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waters
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CMAP, CNRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France
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This paper proposes a fully automated method for recovering the location of a source and
medium parameters in shallow waters. The scenario involves an unknown source emitting
low-frequency sound waves in a shallow water environment, and a single hydrophone record-
ing the signal. Firstly, theoretical tools are introduced to understand the robustness of the
warping method and to propose and analyze an automated way to separate the modal com-
ponents of the recorded signal. Secondly, using the spectrogram of each modal component,
the paper investigates the best way to recover the modal travel times and provides stability
estimates. Finally, a penalized minimization algorithm is presented to recover estimates of
the source location and medium parameters. The proposed method is tested on experimental
data of right whale gunshot and combustive sound sources, demonstrating its effectiveness
in real-world scenarios.
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I. INTRODUCTION

This paper presents a fully automated method for re-
covering the location of a source and medium parameters
in shallow waters. Specifically, we consider a scenario
where an unknown source emits low-frequency sound
waves (typically less than 500 Hz) in a coastal environ-
ment, and a single hydrophone records the signal at a
distance of more than 1 km from the source. The abil-
ity to accurately recover the source location from the
recorded signal has important military applications for
localizing quiet sources (Ainslie, 2010), as well as for
monitoring fish (Stanton et al., 2018) and whale pop-
ulations (Mellinger et al., 2007).

To study this inverse problem and propose a fully au-
tomated resolution method, we model the source as a sta-
tionary point source and the shallow water environment
as a semi-infinite Pekeris waveguide (Pekeris, 1948) with
a finite layer of water and an infinite layer of sediments.
Under these ideal circumstances the Fourier transform û
of the recorded signal u can be decomposed into modal
components,

û(ω) =
∑
n∈N

An(ω)eiΦn(ω), (1)

where n is the mode index, An is the complex ampli-
tude of mode n, Φn = −knr with kn the horizontal
wavenumber of mode n and r the distance from the
source to hydrophone (Jensen et al., 2011). However,
due to uncertainties in the propagation environment and
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the source characteristics, the modal decomposition (1)
of the recorded signal û is not exact and is difficult to
extract and process.

Different techniques to extract information about the
source and environment have been proposed. One of the
most commonly used techniques is called Time-of-Arrival
(TOA) estimation (see for instance (Aubauer et al., 2000;
Bonnel, 2010)). This method involves measuring the
modal travel times tn(ω) = −Φ′n(ω) (where the prime
stands for the frequency derivative) at the hydrophone
and using this information to estimate the distance to the
source. Methods have been developed to retrieve directly
the phases Φn from the signal û (Bonnel et al., 2012), but
there are not very effective when data are noisy. Most
existing methods take advantage of the modal disper-
sion curves in the time-frequency domain, and consists in
warping the signal to extract each modal component, re-
covering the dispersion curves ω 7→ tn(ω) associated with
each mode using time-frequency analysis, and matching
estimated dispersion curves with simulated replicas.

The warping method is a widely used technique that
aims at increasing the distance between modes in the
time-frequency space, making it easier to separate them
(see a full description in (Bonnel et al., 2020)). Its main
advantage is its robustness to environmental uncertain-
ties. However, as pointed out in (Bonnel et al., 2020),
”Warping is not a universal solution and requires exper-
tise and judgment to be used effectively, as there are
currently no automated methods for bulk warping.” This
comment also applies to the recovery of dispersion curves
using time-frequency analysis, where there is no known
automated method for recovering dispersion curves with
stability estimates. Most experimental data are thus
processed manually, depending on the situation (Bonnel
et al., 2018; Thode et al., 2017). The inverse problem,
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FIG. 1. Scheme of the Pekeris waveguide.

usually presented as a minimization problem between the
estimated dispersion curves and simulated replicas, also
lacks of an automated procedure. In practice, the min-
imization problem is solved numerically by computing
the function’s value everywhere and taking its minimum
value, which can be computationally expensive.

This paper proposes a solution to these limitations
by presenting a completely automated method to re-
cover source location in shallow waters. The design of
this automated method is based on the warping method
(Bonnel et al., 2018) and on several additional theoreti-
cal arguments. Specifically, we provide theoretical tools
to understand the robustness of the warping method and
use a watershed algorithm to implement it automatically.
We then present two methods to recover the dispersion
curves ω 7→ tn(ω) and quantify their stability with noisy
data. Finally, we implement a penalized minimization
algorithm that can use prior estimates on some medium
parameters (if available) to estimate the source location.

The paper is organized as follows: Section II de-
scribes the general framework of the Pekeris waveguide
and the associated modal decomposition. In Section III,
we focus on the warping technique and provide an auto-
mated way to separate modal components in the signal.
In Section IV, we introduce and compare the maximum
and mean methods for recovering dispersion curves and
provide stability estimates in both cases. Finally, in Sec-
tion V, we present a penalized minimization algorithm
that makes it possible to estimate the source location
and medium parameters.

