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Abstract. This article introduces a new Neural Network stochastic model to generate

a 1-dimensional stochastic field with turbulent velocity statistics. Both the model

architecture and training procedure ground on the Kolmogorov and Obukhov statistical

theories of fully developed turbulence, so guaranteeing descriptions of 1) energy

distribution, 2) energy cascade and 3) intermittency across scales in agreement with

experimental observations. The model is a Generative Adversarial Network with

multiple multiscale optimization criteria. First, we use three physics-based criteria: the

variance, skewness and flatness of the increments of the generated field, that retrieve

respectively the turbulent energy distribution, energy cascade and intermittency across

scales. Second, the Generative Adversarial Network criterion, based on reproducing

statistical distributions, is used on segments of different length of the generated

field. Furthermore, to mimic multiscale decompositions frequently used in turbulence’s

studies, the model architecture is fully convolutional with kernel sizes varying along

the multiple layers of the model. To train our model, we use turbulent velocity signals

from grid turbulence at Modane wind tunnel.
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1. Introduction

Turbulent fluids exhibit complex non-linear and multiscale dynamics which can not

be described from a deterministic point of view and which lead to a complex

statistical behavior of the velocity field of the flow [1, 2, 3, 4]. Therefore, not only

second-order but also higher-order statistics are needed to describe turbulent velocity
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fields [5, 6, 7, 8, 9, 4]. The generation of stochastic fields with turbulent statistics

have been broadly studied [10, 11, 12, 13, 14, 15, 16] and still remain a subject of

study [17, 18, 19, 20]. Several stochastic models based on the multifractal description

of turbulence have been developed in the last decades. Among them, the fractional

Brownian motion only recovering second-order statistics [21, 10, 11], and more complex

models recovering second and higher-order ones [12, 13, 14, 16]. Some of these models

are discrete in the scales [12, 13] while others are continuous [14, 16]. Stochastic models

of turbulence based on the Focker-Planck equation were also developed. Some of them

only recovering second-order statistics [22] and more recent ones reproducing also higher-

order statistics [23]. Other approaches are based on linear filtering [24, 25] and spectral

tensor models [26], but they only recover second-order statistics.

In the last decade, Neural Network (NN) stochastic generative models appeared

and gained popularity, from Generative Adversarial Networks (GANs) [27, 28], to

generative diffusion models [29, 30, 31] or autoencoders [32, 33]. These models are being

currently developed to generate stochastic fields with complex statistical structures [28]

and more particularly with turbulent statistical behavior [34, 35, 36, 37]. Thus, NN

stochastic generative models have been used to reproduce turbulent fields for different

applications [38, 39, 40, 41, 42, 43, 44, 45]. In order to generate satisfactory stochastic

fields, these NN approaches need the most of the time to incorporate some physics

of turbulence [46, 47, 48, 49, 50]. However, very few of these works incorporate

higher-order statistics in the training procedure [47], and the most only evaluate the

performance of the NN model to reproduce second-order statistics of the field, mainly

the power spectrum or the correlation function [39, 48, 49, 40]. Then, by not evaluating

higher-order statistics of the generated field, these works do not study the capacity of

their models to reproduce the energy cascade of turbulence [1] or the intermittency

phenomenon [2, 3].

In this article, we propose a multiscale and multicriteria GAN to generate a 1-

dimensional stochastic field with turbulent statistics. This model grounds on the

Kolmogorov and Obukhov theories of turbulence [1, 2, 3], and so, contrary to most of

the state of the art, it includes second-order and higher-order statistics in both training

and evaluation. Consequently, the proposed model is based on the physics of turbulence,

and the generated stochastic field correctly reproduces the energy distribution, energy

cascade and intermittency of turbulent velocity flows. From the best of our knowledge,

this work, together with [51], are the first Neural Network generative models directly

grounding on the Kolmogorov-Obukhov theories. Moreover, the GAN approach used

in this work allows to include generative criteria based on the full probability density

function (PDF) of turbulent velocity and so to overcome some limitations of [51].

Section 2 presents the Kolmogorov-Obukhov theories of fully developed turbulence

and the experimental velocity dataset used for training. Section 3 introduces the

multiscale and multicriteria physics-based GAN approach used to generate a 1d

stochastic field with turbulent statistics. Section 4 shows a second and higher-order

statistical description of the generated field and the experimental velocity dataset and
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compares both statistical behaviors. Finally, section 5 presents the main conclusions

and perspectives.

