the biological responses of their 823 implementation, with less emphasis on the impact of ES delivery (but see the recent review of the ES, 824 societal goods, and benefits of MPAs [67]). There is a need to grow knowledge on the efficiency of 825 MPAs and other conservation actions to better guide their implementation depending on the context, 826 desired level of protection, and conservation targets [68].

827 The consideration of the plurality of nature's value is absolutely essential to cultivate a sustainable and 828 equitable future, as recommended by the latest IPBES report [10]. Nevertheless, the economic and 829 socio-cultural values of marine ES are still poorly known and have generated less interest. As funders 830 and/or government authorities, decision-makers can push for more transdisciplinary science and 831 research at the science-policy interface as well as for the participation of different types of decision-832 makers in research. They can also advocate more studies on the desired and preferred ES that are 833 poorly studied. For example, beach - dune strips present one of the lowest numbers of articles even 834 though they are ecosystems of high importance for local economies through the many recreational 835 and tourist activities they afford and for mitigating numerous anthropic pressures. These conflicts of 836 use have wide political implications and are largely exposed to climate change.

837

838 **Declarations**

• Ethics approval and consent to participate

- 840 Not applicable
- Consent for publication
- 842 Not applicable

• Availability of data and materials

844 Datasets produced by the systematic map are available as supplementary material.

845 • Competing interests

The authors declare that they have no competing interests. The systematic map contains articles of which the authors of the systematic map are authors or co-authors. These articles were screened or coded using the exact same process as all the other articles of the systematic map. The articles selected for the coding process did not include any articles authored by the coders (CSC and LAR) of this systematic map, so there was no conflict of interest in the coding process.

851 • Funding

This research is a product of the IndySEM project and part of the IMACES project. The IndySEM project is funded by the synthesis centre (CESAB) at the French Foundation for Research on Biodiversity (FRB; <u>www.fondationbiodiversite.fr</u>). The IMACES project received funding from the European Union's Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement No 899546, part of the BIENVENÜE programme with the Bretagne Regional Council.

857 • Authors' contributions

All authors contributed to the conception and the design of the systematic map. CSC was the major contributor in writing the manuscript. CSC and LAR and, to a lesser extent, ET participated in screening, coding and analysis. JL contributed more specifically to all elements of the methods and CEE guidelines. ET, JC and RM provided comments on the manuscript. All authors read and approved the final manuscript.

863 • Authors' information

- ¹Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, Adaptation et Diversité en Milieu Marin,
 Place Georges Teissier, F-29680 Roscoff, France
- ² Fondation pour la Recherche sur la Biodiversité, Centre de Synthèse et d'Analyse sur la Biodiversité (FRBCesab), 5 rue de l'école de médecine 34000 Montpellier, France
- 868 ³ National Center for Scientific Research, PSL Université Paris, CRIOBE, CNRS-EPHE-UPVD, Maison de l'Océan,
- 869 195 rue Saint-Jacques, 75005 Paris, France

- 870 ⁴ Ifremer, Univ Brest, CNRS, UMR 6308, AMURE, Unité d'Economie Maritime, IUEM, F-29280, Plouzane, France
- 871 ⁵CIRAD, UPR Hortsys, F-97285 Le Lamentin, Martinique, France
- ⁶ HortSys, Univ Montpellier, CIRAD, Montpellier, France

873 • Acknowledgements

874 CSC thanks the members of the scientific committee of the InDySEM project.

875 Additional Files

- 876 Additional file 1: ROSES for systematic map reports
- 877 Additional file 2: Search strings and comprehensiveness
- 878 Additional file 3: Test list
- 879 Additional file 4: List of unobtained full texts
- 880 Additional file 5: Articles rejected during the full-text screening process
- 881 Additional file 6: Systematic map database List of all selected articles with their codes
- 882 Additional file 7: Additional figures and table