II. GENERAL FRAMEWORK

A. Acoustic waves propagation

Let us model the shallow water environment by a
Pekeris waveguide R2 × (0,+∞) represented in Figure 1
and formed with a thin layer of ocean for depths be-
tween 0 and D and an infinite layer of sediment for
depths greater than D (Pekeris, 1948). The celerity c
and the density ρ are assumed to be piecewise constant,
and an impulsive source transmits a signal received by
a receiver (hydrophone) located at range r. The case
of non-impulsive signals can be handled similarly using
deconvolution techniques or dispersion curve differences
described in (Bonnel et al., 2020). The acoustic wave u
emitted by the impulsive source satisfies the acoustic

wave equation

ρ∇ ·
(

1

ρ
∇u
)
− 1

c2
∂ttu = 0, (2)

with the free surface (Dirichlet) boundary condition
u|z=0 = 0. Here ρ is the density and c is the wave
speed. Following the analysis presented in (Jensen
et al., 2011, §2.4.5), the Fourier transform û(ω) =∫
R u(t) exp(−iωt)dt of the signal u(t) recorded by the re-

ceiver can be decomposed as a sum of modal components

û(ω) =
∑
n∈N

ûn(ω) =
∑
n∈N

An(ω)eiΦn(ω), (3)

where the complex amplitude An is slowly varying in
ω and depends on the shape of the emitted signal and
the depths and ranges of the source and receiver (Jensen
et al., 2011) and the phase is of the form Φn(ω) =
−kn(ω)r, where r is the distance from the source to the
receiver (range) and kn is the n-th wavenumber given by
the n-th solution of the dispersion relation

tan
(
D
√
ω2/c2w

)
= − ρb

ρw

√
ω2/c2w − k2

n

k2
n − ω2/c2b

. (4)

Given the little information that we have, the general
idea is to use Φn(ω) and (4) to recover information about
r and the parameters of the Pekeris waveguide. However,
phrase retrieval is difficult with noisy data (see however
(Bonnel et al., 2012)), and it is easier to retrieve the
modal travel time tn(ω) defined by

tn(ω) = −Φ′n(ω) = rk′n(ω). (5)

In Figure 2, we plot an example of the dispersion
curves ω 7→ tn(ω). The time-frequency representation
(Boashash, 2016) of signals is known to concentrate en-
ergy around these dispersion curves, which enables to re-
cover r and the parameters of the Pekeris waveguide. Fol-
lowing the investigation led in (Bonnel, 2010) on the most
appropriate time-frequency representation, we choose to
use the short-time Fourier transform (STFT) of the sig-
nal and the spectrogram S defined by

S(t, ω) = |STFT (t, ω)|2, (6)

STFT (t, ω) =

∫
R
u(τ)h(τ − t)e−iωτdτ (7)

=
eiωt

2π

∫
R
û(ξ + ω)ĥ(ξ)eiξtdξ. (8)

Similarly, we define the modal component Sn of the spec-
trogram S by

Sn(t, ω) =

∣∣∣∣∫
R
un(τ)h(τ − t)e−iωτdτ

∣∣∣∣2 (9)

=
1

4π2

∣∣∣∣∫
R
ûn(ξ + ω)ĥ(ξ)eiξtdξ

∣∣∣∣2 . (10)

In this definition, h is a centered window function.
Different choices of h are possible (rectangular windows,
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FIG. 2. (a): Example of dispersion curves ω 7→ tn(ω) in the

Pekeris model with parameters given in Table I-line 1. (b):

Spectrogram S computed with a Gaussian window defined in

(11) with σ = 20 Hz, superposed with the dispersion curves.

sine windows, Hamming windows...), and in the follow-
ing, we choose to work with a Gaussian window of stan-
dard deviation σ to simplify the computations. The func-
tion h is then defined by

h(t) =
σ√
2π

exp
(
−σ

2t2

2

)
, ĥ(ω) = exp

(
− ω2

2σ2

)
. (11)

An example of a spectrogram with σ = 20 Hz is
presented in Figure 1. As explained in (Bonnel et al.,

2020), if σ is small enough, the support of ĥ is small and
we can hope to simplify the expression of S. The general
idea, detailed in the following sections, first uses the fact
that modes can be separated and that one can use S to
recover the modal spectrograms Sn that are of the form

Sn(t, ω)=
1

4π2

∣∣∣∣∫
R
An(ξ + ω)eiΦn(ξ+ω)ĥ(ξ)eiξtdξ

∣∣∣∣2 . (12)

Then, using the fact that the support of ĥ is small,

An(ξ + ω) ≈ An(ω), (13)

Φn(ξ + ω) ≈ Φn(ω) + ξΦ′n(ω) = Φn(ω)− ξtn(ω), (14)

and we can find a direct link between Sn(t, ω) and tn(ω):

Sn(t, ω) ≈ 1

4π2
|An(ω)|2

∣∣∣∣∫
R
ĥ(ξ)eiξ(t−tn(ω))dξ

∣∣∣∣2 (15)

= |An(ω)|2h(t− tn(ω))2. (16)

We will detail these approximations in the following, as
well as the use of spectrograms to recover the modal
travel times and the environment parameters. Through-
out the paper, we will illustrate our method on syntheti-
cally generated data and on experimental data presented
in the following subsection.

B. Synthetical and experimental data

In this paper, all numerical simulations on synthet-
ically generated data are presented for a Pekeris model

whose parameters are given in the first line of Table I.
These data are generated on Matlab using the code de-
veloped by J. Bonnel (Bonnel et al., 2020) where the
Fourier transform û is computed using the modal ex-
pansion presented in (Jensen et al., 2011), and then
moved into the time domain using an inverse fast Fourier
transform. Spectrograms are calculated using the time-
frequency toolbox (F. Auger and Flandrin, 2008), and
enable to recover four different propagative modes in the
modal decomposition.