2. Fully developed turbulence

2.1. The Kolmogorov-Obukhov theories: energy cascade and intermittency

Fully developed turbulence corresponds to flows at very high Reynolds number, when

the nonlinear advection term of the Navier-Stokes equations dominates the dynamics of

the flow [4]. In this limit and away from boundaries, the flow is considered statistically

isotropic and homogeneous and the Kolmogorov-Obukhov theories provide a statistical

description of fully developed turbulence [1, 2, 3].

The Kolmogorov 1941 theory prescribes the existence of three ranges of scales with

different statistical behaviors: the integral domain contains the large scales of the flow,

where energy is injected, the dissipative domain contains the small scales, where energy

is dissipated, and the inertial domain contains the scales in between, where the energy

cascades from large scales down to smaller ones [4, 1, 52]. Thus, two scales appear

naturally: the integral scale L which divides the integral and inertial domains, and the

Kolmogorov scale η which separates the inertial and dissipative ones.

Following Kolmogorov 1941, we focus on the longitudinal velocity v(x) [1, 4], and

we use the increment to define the scale l of turbulent velocity:

δlv(x) = v(x+ l)− v(x) (1)

In the inertial domain of scales L > l > η, the Kolmogorov 1941 theory states that

the structure function of order p, defined as the statistical moment of order p of the

velocity increments, behaves as a power law of the scale with exponent p/3:

Sp(l) = ⟨(δlv(x))p⟩ ∝ lp/3 (2)

where Sp(l) is the structure function of order p and ⟨⟩ is the spatial average.

The variance of the velocity increments, S2(l), describes the energy distribution of

the flow across scales, and from (2), it behaves as l2/3 in the inertial domain. Moreover,

the 4/5 law of Kolmogorov, directly obtained from the Navier-Stokes equation through

the Karman-Howarth development [53], shows the existence of an energy flux in the

inertial domain from large to small scales. This energy flux is related to the third-

order statistical moment of the velocity increments S3(l) ∝ −l, and so, the 4/5 law of

Kolmogorov directly relates the energy cascade across scales to the non-Gaussianity of

the velocity field.

Finally, Kolmogorov and Obukhov provided a correction to the above theory

in 1962 [2, 3]: the energy dissipation in a turbulent flow is non homogeneous and

should be considered locally. This leads to a deformation of the PDF of the velocity

increments across the scales, from almost Gaussian at large scale to non-Gaussian at

small scales [6, 8, 9, 54, 16]. More precisely, extreme events of the velocity increments

are the more and more intense and the more and more recurrent at small scales. This is
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known as intermittency, and leads to the following correction to the Kolmogorov 1941

theory:

Sp(l) = ⟨(δlv(x))p⟩ ∝ lζp (3)

where ζp is the scaling exponent which is a non-linear function of p. From the 4/5 law

of Kolmogorov ζ3 = 1. The non-linear scaling exponent can be measured by fitting

the slope of log(Sp(l)) in function of log(l) in the inertial domain of scales for different

orders p.

In order to highlight the non-Gaussian and intermittent nature of turbulence, we

focus on the skewness and flatness of the velocity increments [5, 7, 4, 55, 56] defined as:

S(l) = S3(l)

S2(l)3/2
=

〈
(δlv(x))

3〉(
⟨δlv(x))2

〉3/2 (4)

F(l) =
S4(l)

S2(l)2
=

〈
(δlv(x))

4〉(
⟨δlv(x))2

〉2 (5)

On the one hand, the skewness characterizes the assymmetry of the PDF of the

velocity increments across scales. Symmetric PDFs exhibit zero skewness (S = 0),

and from the Kolmogorov 4/5 law, negative values of the skewness in the inertial and

dissipative domains reflect the existence of an energy cascade. On the other hand, the

flatness characterizes the importance of the tails of the PDF of the velocity increments

across scales. A Gaussian PDF is characterized by F = 3, and so, the flatness of the

velocity increments is 3 in the integral domain of scales and increases to non-Gaussian

values when the scale decreases. This illustrates the higher importance of extreme events

in the PDF of the velocity increments at small scales [57], i.e. the intermittent nature

of turbulence.