883 References

- IPBES. Global assessment report on biodiversity and ecosystem services of the
 Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services [Internet].
 Debating Nature's Value. 2019. 1–12 p. Available from: https://ipbes.net/global assessment%0Ahttps://ipbes.net/global-assessment-report-biodiversity-ecosystem-services
- Díaz S, Pascual U, Stenseke M, Martín-López B, Watson RT, Molnár Z, et al. Assessing nature's
 contributions to people: Recognizing culture, and diverse sources of knowledge, can improve
 assessments. Science (80-). 2018;359(6373):270–2.
- Harrison PA, Harmáčková Z V., Karabulut AA, Brotons L, Cantele M, Claudet J, et al.
 Synthesizing plausible futures for biodiversity and ecosystem services in europe and central asia using scenario archetypes. Ecol Soc. 2019;24(2).
- 8944.Hill R, Díaz S, Pascual U, Stenseke M, Molnár Z, Van Velden J. Nature's contributions to895people: Weaving plural perspectives. One Earth. 2021;4(7):910–5.
- Mongruel R, Méral P, Doussan I, Levrel H. L'institutionnalisation de l'approche par les services
 écosystémiques : dimensions scientifiques, juridiques et politiques. In: Roche, P,
 Geijzendorffer, I, Levrel, H, Maris, V (Coord), Valeurs de la biodiversité et services
 écosystémiques : perspectives interdisciplinaires, éditions QUAE, Paris, France. 2016. p. 191–
 216.
- Ehrlich PR, Mooney HA. Extinction, substitution, and ecosystem services. Bioscience.
 1983;33(4):248–54.
- 903 7. MEA. Millenium Ecosystem Assessment. Washington D.C.: Island Press; 2005.
- 9048.Shackleton CM, Ruwanza S, Sinasson Sanni GK, Bennett S, De Lacy P, Modipa R, et al.905Unpacking Pandora's Box: Understanding and Categorising Ecosystem Disservices for906Environmental Management and Human Wellbeing. Ecosystems. 2016;19(4):587–600.
- 907
 9. Campagne CS, Roche PK, Salles JM. Looking into Pandora's Box: Ecosystem disservices
 908 assessment and correlations with ecosystem services. Ecosyst Serv. 2018;30.
- IPBES. Summary for policymakers of the methodological assessment regarding the diverse conceptualization of multiple values of nature and its benefits , including biodiversity and ecosystem functions and services (assessment of the diverse values and valuation o. Pascual U, Balvanera P, Christie M, Baptiste B, González-Jiménez D, Anderson CB, et al., editors. 2022.
 37 p.
- 914 11. Vihervaara P, Mononen L, Nedkov S, Viinikka A. Biophysical Mapping and Assessment
 915 Methods for Ecosystem Services. 2018;(May):72.
- 12. Lavorel S, Locatelli B, Colloff MJ, Bruley E. Co-producing ecosystem services for adapting to
 climate change. Philos Trans R Soc B Biol Sci. 2020;375(1794).
- Kubiszewski I, Costanza R, Anderson S, Sutton P. The future value of ecosystem services:
 Global scenarios and national implications. Ecosyst Serv [Internet]. 2017;26:289–301.
 Available from: http://dx.doi.org/10.1016/j.ecoser.2017.05.004
- 921 14. Santos-martín F, Martín-lópez B, et al. Social Assessment Methods and Applications. 2016.
- Mongruel R., Kermagoret C, Carlier A, Scemama P, Le Mao P, Levain A, et al. Assessment of marine and coastal ecosystems and ecosystem services [Internet]. Synthesis of the study performed for the EFESE programme, IFREMER – UBO – AFB; 2019. Available from: https://archimer.ifremer.fr/doc/00760/87162/92659.pdf