We also implement our algorithm on experimental
data from two different experiments. The first one is the
recording of a right whale gunshot presented in (Thode
et al., 2017), where four propagative modes are recorded
with a maximal frequency fmax = 200 Hz. In this en-
vironment, we have some prior estimates of parameters
given in the second line of Table I. The second one is the
recording of a combustive sound source (CSS) presented
in (Bonnel et al., 2018), where 11 modes are clearly vis-
ible and 7 additional modes are hardly visible. In this
environment, we have some prior estimates of parame-
ters given in the third line of Table I.

III. EXTRACTION OF THE MODAL COMPONENTS OF

THE SPECTROGRAM

This section aims to extract the modal components
Sn of the spectrogram from the full spectrogram S. We
use the warping method described in (Bonnel et al.,
2020). The general idea of this method is to apply a
change of variable in the time axis to improve the sepa-
ration of the modal components in the spectrogram. We
first provide some theoretical tools to assess the mode
separability. Then, we describe a way to implement this
method numerically in a completely automated way.

A.Warping method

Let us denote ω 7→ tn(ω) the modal travel time and
t 7→ ωn(t) its reciprocal function. Given the fact that

most of the energy of the Gaussian window h (resp. ĥ)
is contained in the interval (−σ−1, σ−1) (resp. (−σ, σ)),
the energy of each modal component of the spectrogram
is concentrated in the rectangle

(min(tn)− σ−1,max(tn) + σ−1)

× (min(ωn)− σ,max(ωn) + σ). (17)

If the intersection of these rectangles for different modes
is empty, we say that the modes are well separated and
we can easily extract the different modal components of
the spectrogram. However, these rectangles often inter-
sect, making this separation impossible. Hence the use
of warping methods.

The general idea of the warping method is to notice
that in a perfectly reflecting waveguide with a boundary
condition ∂zu|z=D = 0 at depth z = D, dispersion curves
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r (km) D (m) cw (m/s) cb (m/s) ρw (kg/m3) ρb (kg/m3) fmax (Hz)

Pekeris model 10 100 1500 1600 1000 1500 100

Right whale (Thode et al., 2017) 8.8 51 1450 ? 1000 1600 204

CSS (Bonnel et al., 2018) 4.8 69.5 1464.5 ? 1000 1600 488

TABLE I. Numerical values for parameters in the Pekeris waveguide. Values are exact for the Pekeris model (line 1) and

estimated for the right whale gunshot (line 2) and the combustive sound source (line 3).

are explicit and given by

ωn(t) =
tcwπ(2n− 1)

2D
√
t2 − r2/c2w

(18)

when the emission of the pulse is at time 0. To improve
the separability of modal components, one can change
the time variable with a change of variable t 7→ ψ(t) and
consider the spectrogram of the signal

ũ(t) =
√
|ψ(t)|u ◦ ψ(t). (19)

The dispersion curves of the transformed signal are linked
to the ones of the original signal through the relation
ω̃n(t) = ψ′(t)ωn(ψ(t)), which enables to compute the new
dispersion curves:

ω̃n(t) = ψ′(t)
ψ(t)cwπ(2n− 1)

2D
√
ψ(t)2 − r2/c2w

. (20)

To simplify these new curves, choosing ψ(t) =√
t2 + r2/c2w is natural (assuming that the range r is

known or can be estimated). This change of variable
leads to constant dispersion curves

ω̃n(t) =
cwπ(2n− 1)

2D
(21)

which are separable using a small value of σ.
In the Pekeris waveguide, the warping is more com-

plicated. Given the similarities between Pekeris waveg-
uides and perfectly reflecting waveguides, we choose to
use the same type of warping and we define ψ(t) =√
t2 + t20 for a certain value t0 > 0. The new disper-

sion curves are then illustrated in Figure 3 and given by

ω̃n(t) =
t√

t2 + t20
ωn

(√
t2 + t20

)
. (22)

Since dispersion curves intersect, it is impossible to
find a change of variable that completely separates the
curves as in the perfectly reflecting waveguide. Hence,
we now only aim at separating parts of dispersion curves
that do not overlap (see an illustration in Figure 3) and
contain most of the modal energy. These parts are de-
fined as follows.

Definition 1. For each curve ω 7→ tn(ω), we define

T
(2)
n = maxω(tn(ω)) and Ω

(2)
n = argmaxω(tn(ω)) and we

consider portions of the dispersion curves contained in

an interval (Ω
(1)
n ,Ω

(3)
n ) such that Ω

(1)
n < Ω

(2)
n < Ω

(3)
n . We

denote T
(j)
n = tn(Ω

(j)
n ) for j = 1, 2, 3. The energy rect-

angle associated to the mode number n is then defined
by

En(σ) := (min(T (1)
n , T (3)

n )− σ−1, T (2)
n + σ−1)

× (Ω(1)
n − σ,Ω(3)

n + σ), (23)

and we consider that two modal components n and m
are separated if there exists σ > 0 such that

En(σ) ∩ Em(σ) = ∅. (24)

An illustration is provided in Figure 3. Figures 3b
show that, no matter the choice of σ, modal components
cannot be separated, making warping necessary. Figures
3c-d-e show the spectrogram and the dispersion curves of
the warped signal.

The following proposition quantifies the separability
of modal components:

Proposition 1. Given two portions of dispersion curves
associated to modes n < m that do not overlap, there

exists a maximum value Ωmax such that if Ω
(3)
m < Ωmax,

then there exists a warping and parameters t0 > 0, σ > 0
that separate the two modal components n and m.