2.2. Modane turbulent velocity dataset

The Modane turbulent velocity dataset consists on Eulerian longitudinal velocity

measurements from a grid turbulence setup in the wind tunnel of ONERA at

Modane [58]. The mean velocity of the flow is ⟨v⟩ = 20.5 m/s. The measurements

are obtained at a sampling frequency of fs = 25 kHz at a fixed point far away from

boundaries. The Taylor-scale Reynolds number of the flow is Rλ = 2500. Then, we

consider the flow in fully developed turbulent regime as well as homogeneous and

isotropic. We assume Taylor frozen turbulence hypothesis and consider temporal

variations as spatial ones [4]. Then, the sampling distance can be expressed as ls =

⟨v⟩ fs. From previous studies, the integral and Kolmogorov scales of the flow are L =

2350 ls and η = 5 ls [59]. A detailed multiscale statistical characterization of the Modane

turbulent velocity dataset is provided in section 4 and in the literature [7, 58, 16, 60].
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3. Multiscale and Multicriteria Physics Based GAN

Our Neural Network model is conceived to synthesize a stochastic field u(x) reproducing

four main results of the Kolmogorov-Obukhov theory of fully developed turbulence:

• In a turbulent flow, we can discriminate three domains of scales: integral, inertial

and dissipative, each one with a different statistical behavior.

• The distribution of energy across scales is described by S2(l), and in the inertial

domain it behaves as ∼ l2/3 up to corrections due to intermittency.

• The cascade of energy is related to the non-Gaussianity of the velocity field

through the 4/5 law of Kolmogorov. This implies negative values of the skewness

in both the inertial and dissipative domains, as well as ζ3 = 1.

• Intermittency introduces extreme events in the velocity increments at scales in

the inertial and dissipative domains. The importance of these extreme events

is characterized by the flatness, which tends to Gaussian values at large scales.

Intermittency also leads to a non-linear scaling exponent function ζp.

Our model is based on the GAN approach first proposed by Goodfellow et

al. [27]. However, several modifications have been done to introduce the physics of

turbulence into the model. First, the generator model G follows a fully-convolutional

U-Net structure which, similarly to the Kolmogorov-Obukhov theory of turbulence, is

based on multiresolution analysis. Second, several multiscale criteria are used during

training, each one with an assigned discriminator network. Thus, in order to recover

respectively the energy distribution, energy cascade and intermittency of turbulence,

three discriminators, DS2 , DS and DF , compare the log(S2(l)), S(l) and log(F/3) of the

generated field and Modane. These three criteria are also helpful for recovering the three

domains of scales of turbulence. Finally, a discriminator, Dscale-invariance, compares

segments of different sizes of the generated field u(x) and Modane v(x). This criterion

exploits the potentialities of GAN to reproduce the PDF of Modane data on segments of

different sizes. It is devoted to impose turbulent statistical dynamics on u(x) at different

scales, that is, turbulent dynamics on the full process containing several integral scales,

but also on small segments up to sizes of the order of L. Figure 1 illustrates this

multiscale and multicriteria physics based Generative Adversarial Network approach.

3.1. The generator model

The generator model G is fully-convolutional and stochastic:

u(x) = G(w(x)) (6)

This model takes as input a 1-dimensional Gaussian white noise, w(x), of size N and

produces a 1-dimensional field of the same size, u(x), with turbulent velocity statistics.

Consequently, the model G operates doubly on the input Gaussian white noise. On the

one hand, it deformates the Gaussian PDF of the noise to a PDF in agreement with
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Gaussian

noise w(x)

u(x) = G(w(x))

Modane

samples v(x)

Generated

samples u(x)

Dscale-invariance

DS2

DS

DF

Scale-invariance

loss lSI

lS2 loss

lS loss

lF loss

L = αlSI + βlS2 + γlS + λlF

Figure 1. Multiscale and multicriteria physics based GAN. In red the fully

convolutional generator model G, which produces realizations of a 1d stochastic

field, u(x), from realizations of a Gaussian noise, w(x). In blue the physics-based

discriminators used to train the model. The Dscale-invariance discriminator is fed with

Modane realizations v(x) and generated ones u(x), while the other three discriminators

are directly fed with the corresponding statistics across scales of v(x) and u(x). Each

discriminator has its own loss function in green. The total loss function of the GAN,

also in green, is a linear combination of the four loss functions of the discriminators.

turbulent velocity statistics, i.e. slightly skewed. On the other hand, it introduces

a structure of dependencies in the generated field leading to the desired statistical

moments of the increments of the field.

The model G follows a U-Net architecture [61], which consists of an encoder followed

by its symmetrical decoder both connected by a bridge at the deepest level, see figure 2.