- 926 16. Vira B. The political economy of ecosystem services. 2012.
- Kull CA, Arnauld de Sartre X, Castro-Larrañaga M. The political ecology of ecosystem services.
 Geoforum [Internet]. 2015;61:122–34. Available from:
 http://dx.doi.org/10.1016/j.geoforum.2015.03.004
- Drakou EG, Virdin J, Pendleton L. Mapping the global distribution of locally-generated marine
 ecosystem services: The case of the West and Central Pacific Ocean tuna fisheries. Ecosyst
 Serv. 2018;31:278–88.
- Harrison PA, Dunford R, Barton DN, Kelemen E, Martin-Lopez B, Norton L, et al. Selecting
 methods for ecosystem service assessment: A decision tree approach. Ecoser.
 2017;submitted(Special Issue):21–3.
- 936 20. Preat N. Development of environmental sustainability impact assessment methods for marine
 937 sourced products. PhD thesis, Ghent University, Belgium; 2021.
- 938 21. Global Ocean Accounts Partnership. Technical Guidance on Ocean Accounting for Sustainable939 Development. United Nat. 2019.
- Liquete C, Piroddi C, Drakou EG, Gurney L, Katsanevakis S, Charef A, et al. Current status and
 future prospects for the assessment of marine and coastal ecosystem services: a systematic
 review. PLoS One [Internet]. 2013 Jan [cited 2014 Oct 28];8(7):e67737. Available from:
 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3701056&tool=pmcentrez&rend
 ertype=abstract
- 945 23. Haines-Young RH, Potschin MB. Common International Classification of Ecosystem Services
 946 (CICES) V5.1 Guidance on the Application of the Revised Structure. 2018.
- 947 24. Bordt M, Saner MA. A critical review of ecosystem accounting and services frameworks. 2018;
- 848 25. Kermagoret C, Claudet J, Derolez V, Nugues MM, Ouisse V, Quillien N, et al. How does
 849 eutrophication impact bundles of ecosystem services in multiple coastal habitats using state850 and-transition models. Ocean Coast Manag. 2019;174(April):144–53.
- 95126.Barbier EB. Marine ecosystem services. Curr Biol [Internet]. 2017;27(11):R507–10. Available952from: http://dx.doi.org/10.1016/j.cub.2017.03.020
- Beaumont NJ, Austen MC, Atkins JP, Burdon D, Degraer S, Dentinho TP, et al. Identification,
 definition and quantification of goods and services provided by marine biodiversity:
 implications for the ecosystem approach. Mar Pollut Bull [Internet]. 2007 Mar [cited 2013 Mar
 6];54(3):253–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17266994
- Baines-Young R, Potschin M, Haines-Young, R., Potschin M. CICES V4.3 Report prepared
 following consultation on CICES Version 4, August-December 2012. EEA Framework Contract
 No EEA/IEA/09/003. 2013;
- Bindoff NL, Cheung WWL, Kairo JG, Aristegui J, Guinder VA, Hallberg R, et al. Changing Ocean,
 Marine Ecosystems, and Dependent Communities. IPCC Spec Rep Ocean Cryosph a Chang Clim
 [Internet]. 2019;447–588. Available from: https://www.ipcc.ch/srocc/download-report/
- 963 30. Potts T, Burdon D, Jackson E, Atkins J, Saunders J, Hastings E, et al. Do marine protected areas
 964 deliver flows of ecosystem services to support human welfare? Mar Policy [Internet].
 965 2014;44:139–48. Available from: http://dx.doi.org/10.1016/j.marpol.2013.08.011
- 966 31. IPCC, Portner HO, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, et al. IPCC The Ocean
 967 and Cryosphere in a Changing Climate Summary for Policmakers. IPCC Spec Rep Ocean
 968 Cryosph a Chang Clim [Internet]. 2019;(September):SPM-1-SPM-42. Available from:

969 https://report.ipcc.ch/srocc/pdf/SROCC SPM Approved.pdf 970 32. Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D'Agrosa C, et al. A global map of human impact on marine ecosystems. Science (80-). 2008;(319):948-952. 971 972 33. Halpern BS, et al. Spatial and temporal changes in cumulative human impacts on the world's 973 ocean. Nat Commun. 2015;6(7615). 974 34. Selim SA, Blanchard JL, Bedford J, Webb TJ. Direct and indirect effects of climate change and 975 fishing on changes in coastal ecosystem services: a historical perspective from the North Sea. 976 Reg Environ Chang. 2016;(16):341–51. 977 35. Butchart SHM, Miloslavich P, Reyers B, Adams C, Bennett E, Czúcz B, et al. Chapter 3 Assessing 978 progress towards meeting major international objectives related to nature and nature's 979 contri- butions to people. In: E S Brondízio, J Settele, S Díaz, & H Ngo (Eds), Global assessment 980 report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services Bonn, Germany: IPBES. 2019. 981 982 36. Schultz L, Folke C, Osterblom H, Olsson P. Adaptive governance, ecosystem management, and 983 natural capital. Proc Natl Acad Sci U S A. 2015;112:7369-74. 984 37. Townsend M, Davies K, Hanley N, Hewitt JE, Lundquist CJ, Lohrer AM. The challenge of 985 implementing the marine ecosystem service concept. Front Mar Sci. 2018;5:1–13. 986 38. Storie J, Suškevičs M, Nevzati F, Külvik M, Kuhn T, Burkhard B, et al. Evidence on the impact of 987 Baltic Sea ecosystems on human health and well-being: a systematic map. Environ Evid [Internet]. 2021;10(1):1–24. Available from: https://doi.org/10.1186/s13750-021-00244-w 988 989 39. Kuhn TK, Oinonen S, Trentlage J, Riikonen S, Vikström S, Burkhard B. Participatory systematic 990 mapping as a tool to identify gaps in ecosystem services research: insights from a Baltic Sea 991 case study. Ecosyst Serv. 2021;48(December 2020):0-2. 992 40. Rau AL, von Wehrden H, Abson DJ. Temporal Dynamics of Ecosystem Services. Ecol Econ 993 [Internet]. 2018;151(March):122–30. Available from: 994 https://doi.org/10.1016/j.ecolecon.2018.05.009 995 41. Campagne CS, Langridge J, Claudet J, Mongruel R, Thiébaut E. What evidence exists on how 996 changes in marine ecosystem structure and functioning affect ecosystem services delivery ? A 997 systematic map protocol. Environ Evid [Internet]. 2021;1–11. Available from: 998 https://doi.org/10.1186/s13750-021-00251-x 999 42. Collaboration for Environmental Evidence. Guidelines and Standards for Evidence synthesis in 1000 Environmental Management. Version 5.0 [Internet]. 2018. Available from: 1001 www.environmentalevidence.org/information-for-authors 1002 43. Haddaway NR, Macura B, Whaley P, Pullin AS. ROSES for Systematic Map Protocols. Version 1003 1.0. 2017. 1004 44. Harzing A. Publish or Perish [Internet]. 2007 [cited 2021 Jul 22]. Available from: 1005 https://harzing.com/resources/publish-or-perish 1006 45. Haddaway NR, Collins AM, Coughlin D, Kirk S. The role of google scholar in evidence reviews 1007 and its applicability to grey literature searching. PLoS One [Internet]. 2015;10(9):1–17. 1008 Available from: http://dx.doi.org/10.1371/journal.pone.0138237 1009 46. Roessig JM, Woodley CM, Cech Jr. JJ, Hansen LJ. Effects of global climate change on marine 1010 and estuarine fishes and fisheries. Rev Fish Biol Fish. 2004;(14):251–75.