The proof is provided in supplementary. This propo-

sition shows that if Ω
(3)
m is not too large, then portions

of modal dispersion curves can be separated with an ap-
propriate choice of t0 and σ. As explained in the proof,
the parameter σ needs to be chosen as large as possible
in order to separate modal components in the vertical di-
rection (see an illustration in Figure 3-e). Regarding the
choice of t0, the proof does not provide a concrete way to
compute it. As illustrated in Figures 3d-e, a small change
in t0 may produce very different dispersion curves. We
give in the next section a method to choose t0 in an au-
tomated and appropriate way.

Let us also point out that in all the numerical and
experimental examples shown below, Ωmax turns out to
be much larger than the maximum accessible frequencies,

ensuring that Ω
(3)
m < Ωmax. Furthermore, one can always

ensure that parts of curves do not overlap by considering
smaller portions of the dispersion curves and keeping only
the high energy levels in the spectrogram.

B. Numerical implementation

To numerically implement the previous warping
method, one must find a good value of t0 and separate
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FIG. 3. Illustration of the warping of mode 1-2 in the Pekeris model for different choices of t0. (a) initial spectrogram computed

with σ = 10 Hz. (b) simplified diagram with a portion of mode 1 and 2. (c) new diagram with the warping ψ(t) =
√
t2 + t20

with t0 = 6.5 s. (d) new diagram with t0 = 6.75 s. (e) new diagram with t0 = 6.7 s. (f) new spectrogram of the warped signal

at t0 = 6.7 s, computed with σ = 0.5 Hz.

modes in the spectrogram. In this subsection we develop
an algorithm that iteratively separates each mode, using
the smallest possible value for σ and starting with the
largest propagative mode number N . Assuming that t0
is well chosen, each modal component is separated from
the others in the spectrogram. To separate them auto-
matically, we use a watershed transform which returns
a set of drainage basins associated with local maximum
points of the spectrogram in the time-frequency space
(t, ω). The watershed transform is an algorithm used for
image processing, segmentation, and analysis. It is based
on the concept of a topographic map, where the grey level
values of an image represent elevations, and the image is
viewed as a surface. The basic idea behind the water-
shed transform is to use the topographic map of an im-
age to identify regions or objects within the image. This
is done by “flooding” the topographic map from its min-
ima, which correspond to local minima in the image. As
the flooding proceeds, the water from different minima
starts to meet and form ridges or boundaries, which sep-
arate different regions in the image. More details about
this method can be found for instance in (Meyer, 1994).

Using the shape of dispersion curves in Pekeris
waveguides (see for instance Figure 3), we know that
most of the energy of each mode is concentrated near
its high frequencies. Therefore, we choose to apply the
following algorithm to sort drainage basins:

• We sort local maximum points (ti, ωi) associated
with basins Bi by descending frequencies.

• We associate B1 with the mode number N . For
i ≥ 1, if S(ti+1, ωi+1) < S(ti, ωi), then we keep the
same mode number, otherwise, we associate Bi+1

to a new mode number (the mode number of Bi
minus one).

An example is shown in Figure 4.
We still need to choose a good t0 to separate modes.

To do so, we maximize a quality factor defined to fa-
vor warpings where each mode is separated from the
next one, both in amplitude and frequency distance.
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FIG. 4. (a): A warped spectrogram superposed with as-

sociated drainage basins and local maximum points (yellow

and red stars). (b): Amplitude of each local maximum point

sorted by descending frequencies; the top red star is assocated

with mode number 4, and so is the yellow star below it. The

second red star from the top is associated to the mode number

3, as well as the two following yellow stars, and so on.

We privilege situations where each mode contains dif-
ferent drainage basins with an amplitude gap with the
next mode. For a mode number n associated to basins
i = I, . . . , J , we define

Q(n)(t0) =

{
0 if I = J,

S(tJ+1, ωJ+1)− S(tJ , ωJ) else.
(25)

This quality factor is relatively simple and it encap-
sulates the warping quality very well as shown in Fig-
ure 5. Its maximization gives the best t0 to separate
modes. If Q(n) vanishes everywhere, we remove the first
condition and only measure the amplitude gaps between
the basins.

After choosing the best t0 to maximize the quality
factor Q(N), we remove all the drainage basins associated
with the mode N , and we do the same process for the
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The quality of the precision is computed using the formula

1− ‖S4 − Sapp
4 ‖2/‖S4‖2, where S4 is the true spectrogram of

the mode 4, Sapp
4 is the one obtained after modal separation,

and ‖ · ‖2 is the L2-norm.

next mode N−1 with the quality factor Q(N−1) until the
spectrogram is empty. The fully automated algorithm is
summarized in Algorithm 1.

Algorithm 1: Filtering of modal components in the received
signal

Input: Signal u measured on the regular grid
τ = (τ1, . . . , τT )

Number of propagative modes N
Output: Modal components u1, u2, . . . , uN
for n = N, . . . , 2 do

for ` = 1, . . . , T do
t0 = τ`
ũ← warping of u associated to ψ(t) =

√
t2 + t20

(see (19))

S̃ ← spectrogram of ũ computed with the
smallest possible value of σ (see (9) and (11))

Bi, (ti, ωi)← drainage basins of S̃, local maxima

of S̃, sorted by descending frequencies
Q(n)(`)← quality factor at t0 computed using

(Bi, ti, ωi) (see (25))
end for
t0 ← argmax (Q(n))

Bi, (ti, ωi)← drainage basins of S̃ at t0, local

maxima of S̃ at t0
mask ← 0× S̃
while S̃(ti+1, ωi+1) < S̃(ti, ωi) do

mask=mask+1Bi (indicator function of Bi)
end while
un ← inverse warping of the inverse spectrogram

of S̃×mask
u← u− un

end for
u1 ← u

A modal separation done with this algorithm on syn-
thetic data in the Pekeris model is presented in Figure 6.
Then, this algorithm is applied to experimental data with
a right whale gunshot (Figure 7) and a combustive sound
source (Figure 8) and produces great reconstruction com-
parable to the ones proposed in (Bonnel et al., 2018, 2020;
Thode et al., 2017) but in a completely automated way.