On the one hand, our encoder has six levels, each one with two convolutional blocks and

an average pooling layer. Each convolutional block is defined by a convolutional layer,

batch normalization and ReLU activation function. On the other hand, the decoder

has six analogous levels, each one defined by a transpose convolutional block (transpose

convolution, batch normalization and ReLU activation) and an upsampling layer. The

kernel sizes of the convolutions and transpose convolutions increase with the depth of the

level and vary from 2 to 64 samples. This, together with the pooling, allows the model

to reproduce the long range dependencies of the turbulent velocity field. The deepest

level of the encoder and the decoder are bridged by three convolutional blocks, all with a

kernel size of 32 samples. Moreover, concatenated long-skip connections link each level of

the encoder with the symmetrical level of the decoder. This connections help in keeping

the stability of the network during training and minimizing the vanishing gradient

effects [62]. Concatenated long-skip connections were used since they provided the

best performances in our case study. This generator is based on [51], where the encoder

and decoder were built mimicking the structure of dyadic wavelets decomposition and
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Figure 2. U-Net architecture of G taking as input a Gaussian white noise, w(x),

of size N and providing as output a stochastic field with turbulent statistics, u(x),

of the same size. Convolutional and transpose convolutional blocks, made up of a

convolutional layer (respectively transpose convolutional layer), batch normalization

and ReLU activation function, are represented by the blue and purple rectangles

respectively. The number at the top of each rectangle indicates the number of channels

of the output of the block. The number at the left of each rectangle indicates the

kernel size of the filter. The used padding is indicated with same when the size of

the input and output are equal and 0 when there is no padding. The stride used on

each convolution and transpose convolution is always 1. Green and red arrows mean

respectively average pooling and upsampling. The concatenated long-skip connections

are represented by the yellow rectangles.

random wavelet cascade models of turbulence [13]. The dyadic evolution of the size of

the convolution kernels, together with the poolings and upscalings, allows the generator

to operate at scales from the dissipative to the integral domain of the flow. The generator

model has 26 millions of parameters.

3.2. The multiscale and multicriteria discriminators

Three discriminators, DS2 , DS and DF , are respectively used on log(S2(l)), S(l) and

log(F/3) of the generated field and Modane. Each discriminator uses the GAN’s

loss derived from the binary cross-entropy [27]. We note the loss functions of these

discriminators: lS2 , lS and lF . To define DS2 , DS and DF , we use dense Neural Networks

with 5 hidden layers and 25.000 parameters in total, see figure 3.

The proposed scale-invariance discriminator Dscale-invariance is made up of four

independent convolutional neural networks, each one working on portions of different

length of the 1-dimensional fields, see figure 4. So, each NN focuses on information

at different scales. Indeed, each NN works respectively on segments of length N/2,
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Figure 3. Architecture of the discriminator models DS2
, DS and DF , which take

as input respectively the log(S2(l)), S(l) and log(F/3) curves and provide a scalar

value in (0, 1). Each yellow rectangle represents a dense layer followed by Leaky ReLU

activation. The number at the top of each rectangle indicates the output size of the

dense layer. All Leaky ReLu use a slope of 0.2 for negative values. The yellow circle

represents the sigmoid activation function.

N/4, N/8 and N/16 derived from the original input of size N , and without overlapping

between the segments of same size. Using smaller segments was found to not improve

performance, likely due to the non-stationarity of the fields at smaller scales in our

case study. In this study, the smallest segments are of size N/16 ≈ L and so, this

discriminator imposes turbulent statistics on segments of sizes going from several integral

scales up to a size of the order of the integral scale. The Dscale-invariance discriminator

contains 197.000 parameters altogether.
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Figure 4. Architecture of the four neural networks defining Dscale-invariance. From

top to bottom, each row of the discriminator takes as input a signal of size N/2,

N/4, N/8 and N/16 respectively and provides a scalar value in (0, 1). Blue rectangles

represent convolutional blocks made up of a convolutional layer, batch normalization

and Leaky ReLU activation function. Yellow rectangles represent dense blocks made

up of a dense layer followed by a Leaky Relu activation. The Leaky ReLu activations

use a slope 0.2 for negative values. The output size of each block is indicated by the

number at the top of each rectangle. For convolutional blocks, the kernel size and

stride are indicated by the numbers at the left of the blue rectangles and there is no

padding. The yellow circle represents the sigmoid activation function.