- 47. Westgate MJ. revtools: An R package to support article screening for evidence synthesis. ResSynth Methods. 2019;
- 101348.Cohen J. Weighted kappa: nominal scale agreement provision for scaled disagreement or1014partial credit. Psychol Bull. 1968;70(4):213–20.
- 1015 49. Lausch A, Bannehr L, Beckmann M, Boehm C, Feilhauer H, Hacker JM, et al. Linking Earth
 1016 Observation and taxonomic, structural and functional biodiversity: Local to ecosystem
 1017 perspectives. Ecol Indic. 2016;70:317–39.
- 1018 50. Burkhard B, Maes J. Mapping Ecosystem Services. 2017. 377 p.
- 1019 51. Termansen M, Jacobs S, Mwampamba TH, Ahn S, A. C, Dendoncker N, et al. Chapter 3: The
 1020 potential Nature, of valuation. In: Methodological Assessment Report on the Diverse Values
 1021 and Valuation of P, of the Intergovernmental Science-Policy Platform on Biodiversity and
 1022 Ecosystem Services Balvanera, U Pascual, M Christie, B Baptiste, and D González-Jiménez (eds)
 1023 IPBES secr. 2022.
- 102452.Sordello R, Bertheau Y, Coulon A, Jeusset A, Ouédraogo D yaoba, Vanpeene S, et al. Les1025protocoles expérimentaux en écologie. Principaux points clefs. 2019.
- 102653.Langridge J, Sordello R, Reyjol Y. Outcomes of wildlife translocations in protected areas: what1027is the type and extent of existing evidence? A systematic map protocol. Environ Evid1028[Internet]. 2020;9(1):1–11. Available from: https://doi.org/10.1186/s13750-020-00199-4
- 102954.James KL, Randall NP, Haddaway NR. A methodology for systematic mapping in environmental1030sciences. Environ Evid. 2016;5(1):1–13.
- 1031 55. Aznar-Sánchez JA, Velasco-Muñoz JF, Belmonte-Ureña LJ, Manzano-Agugliaro F. The
 1032 worldwide research trends on water ecosystem services. Ecol Indic [Internet].
 1033 2019;99(November 2018):310–23. Available from:
 1034 https://doi.org/10.1016/j.ecolind.2018.12.045
- 103556.McDonough K, Hutchinson S, Moore T, Hutchinson JMS. Analysis of publication trends in1036ecosystem services research. Ecosyst Serv. 2017;25:82–8.
- 103757.Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR. The value of estuarine and1038coastal ecosystem services. Ecol Monogr. 2011;81(2)(2):169–193.
- 1039 58. Pereira H. M., Ferrier S., Walters M., Geller G. N., Jongman R. H. G., Scholes R. J., et al.
 1040 Essential Biodiversity Variables. cience. 2013;339(6117):277–78.
- 1041 59. Pouso S, Uyarra MC, Borja Á. The recovery of estuarine quality and the perceived increase of
 1042 cultural ecosystem services by beach users: A case study from northern Spain. J Environ
 1043 Manage. 2018;212:450–61.
- 1044 60. Kubo T, Uryu S, Yamano H, Tsuge T, Yamakita T, Shirayama Y. Mobile phone network data
 1045 reveal nationwide economic value of coastal tourism under climate change. Tour Manag
 1046 [Internet]. 2020;77(September 2019):104010. Available from:
 1047 https://doi.org/10.1016/j.tourman.2019.104010
- 104861.Finney BP, Gregory-Eaves I, Douglas MSV, Smol JP. Fisheries productivity in the northeastern1049Pacific Ocean over the past 2,200 years. Nature. 2002;416(6882):729–33.
- 1050 62. UNEP. Towards a Green Economy: Pathways to Sustainable Development and Poverty
 1051 Eradication (a Synthesis for Policy Makers). 2011.
- 1052 63. FOA. The State of World Fisheries and Aquaculture 2020. Sustainability in action [Internet].

- 1053 Rome; 2020. Available from: https://doi.org/10.4060/ca9229en
- 105464.Castle SE, Miller DC, Merten N, Ordonez PJ, Baylis K. Evidence for the impacts of agroforestry1055on ecosystem services and human well-being in high-income countries: a systematic map.1056Environ Evid [Internet]. 2022;11(1):1–27. Available from: https://doi.org/10.1186/s13750-1057022-00260-4
- 1058 65. Inácio M, Barceló D, Zhao W, Pereira P. Mapping lake ecosystem services : A systematic
 1059 review. Sci Total Environ [Internet]. 2022;847(June):157561. Available from:
 1060 https://doi.org/10.1016/j.scitotenv.2022.157561
- 1061 66. Collins AM, Haddaway NR, Thomas J, Randall NP, Taylor JJ, Berberi A, et al. Existing evidence
 1062 on the impacts of within-field farmland management practices on the flux of greenhouse
 1063 gases from arable cropland in temperate regions: a systematic map. Environ Evid [Internet].
 1064 2022;11(1):1–22. Available from: https://doi.org/10.1186/s13750-022-00275-x
- 1065 67. Marcos C, Díaz D, Fietz K, Forcada A, Ford A, García-Charton JA, et al. Reviewing the
 1066 Ecosystem Services, Societal Goods, and Benefits of Marine Protected Areas. Front Mar Sci.
 1067 2021;8(July).
- 106868.Buonocore E, Grande U, Franzese PP, Russo GF. Trends and evolution in the concept of marine1069ecosystem services: An overview. Water (Switzerland). 2021;13(15):1–14.
- 1070 69. Egoh B, Drakou EG, Dunbar MB, Maes J. Indicators for mapping ecosystem services : a review.1071 2012.
- 1072 70. Haase D, Larondelle N, Andersson E, Artmann M, Borgström S, Breuste J, et al. A quantitative
 1073 review of urban ecosystem service assessments: Concepts, models, and implementation.
 1074 Ambio. 2014;43(4):413–33.
- 1075 71. Malinga R, Gordon LJ, Jewitt G, Lindborg R. Mapping ecosystem services across scales and
 1076 continents A review. Ecosyst Serv [Internet]. 2015 Jun [cited 2015 Oct 20];13:57–63.
 1077 Available from: http://linkinghub.elsevier.com/retrieve/pii/S2212041615000078
- 1078 72. Hölting L, Beckmann M, Volk M, Cord AF. Multifunctionality assessments More than
 1079 assessing multiple ecosystem functions and services? A quantitative literature review. Ecol
 1080 Indic. 2019;103(April):226–35.
- 1081 73. Martin CL, Momtaz S, Gaston T, Moltschaniwskyj NA. A systematic quantitative review of
 1082 coastal and marine cultural ecosystem services: Current status and future research. Mar
 1083 Policy [Internet]. 2016;74:25–32. Available from:
 1084 http://dx.doi.org/10.1016/j.marpol.2016.09.004
- 1085 74. Garcia Rodrigues J, Conides A, Rivero Rodriguez S, Raicevich S, Pita P, Kleisner K, et al. Marine
 1086 and Coastal Cultural Ecosystem Services: knowledge gaps and research priorities. One Ecosyst.
 1087 2017;2:e12290.
- 1088 75. Rodrigues JG, Conides AJ, Rodriguez Rivero S, Raicevich S, Pita P, Kleisner KM, et al. Marine
 1089 and coastal cultural ecosystem services: Knowledge gaps and research priorities. One Ecosyst.
 1090 2017;2.
- 109176.Milcu Al, Hanspach J, Abson D, Fischer J. Cultural ecosystem services: A literature review and1092prospects for future research. Ecol Soc. 2013;18(3).
- Apps K, Lloyd D, Dimmock K. Scuba diving with the grey nurse shark (Carcharias taurus): An
 application of the theory of planned behaviour to identify divers beliefs. Aquat Conserv Mar
 Freshw Ecosyst. 2015;25(2):201–11.