From now on, we assume that we can separate modal
components and get good approximations of each modal
spectrogram Sn(t, ω). In the following section, we will
discuss the best action to use these spectrograms to get
approximations of dispersion curves ω 7→ tn(ω).

IV. RECONSTRUCTION OF THE MODAL TRAVEL

TIMES

In this section, for a fixed n, we aim at approaching
the dispersion curves ω 7→ tn(ω) given the modal spec-
trogram Sn(t, ω), and we consider a signal of the form

u(t) = un(t)+W (t), un(t) =
1

2π

∫
ûn(ω)eiωtdω, (26)

where W (t) is a Gaussian additive noise satisfying
E(W (t)) = 0 and

Cov(W (t),W (t′)) = δ2 exp
(
− (t− t′)2

2T 2
δ

)
. (27)

This noise model seems to be a good approximation of the
measurement noise and the environment noise (Aparicio
et al., 2015), and can also account for the possible small
errors in the previous separation method. As mentioned
in Section II, we have a link between the spectrogram
S(t, ω) and the dispersion curves ω 7→ tn(ω) since

S(t, ω) ≈ Sapp(t, ω) := |An(ω)|2h(t− tn(ω))2. (28)

Two competing methods would then allow to recover
tn(ω) using S(t, ω):

• Maximum method: we notice that

∂t
√
Sapp(t, ω) = 0 ⇔ ∂th(t− tn(ω)) = 0

⇔ t = tn(ω). (29)

To recover an approximated value of tn(ω), we look
for the maximum value of t 7→ Sapp(t, ω) by solving

the equation ∂t
√
Sapp(t, ω) = 0.

• Mean method: since h is a centered window func-
tion,∫
R tS

app(t, ω)dt∫
R S

app(t, ω)dt
=

∫
R th(t)2dt+ tn(ω)

∫
R h(t)2dt∫

R h(t)2dt

= tn(ω). (30)

To recover an approximated value of tn(ω), we can
compute the quantity∫

R tφ(t)Sapp(t, ω)dt∫
R φ(t)Sapp(t, ω)dt

, φ(t) = exp
(
− t2

2T 2
w

)
, (31)

where φ is a weight function to account for the fact
that we do not have access to measurements for
every t ∈ R.

To discriminate these two methods, we study the stability
of each method and the reconstruction error given the
noise level. In each case, we present the reconstruction
error for a fixed window width σ, and then we optimize
the width σ to minimize the reconstruction error.
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FIG. 6. Initial spectrogram and separate modal components computed with σ = 20 Hz and obtained with the warping

algorithm on synthetically generated data in the Pekeris model given in Table I-line 1. (a) initial spectrogram superposed with

the dispersion curves. (b) spectrogram of mode 1. (c) spectrogram of mode 2. (d) spectogram of mode 3. (e) spectrogram of

mode 4.
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FIG. 7. Initial spectrogram and separate modal components computed with σ = 41 Hz and obtained with the warping

algorithm on data of a right whale gunshot (Thode et al., 2017). (a) initial spectrogram (in log scale). (b) spectrogram of

mode 1. (c) spectrogram of mode 2. (d) spectogram of mode 3. (e) spectrogram of mode 4.

A.Maximum method

First, we investigate the stability of the maximum
method. In the following, for each function ζn depending
on the mode n, we denote

‖ζn‖∞ = sup
ω̃∈(ωc,n,+∞)

|ζn(ω̃)|, (32)

where ωc,n is the cut-off frequency of the mode n (Jensen
et al., 2011, §2.4.5.1).

Proposition 2. Let tapp
n (ω) be an approximation of

tn(ω) defined as the unique solution of the equation

∂t
√
Sn(t, ω) = 0. Defining σlim(ω) = ωc,n/3−ω/4 (which

do not depend on δ, Tδ, σ), we have

E(|tapp
n (ω)− tn(ω)|)

≤
supω̃∈(4ωc,n/3,+∞) |A′n(ω̃)|

|An(ω)| +
‖A′n‖∞
|An(ω)|1σ>σlim(ω)

+ C2σ
‖A′n‖∞‖Φ′′n‖∞
|An(ω)| + C3

δT
1/2
δ

|An(ω)|σ3/2
. (33)

This quantity is minimal when σ = σopt, where

σopt(ω) ∈

σlim(ω),

(
3δT

1/2
δ 2−11/4

‖An‖∞‖Φ′′n‖∞

)2/5
 . (34)

Here, all dimensionless quantities Ci are explicit con-
stants detailed in supplementary.

Due to the term 1σ>σlim(ω) in the control of the re-
construction error, the optimal value of σ cannot be com-
puted easily and one needs to test the two values in (34)
and determine each time which one provides the minimal
error. However, in the Pekeris model, the most common
situation seems to be the one where σopt = σlim, as illus-
trated in Figure 9 where we compute the optimal choice

of σ for different values of δT
1/2
δ and ω. We also compute

the associated reconstruction error E(|tapp
n (ω)− tn(ω)|).