The loss ofDscale-invariance is a weighted sum of the losses of the four convolutional
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networks:

lSI =
2∑

i=1

l
(i)
N/2 + 0.5

4∑
i=1

l
(i)
N/4 + 0.25

8∑
i=1

l
(i)
N/8 + 0.125

16∑
i=1

l
(i)
N/16 (7)

where l
(i)
K is the loss of the discriminator network applied on the ith segment of length

K. The weights in the linear combination are added to compensate for the increasing

number of segments when K decreases. Each one of these losses is calculated using the

GAN’s loss derived from the binary cross entropy [27].

3.3. Optimization setup

For training the generator and discriminators, we follow the approach proposed in [27],

and consider for each discriminator its own loss function and for the generator the loss

function defined as:

L = αlSI + βlS2 + γlS + λlF (8)

with hyperparameters α, β, γ and λ. These hyper-parameters were optimized using a

grid search with a step of 0.05 and three constraints: 1) the hyper-parameters must sum

up to one, 2) α must be higher than β, γ and λ, and 3) β must be higher than γ and

λ. The second constraint was done to maximize the influence of the scale-invariance

discriminator over the other ones. The third constraint was added since S and F depend

explicitly on S2 and so, an appropriate second order structure function is needed to

correctly model the skewness and flatness. The final parameters (α, β, γ, λ) = (0.5, 0.2,

0.15, 0.15) were found to be optimal under the given constraints.

GAN-Turb follows a semisupervised learning approach in which experimental

turbulent data are provided only to the discriminator, but without a specific labelling.

The generator only takes as input a Gaussian white noise and provides a stochastic

process that has to recover some statistics of turbulence. Consequently, Modane data

is not split in training, validation and test sets, and the full available dataset is used for

training.

The model was trained for 500 epochs using a batch size of 32 and signals of length

N = 215. The discriminator was trained twice for each generator epoch as in [27]. A

learning rate of 0.001 was used for both the generator and discriminators.

4. Results and Discussion

In this section, we statistically characterize the stochastic field u(x) provided by our

model. To do so, we generate 256 individual realizations of size N = 215 samples. In

order to avoid border effects due to the convolutional nature of our model, the noises

w(x) used as inputs of G are of size N+Nb, and we only keep for analysis the N samples

in the middle of the output field u(x). Nb is the number of samples impacted by border

effects and in our study case Nb = 8192. We also characterize the Modane turbulent
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velocity field v(x) for comparison. With this purpose, we use 256 realizations of size N

of the Modane turbulent dataset.

Figures 5 a), b) and c) show three realizations of u(x), and d), e) and f) three

realizations of v(x). It is very difficult to visually distinguish the u(x) and v(x) fields.

The only small difference comes from the slightly more intense fluctuations of Modane

field at very small scale. Besides, we study the variance, skewness and flatness of the

increments of the stochastic field u(x) and Modane v(x) across scales. We look also

at the PDF of several velocity increments of u(x) and v(x) for scales in the integral,

inertial and dissipative domains. Finally, we analyse their scaling function and compare

them to the linear behavior described by the Kolmogorov 1941 theory.

Figure 6 shows a) the logarithm of the second order structure function log(S2(l)),

b) the skewness S(l) and c) the logarithm of the flatness log(F(l)/3) in function of

the logarithm of the scale of analysis log(l/L). Curves represent the mean value and

errorbars the standard deviation, both calculated on 256 realizations. Blue corresponds

to the Modane velocity and black to the generated field. Both the black and blue curves

of log(S2(l)) are maximum at large scale l > L where they present a plateau. For scales

in the inertial domain η < l < L, both curves exhibit a linear behavior of slope ∼ 2/3

up to intermittency corrections, while in the dissipative domain l < η, their slope is

steeper and present a value ∼ 2. The skewness of Modane and the generated field are

close to zero at large scales l > L, and decrease to negative values in the inertial and

dissipative domains with a steeper decrease in the dissipative domain. Finally, both

curves of flatness are close to zero at large scales, illustrating the Gaussian nature of

the fields in the integral domain. In the inertial domain, they increase when the scale

decreases with log(F(l)/3) behaving linearly with a slope −0.1, and this increase is

steeper when entering in the dissipative domain.