- 109678.Harriott VJ, Davis D, Banks SA. Recreational diving and its impact in marine protected areas in1097Eastern Australia. Ambio. 1997;26(3):173–9.
- 1098 79. Chalkiadakis C, Drakou EG, Kraak MJ. Ecosystem service flows: A systematic literature review
 1099 of marine systems. Ecosyst Serv [Internet]. 2022;54(January):101412. Available from:
 1100 https://doi.org/10.1016/j.ecoser.2022.101412
- 110180.Torres C, Hanley N. Economic valuation of coastal and marine ecosystem services in the110221stcentury: an overview from a management perspective. 2016.
- 110381.Malinauskaite L, Cook D, Davíðsdóttir B, Ögmundardóttir H, Roman J. Ecosystem services in1104the Arctic: a thematic review. Ecosyst Serv. 2019;36(January).
- 110582.Jobstvogt N, Townsend M, Witte U, Hanley N. How can we identify and communicate the1106ecological value of deep-sea ecosystem services? PLoS One. 2014;9(7):1–11.
- 110783.Orcutt BN, Bradley JA, Brazelton WJ, Estes ER, Goordial JM, Huber JA, et al. Impacts of deep-1108sea mining on microbial ecosystem services. Limnol Oceanogr. 2020;65(7):1489–510.
- 110984.Le JT, Levin LA, Carson RT. Incorporating ecosystem services into environmental management1110of deep-seabed mining. Deep Res Part II Top Stud Oceanogr. 2017;137:486–503.
- 111185.Jacquemont J, Blasiak R, Le Cam C, Le Gouellec M, Claudet J. Ocean conservation boosts1112climate change mitigation and adaptation. 2022;(October).
- 111386.Krause-Jensen D, Lavery P, Serrano O, Marba N, Masque P, Duarte CM. Sequestration of1114macroalgal carbon: The elephant in the Blue Carbon room. Biol Lett. 2018;14(6).
- Purvis A, Molnar Z, Obura D, Ichii K, Willis K, Chettri N, et al. Chapter 2.2. Status and Trends –
 Nature. In: Global assessment report of the Intergovernmental Science_Policy Platform on
 Biodiversity and Ecosystem Services. Brondízio, E. S., Settele, J., Díaz, S., Ngo, H. T. (eds). IPBES
 secretariat, Bonn, Germany. 108. In 2019.
- 1119 88. Saura S, Pascual-Hortal L. A new habitat availability index to integrate connectivity in
 1120 landscape conservation planning: Comparison with existing indices and application to a case
 1121 study. Landsc Urban Plan. 2007;83(2–3):91–103.
- 1122