B.Mean method

We now investigate the stability of the mean method.

Proposition 3. Let tapp
n (ω) be an approximation of

tn(ω) defined by

tapp
n (ω) =

∫
R tφ(t)S(t, ω)dt∫
R φ(t)S(t, ω)dt

, φ(t) = exp
(
− t2

2T 2
w

)
. (35)
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FIG. 8. Initial spectrogram and separate modal components computed with σ = 98 Hz and obtained with the warping

algorithm on data of a combustive sound source (Bonnel et al., 2018). As in (Bonnel et al., 2018), we recover the 11 first modes,

but due to a gap in the data, we cannot be sure of the mode numbers after that. We recover a total of 14 modal components

using our warping algorithm. (a) initial spectrogram. (b) spectrogram of mode 2. (c) spectrogram of mode 6. (d) spectrogram

of mode 9. (e) spectrogram of an unidentified mode.
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FIG. 9. (a) Optimal choice of σ to minimize the error of

reconstruction of tn for increasing values of the noise level

and different frequencies f . The noise level is defined as

δT
1/2
δ /|An(ω)|. (b) Mean reconstruction error E(|tappn (ω) −

tn(ω)|) for the optimal choice σ = σopt with respect to the

noise level δT
1/2
δ /|An(ω)|. The mean is computed using 50

simulations, and Tδ = 0.01s.

If σtn(ω) > 1 and δT
1/2
δ /(tn(ω)1/2|An(ω)|)� 1 then

E(|tapp
n (ω)− tn(ω)|) ≤ ‖A

′
n‖∞‖An‖∞
4|An(ω)|2 +D1

tn(ω)2

Tw

+D2
‖A′n‖2∞tn(ω)

|An(ω)|2 σ2 +D3tn(ω)
δT

1/2
δ√

σ|An(ω)| . (36)

This quantity is minimal for

σopt(ω) = D4
|An(ω)|4/5

‖A′n‖4/5∞

(
δT

1/2
δ

|An(ω)|

)2/5

, (37)

and provides an error

E(|tapp
n (ω)− tn(ω)|) ≤ ‖A

′
n‖∞‖An‖∞
4|An(ω)|2 +D1

tn(ω)2

Tw

+D5
tn(ω)‖A′n‖2/5∞
|An(ω)|2/5

(
δT

1/2
δ

|An(ω)|

)4/5

. (38)

Here, all dimensionless quantities Di are explicit and de-
pend on ω, Tw, An and Φn. Their expressions are given
in supplementary.

We illustrate these results in Figure 10 where we plot

σopt(ω) with respect to δT
1/2
δ /|An(ω)|. Numerically, we

notice that for each plotted frequency, we have

σopt(ω) = O

( δT
1/2
δ

|An(ω)|

)0.38
 , (39)

E(|tapp
n (ω)− tn(ω)|) = O

( δT
1/2
δ

|An(ω)|

)0.73
 , (40)

which corroborates the theoretical results of Proposi-
tion 3.

C. Comparison between both methods

We can now compare the maximum and the mean
methods using Propositions 2 and 3. Let us denote
by emax the error of reconstruction with the maximum
method and by emean the error with the mean method.
First, we notice that, when there is no noise in the data

(i.e., when δT
1/2
δ = 0), and assuming that Tw is large

enough, we have

emax ≤
‖A′n‖∞
|An(ω)| , emean ≤

‖A′n‖∞‖An‖∞
4|An(ω)|2 . (41)

When |An(ω)| ≈ ‖An‖∞ and without noise, the mean
method turns out to be more precise.
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FIG. 10. (a) Optimal choice of σ to minimize the error of

reconstruction of tn for increasing values of the noise level

and different frequencies f . The noise level is defined as

δT
1/2
δ /|An(ω)|. (b) Mean reconstruction error E(|tappn (ω) −

tn(ω)|) for the optimal choice σ = σopt with respect to the

noise level δT
1/2
δ /|An(ω)|. The mean is computed using 50

simulations, and Tδ = 0.01s.

Assuming that σopt = σlim for the maximum
method when data are noisy, we notice that emax

grows as δT
1/2
δ /|An(ω)| while emean increases as

(δT
1/2
δ /|An(ω)|)4/5, meaning that the maximum method

becomes more precise as the noise level grows. Numerical
tests for different frequencies are presented in Figure 11
and confirm this comparison. We give the relative recon-
struction error at the optimal choice σ = σopt with the
maximum and the mean methods for different frequencies
in each case.

We then investigate the behavior of the global error

max
ω∈Ωn

E(|tapp
n (ω)− tn(ω)|), (42)

where Ωn is the set of frequencies

Ωn = {ω > 0 s.t. Sn(tapp
n (ω), ω) > pmax(S)} , (43)

for a fixed threshold p (its choice is discussed in the next
section). This definition is very similar to the one pre-
sented in (Bonnel et al., 2020), where one must select the
significative parts of the dispersion curves ω 7→ tapp

n (ω)
manually. We plot in Figure 12 the optimal value σopt

to minimize the global error and the resulting global er-
ror for both methods. Again, the mean method works
better for a small noise level and the maximum method
for a higher noise level. We also notice that the optimal
value σopt in the maximum method is very stable with re-

spect to δT
1/2
δ /|An(ω)|, which makes it easy to calibrate

a priori.
Given the theoretical and numerical results presented

in this section, we choose to work with the optimized
maximum method to recover an approximated value of
the dispersion curves. This choice differs from the one

used in paper (Bonnel et al., 2020) where the value
σ = 20 Hz is always chosen, and the mean method is
used to compute the approximation of tn. These non-
optimized choices are represented in Figure 12 for com-
parison purposes.