So, for both Modane and the generated stochastic field, three domains of scales with

different statistical behaviors are observed. For both fields, the large scales in the integral

domain are Gaussian and the more energetic ones. Then, when the scale decreases the

energy decreases and the PDFs become assymmetric and heavy-tailed. Furthermore, the

energy distribution, skewness and flatness of u(x) closely follow, within the errorbars, the

ones of Modane. However, we can observe oscillations in the flatness and the skewness

of the generated field that are not present in the Modane one. Actually, these measures

are very sensitive to small changes in the shape of the PDFs, and point out minor

deviations that are not perceptible when looking directly at the structure functions. The

amplitude of the undesired oscillations is very small compared to the range of variation

of the structure functions across scales, see figure 7. However, when normalizing the

third and fourth order structure functions by the variance at the corresponding power,

the range of variation of the skewness and flatness is reduced and becomes comparable

to the magnitude of the oscillations. Estimating statistics on an increasing number of

realizations of the generated stochastic field leads to a slight reduction of the amplitude

of the oscillations that nevertheless still persist. These oscillations seem to be an

artifact introduced by the skewed behavior of turbulence together with the difficulty
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Figure 5. Illustration of three realizations of the process u(x) generated with our

GAN approach a), b) and c) and three realizations of Modane velocity measures v(x)

d), e) and f), in function of the spatial variable x/L. The red boxes correspond to the

length of a Modane integral scale L.

of characterizing odd statistical moments. Indeed, when studying realizations of size

N = 215 (and even larger) of Modane, these oscillations appear in the skewness. Our

model seems to not be able to remove them from the generated stochastic field when

increasing the number of samples on which the statistics are performed.

These results are supported by figure 8, which illustrates the PDF of several
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Figure 6. a) Logarithm of the second order structure function log(S2(l)), b) skewness

S(l) and c) logarithm of the flatness log(F(l)/3) in function of the logarithm of the

scale of analysis log(l/L) for our GAN generated field (black) and Modane (blue).

Curves represent the mean value and errorbars the standard deviation calculated on

256 realizations. Red dashed lines in a) have a slope 2 in the dissipative domain

and 2/3 in the inertial one, and describe respectively the behaviors of the Batchelor

model [63] and the 2/3 Kolmogorov law. Red dashed line in c) has a slope −0.1

previously described for the log(F(l)/3) in the inertial domain [16]. The vertical black

dashed lines correspond to the Kolmogorov η and integral L scales of Modane.
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log(Sp(l)) in function of the logarithm of the scale of analysis log(l/L) for our GAN

generated field (black) and Modane (blue). Curves represent the mean value and

errorbars the standard deviation calculated on 256 realizations. The vertical black

dashed lines correspond to the Kolmogorov η and integral L scales of Modane.

standardized velocity increments of Modane a) and c) and the generated field b) and d)

for scales in the integral, inertial and dissipative domains. While the histograms of a) and

b) are done taking into account respectively the whole Modane and generated dataset

(256 realizations of size N), the histograms of c) and d) are done with only one segment

of size N , as the ones used during training. We compare first the full PDFs of Modane

a) and the generated field b). Both processes present close to Gaussian PDFs at scales

in the integral domain which become the more and more assymmetric and heavy-tailed

when the scale decreases through the inertial and dissipative domains. The deformation

of the PDF of u(x) across scales is very close to the one of Modane. However, in the

integral domain, the PDF of u(x) has slightly fewer tails than a Gaussian, and in the

dissipative domain, the Modane PDFs present stronger extreme events than the ones

of the generated field. Indeed, our generative model is trained with single realizations

of size N of Modane, which exhibit few extreme events at small scales as shown by

figure 8 c). Looking at single realizations, the PDFs of the generated field d) are almost

indistinguishable from the Modane ones c), and the few extreme events are well captured.

This explains the good similarity between PDFs in a) and b). Nevertheless, still rarer

extreme events in Modane are not learned by our model and lead to the slightly heavier

tails of a) compared to b). To complete this visual inspection, we estimated the Jeffreys

distance J between the PDFs of the standardized velocity increments of Modane and

the generated process, with sizes ranging from the dissipative to the integral domains.

We considered the PDFs built with 256 realizations and the Jeffreys distance as defined

in [64]. By construction, this distance in bounded between 0 (for identical PDFs) and

2, and we obtained negligeable values for all the studied increments, see Appendix A.