Using the maximum method with an optimized
choice σopt = 5fmax/100, we present in Figure 13 the
approximated reconstructions tapp

n (ω) obtained using Al-
gorithm 2 and the separation of modes presented in Al-
gorithm 1.

Algorithm 2: Reconstruction of dispersion curves

Input: Modal component un sampled at
frequency fmax

Set of frequencies F used to compute the
spectrogram

Threshold P = pmax(S)
Output: Dispersion curves F 7→ tappn (F )
Sn ← spectrogram of un computed with
σ = 5fmax/100 (see (9) and (11))
for f ∈ F do
tappn (f) =argmax Sn(f, ·)
if Sn(tappn (f), f) < P then
tappn (f) =Nan {One could also remove the values

from the list}
end if

end for

V. INVERSE PROBLEM

We now work with approximated values of the dis-
persion curves ω 7→ tapp

n (ω) obtained using the method
described in the previous section, and aim at recovering
the range r and the parameters of the Pekeris waveguide.
Dispersion curves ω 7→ tn(ω) do not have an explicit ex-
pression, but it is possible to compute excellent approx-
imations by looking at the zeros of the relation (4). As
described in (Bonnel et al., 2020), the most naive method
to recover all the parameters would be to minimize the
functional

J(r, cw, cb, ρw, ρb, D, dt)

= ‖tn(r, cw, cb, ρw, ρb, D, ·)− dt− tapp
n (·)‖2`2 , (44)

where

‖tn‖2`2 =

N∑
n=1

∫
Ωn

tn(ω)2dω, (45)

and Ωn is the set of frequencies associated to the mode n
defined in (43).

However, different difficulties arise from this ap-
proach:

• Firstly, all parts of curves ω 7→ tapp
n (ω) may not

be significant and one must choose an appropriate
threshold p to define Ωn in (43). Especially we
prove in the proofs of Propositions 2 and 3 that the
reconstruction error increases as 1/|An(ω)|, which
leads to large errors for frequencies with low energy.
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level δT
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optimal choice σ = σopt, and comparisons with non-optimized

errors with σ = 20 Hz (choice in (Bonnel et al., 2020)). The

choice of threshold is p = 0.5.

• Secondly, the functional J is not convex and its
optimization can be costly.

• Thirdly, the minimum in (44) may be reached at
non-physical values, especially for cw and ρw which
actually do not vary much in shallow waters.

To solve the first issue, we propose to determine em-
pirically the optimal threshold value, denoted as p, by
executing the algorithm on the Pekeris model. This will
allow us to identify the ideal value of p that minimizes
the relative reconstruction error for all the parameters.

To solve the second and third issues, the paper (Bon-
nel et al., 2020) chooses to reduce the number of variables
and to fix the values of cw, ρw, ρb, D. The optimization is
done with the unknown r, cb, dt and turns out to be much
simpler. We develop a more powerful approach and adapt

6.6 6.8 7
0

50

100

Time (s)

F
re
q
u
en
cy

(H
z)

Pekeris model tool

0.4 0.6 0.8
0

50

100

150

200

Time (s)

F
re
q
u
en

cy
(H

z)

Right Whale gunshot

(a) (b)

0.1 0.2 0.3 0.4
0

200

400

Time (s)

F
re
q
u
en

cy
(H

z)

CSS

6.6 6.8 7
0

50

100

Time (s)

F
re
q
u
en
cy

(H
z)

Pekeris model tool

tn(ω)

tappn (ω)

(c)

FIG. 13. Approximated dispersion curves ω 7→ tappn (ω) ob-

tained using the maximum method with σ = 5fmax/100. We

only present here the representative portions of curves such

that Sn(tappn (ω), ω) > 0.05 max(S). (a) Pekeris model defined

in Table I-line 1 whose modal component have been extracted

in Figure 6. (b) impulsive right whale gunshot whose modal

component have been extracted in Figure 7. (c) combustive

sound source whose modal component have been extracted in

Figure 8.

a Bayesian approach with prior knowledge of the values
of some parameters. This approach helps us account for
the fact that the Pekeris model is just an approximation
of the actual propagation in shallow water. To do so, we
add a penalization term to the functional J depending on
hyper-parameters accounting for our confidence in the a
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priori values c0w, ρ0
w, ρ0

b, D
0 of the parameters cw, ρw, ρb

and D.
These hyper-parameters are usually determined by

training on big sets of data (Mohammad-Djafari, 1993;
Pascal et al., 2021). However, we only have two experi-
ences in very different contexts. Despite this, we know
that the estimates on the water layer are usually very re-
liable, while those on ρb and D are more uncertain. For
this reason, we propose the following choice of hyper-
parameters for the optimization and define a new func-
tional

J̃(r, cw, cb, ρw, ρb, D, dt) = J(r, cw, cb, ρw, ρb, D, dt)

+ α
(∣∣∣D −D0

D0

∣∣∣2 +
∣∣∣ρb − ρ0

b

ρ0
b

∣∣∣2
+ 10

∣∣∣ρw − ρ0
w

ρ0
w

∣∣∣2 + 10
∣∣∣cw − c0w

c0w

∣∣∣2). (46)

Here, α is chosen so that the penalization part is of the
same order as J . We will show in the following section
that this choice of hyper-parameters yields good results
for both experimental setups and the Pekeris model. By

minimizing the penalized functional J̃ , we obtain the a
posteriori maximum of the corresponding Bayesian ap-
proach, which incorporates a priori information on c0w,
ρ0

w, ρ0
b, and D0. For a more detailed explanation, see

(Gribonval, 2011).
First, we investigate the optimal choice of threshold

p on the Pekeris model. Then, we present the reconstruc-
tion obtained by our algorithm on experimental data.

A. Choice of the threshold p

The choice of the threshold p is important: if p is
too close to 1, then the optimization is done with very
few measurements and can become very sensitive to mea-
surement errors. On the other hand, if p is too close to
0, then the reconstruction tapp

n can be very far from the
actual values tn which can tamper the reconstruction of
the parameters. The good choice results from a trade-
off to keep enough measurement points to prevent errors
and remove non-significative measurements. Using the
dispersion curves presented in Figure 13 for the Pekeris

model, we minimize the functional J̃ for different choices
of p and present the relative reconstruction errors in Ta-
ble II. Given these data, we choose from now on to work
with the choice of threshold p = 0.4 and provide the re-
construction Algorithm 3.
B. Experimental data

We now minimize the functional J̃ with a threshold
p = 0.4 on the approximated dispersion curves obtained
in Figure 13 for the experimental data. As explained in
(Bonnel et al., 2018, 2020), the environment of the com-
bustive sound source experiment is only comparable to a
Pekeris waveguide when frequencies are between 100 Hz
and 300 Hz, and we only consider these data for the in-
version. In Figure 14, we present the dispersion curves tn
associated with the parameters minimizing the functional

p r cw cb ρw ρb D dt

0.2 2 % 2 % 2 % <1% 2% 3% 1%

0.4 <1 % <1 % <1 % <1% 2% <1% <1%

0.6 <1 % <1 % <1 % <1% 3% 2% 1%

0.8 <1 % <1 % <1 % <1% 9% 3% <1%

TABLE II. Relative reconstruction errors of

r, cw, cb, D, ρw, ρb in the Pekeris model with respect to

the threshold p.

Algorithm 3: Recovery of parameters

Input: Measured signal u at times τ = τ1, . . . , τT
sampled at frequency fmax

Set of frequencies F to compute the
spectrogram

Number of modes N
Estimated values of c0w, ρ0w, ρ0b, and D0

Output: Recovered parameters r, cw, cb, D, ρw, ρb
S ← spectrogram of u computed with σ = 5fmax/100
(see (9) and (11))
u1, . . . , un ← filtering of u using Algorithm 1
P ← 0.4 max(S)
tapp1 . . . , tappn ← result of Algorithm 2 on u1, . . . un
with the threshold P
r0, c0b, dt

0 ← arbitrary values
α← J(r0, c0w, c

0
b, ρ

0
w, ρ

0
b, D

0, dt0)

(r, cw, cb, ρw, ρb, D, dt)← minimization of J̃ defined
in (46) and starting at (r0, c0w, c

0
b, ρ

0
w, ρ

0
b, D

0, dt0)

J̃ . For the impulsive right whale gunshot, we obtain the
following parameters: r = 8.8km, cb = 1727m/s, dt =

5.9s, cw = 1449m/s, ρw = 1007kg/m
3
, ρb = 1481kg/m

3
,

D = 51.2m. For the combustive sound source, we obtain
r = 4.8km, cb = 1649m/s, dt = 3.2s, cw = 1476m/s,

ρw = 996kg/m
3
, ρb = 1282kg/m

3
, D = 73.1m. These re-

sults are consistent with the ground truth and those ex-
posed in Refs. (Bonnel, 2010; Bonnel et al., 2020; Thode
et al., 2017) and in Table I. We even find a better localiza-
tion result in the combustive sound source case, thanks
to the relaxation of the parameters cw, ρw, ρb, and D.

VI. CONCLUSION

In this paper, we have presented theoretical tools
and numerical methods for automating the process of
source localization and medium parameter estimation in
shallow waters. Our approach involves 1) using a water-
shed algorithm and optimized warping to effectively sep-
arate modal components of the signal and 2) developing
a stability-optimized maximum method to obtain accu-
rate approximations of dispersion curves. The method
also makes it possible to incorporate prior estimates on
certain medium parameters. The application of this au-
tomated method on two experimental data sets show
that it accurately recovers source location and additional
medium parameters.
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FIG. 14. Dispersion curves ω 7→ tn(ω) obtained by minimiz-

ing the functional J̃ on data tappn (ω) presented in Figure 13-

(b-c). (a) Right whale gunshot data. (b) Combustive sound

source data.

The definition of the quality factor of the warping
in (25) and the choices of hyper-parameters in (46) fol-
low from theoretical considerations. We have shown that
these choices provide reliable estimates of the parameters
of interest and that the automated method demonstrates
stable performance with respect to the chosen values of
the hyper-parameters. They could, however, be updated
in the presence of additional information about the exper-
imental setup. Indeed, with further experimental data, it
is possible to refine the choices to improve the accuracy
of our estimates even further. To summarize, our cur-
rent method demonstrates significant potential for com-
pletely automating the process of source localization and
medium parameter estimation in shallow waters. 1

1See supplementary materials attached to find the mathemat-
ical developments of the paper, and at https://github.com/
niclas-angele/source_localization for all the Matlab codes as-
sociated to the article.
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