Figure 9 shows the scaling exponent ζp in function of p for Modane in blue and

the generated field in black, as well as the behavior predicted by the Kolmogorov 1941

theory in red. The scaling exponents of v(x) and u(x) are obtained by fitting the slope
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Figure 8. Logarithm of the probability density function of the centered and

standardized increments of the Modane turbulent velocity signal, a) and c), and the

GAN fields, b) and d), in function of the values of the standardized increments.

PDFs in a) and b) are obtained from 256 realizations of size N , and PDFs in c)

and d) from only 1 realization of size N . The illustrated increments are those

with l = {2, 4, 8, 16, 64, 256, 1024, 4096, 10000} ls. The integral scale of the flow is

L = 2350 ls. The red dashed line correponds to the logarithm of the probability

density function of a centered and standardized Gaussian distribution.

of log(Sp(l)) vs log(l) in the inertial region far away from η and L. In this study, we

used 17ls < l < 274ls to define the fitting region. Both Modane and u(x) present a

non-linear scaling function matching within the errorbars. Finally, u(x) has ζ3 = 1 and

so, it respects the 4/5 law of Kolmogorov.

Two alternative models from the state of the art were also tested. First, a classical

GAN model [27] and second a Wasserstein GAN (WGAN) model [65], both with the
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Figure 9. Scaling function, ζp, in function of p for the Kolmogorov 1941 model (red),

Modane velocity turbulent dataset (blue) and the GAN-Turb velocity field (black).

generator presented in section 3.1 and the discriminator following the architecture of one

of the networks of the scale-invariance discriminator of section 3.2 but applied directly

on signals of size N . Results presented in Appendix A show that these models do not

allow to generate stochastic fields with turbulent velocity statistics. This illustrates the

contribution of our multiscale multicriteria physics based approach.

5. Conclusions

We present a neural network generator model embedded in a multicriteria GAN learning

strategy for the synthesis of a 1-dimensional stochastic field with turbulent statistics.

The presented approach is guided by the multiscale physics of turbulence in two

ways. First, the generator architecture is fully convolutional, therefore it mimicks the

multiresolution analysis usually done to characterize turbulent velocity across scales.

Second, the training schema is based on four discriminators, each one focusing on a

given statistical property of turbulence: 1) variance, 2) skewness and 3) flatness of the

velocity increments across scales, and 4) the full PDF of the velocity field at different

scales of resolution. The three first discriminators are respectively linked to the energy

distribution, energy cascade and intermittency phenomenon.

Consequently, this model is able to generate an intermittent and scale-invariant

stochastic field u(x). This field exhibits three domains of scales with different statistical

behavior as well as the energy distribution and the energy cascade of turbulence as

illustrated by S2(l) and S(l) respectively. Furthermore, the PDF of the increments
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of the field deformates from Gaussian at large scale to heavy-tailed and asymmetric at

small scales, such as the PDF of the turbulent velocity increments. This is illustrated by

S(l), F(l) and ζp. Moreover, looking at the PDFs of the increments of u(x) computed

on 256 realizations of size N , we observe that the model is able to recover extreme

events that do not appear in single realizations of the same size, as the ones used

during training. Contrary to most of previous work on neural network modelling of

turbulence [47, 48, 49, 66], we not only focus on second order statistics of the velocity

field, but also on higher-order statistics. More precisely, we study the skewness and

flatness of the velocity increments that are theoretically linked with the energy cascade

and intermittency.

We compare the stochastic field generated with our physics based multiscale

approach to two stochastic fields generated by state of the art methods: a classical

GAN and a Wasserstein GAN. Our approach clearly outperforms the state of the art

ones.

Stochastic generative models, such as the one presented in this work, allow the

generation of large amounts of data with specific statistics, which are useful for validating

methodologies of analysis [67] or feeding machine learning algorithms when real data

are scarce [68, 69]. Furthermore, generative models provide new insights into the

studied process itself by characterizing how the model operates to produce the stochastic

field [66]. In addition, many processes from different fields such as geophysics [70, 71],

finance [72, 14, 73], biomedicine [74, 75], biology [76] or telecommunications [77, 78]

present complex dynamics requiring higher-order statistics for a correct modelling, and

so, our model can find applications in a large range of domains.

Finally, the main future perspective is to generalize the proposed approach to syn-

thesize 2d stochastic fields with the statistics of homogeneous and isotropic turbulent ve-

locity. Furthermore, we consider to generalize the proposed generative model by training

it on different datasets at different Reynolds numbers and by conditioning the model by

the Reynolds number of the flow. The multiscale and multicriteria physics based GAN

used in this work is available at https://github.com/manuelcgallucci/DCGAN-turb.
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Appendix A. Results with GAN and Wasserstein GAN models

This section illustrates the performances of two neural network models from the state of

the art, a classical GAN and a Wasserstein GAN, when dealing with the generation of a

1-dimensional stochastic field with turbulent statistics. Both models use the generator

presented in section 3.1 and a discriminator with the architecture of one of the networks

of the scale-invariance discriminator of section 3.2 but applied directly on the generated
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and Modane signals.

Figure A1 shows three realizations of the GAN and WGAN models in green and

magenta respectively, and three realizations of the Modane turbulent velocity field in

blue for comparison. While the GAN field is visually very close to Modane, with large

and small scale structures of similar sizes, this is not the case for the WGAN, which

presents very energetic small scales and few large scale structures.

This visual conclusion is supported by figure A2 a) which shows log(S2(l)) in

function of the logarithm of the scale of analysis for the GAN (green), WGAN (magenta),

GAN-Turb (black) and Modane (blue) fields. Both the GAN and WGAN fields present

small scales that are too energetic compared to Modane, and slopes in the inertial

domain smaller than the expected 2/3 value. Figures A2 b) and c) present respectively

the skewness and flatness of the GAN, WGAN, GAN-Turb and Modane fields. For

both GAN and WGAN the skewness and flatness strongly oscillate, and are far from

the Modane ones in several domains of scales.

Figure A3 presents the logarithm of the PDF of the standardized and centered

increments of the GAN, WGAN, GAN-Turb and Modane velocity fields. On the one

hand, the stochastic field generated with the WGAN model presents PDFs with shapes

that are very different from Modane. On the other hand, the shapes of the PDFs of the

field generated with the classical GAN are visually very similar to Modane. However,

even for the GAN field, figure A2 quantifies the strong differences between the PDFs

of Modane and the classical GAN field. This is specially true for the evolution of the

variances of the increments, illustrated by log(S2(l)), which are not visible in A3. To

complete the study of PDFs, figure A4 shows the Jeffreys distance J , as defined in [64],

between the PDFs of several standardized increments of Modane and GAN (green),

WGAN (magenta) and GAN-Turb (black) fields. The size of the increments ranges

from the dissipative to the integral domain.

Figure A5 shows the behavior of the scaling function ζp in function of p for the

Modane (blue), GAN (green), WGAN (magenta) and GAN-Turb (black) field, and

provides a clear illustration of the absence of physical sens of the fields generated with

GAN and WGAN. As said in section 2, ζ3 must be equal to 1 for turbulence, and this

is not the case for either the classical GAN or the WGAN.

So, we conclude that our GAN-Turb model outperforms state of the art ones, and

generates a physical stochastic field with turbulent statistics.
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Figure A1. Illustration of three realizations of the process u(x) generated with a

classical GAN a), b) and c) and a Wasserstein GAN d), e) and f), and three realizations

of Modane velocity field g), h) and i), in function of the spatial variable x/L. The red

boxes correspond to the length of a Modane integral scale L.
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Figure A2. a) Logarithm of the second order structure function log(S2(l)), b)

skewness S(l) and c) logarithm of the flatness log(F(l)/3) in function of the logarithm

of the scale of analysis log(l/L) for a stochastic field generated with a classical GAN

(green), a Wasserstein GAN (magenta), GAN-Turb (black) and for the Modane velocity

field (blue). Curves represent the mean value and errorbars the standard deviation

calculated on 256 realizations. Red dashed lines in a) have a slope 2 in the dissipative

domain and 2/3 in the inertial one, that describe respectively the behaviors of the

Batchelor model [63] and the 2/3 Kolmogorov law. Red dashed line in c) has a slope

−0.1 previously described for the log(F(l)/3) in the inertial domain [16]. The vertical

black dashed lines correspond to the Kolmogorov η and integral L scales of Modane.
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standardized increments of the Modane turbulent velocity signal a), GAN-Turb

b), a classical GAN field c) and a Wasserstein GAN field d), in function of

the values of the standardized increments. The PDFs are obtained from 256

realizations of size N of the fields. The illustrated increments are those with l =

{2, 4, 8, 16, 64, 256, 1024, 4096, 10000} ls. The integral scale of the flow is L = 2350 ls.

The red dashed line correponds to the logarithm of the probability density function of

a centered and standardized Gaussian distribution.
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