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Abstract. This paper considers the problem of building monotone fuzzy
decision trees when the attributes and the labeling function are in the
form of partitions (in Ruspini’s sense) of totally ordered labels. We define
a fuzzy version of Shannon and Gini rank discrimination measures, based
on a definition of fuzzy dominance, to be used in the splitting phase of
a fuzzy decision tree inductive construction algorithm. These extensions
generalize the rank discrimination measures introduced in previous work.
Afterwards, we introduce a new algorithm to build a fuzzy decision tree
enforcing monotonicity and we present an experimental analysis on an
artificial data set.

Keywords: Monotone fuzzy decision tree · Fuzzy rank discrimination
measure · Totally ordered fuzzy partitions.

1 Introduction

Starting from the seminal paper [1], monotone classification has attracted in-
creasing attention (see, e.g., [2, 3, 7, 18]) due to its capacity of modeling semantic
concepts like preference, priority and importance. In turn, the possibility of in-
corporating linguistic or vague information, has naturally led to fuzzy monotone
classification (see, e.g., [19, 22, 23]).

In this paper, we focus on fuzzy decision trees [11, 17, 24] in which we aim
at enforcing monotonicity, relying on a set of training examples. We consider
a learning problem where the data set consists of a finite number of objects
described by m attributes aj ’s, each referring to a totally ordered set of fuzzy
labels (Xj ,≤), together with a labeling function λ that refers to a totally ordered
set of fuzzy classes (C,≤). We further assume that each attribute and the labeling
function are fuzzy partitions in Ruspini’s sense [20]. Then, our goal is to build a
fuzzy decision tree T which encodes a labeling function λ′ : X1×· · ·×Xm → C,
that maps every m-tuple of attribute fuzzy labels to a fuzzy class and further
satisfies monotonicity, that is

(x1, . . . , xm) ≤ (y1, . . . , ym) =⇒ λ′(x1, . . . , xm) ≤ λ′(y1, . . . , ym), (1)

where (x1, . . . , xm) ≤ (y1, . . . , ym) stands for xj ≤ yj , for j = 1, . . . ,m.
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In general, enforcing global monotonicity requires a pre-processing of the in-
put data sets, so as to remove possible inconsistencies. Here, we face the problem
by adopting a greedy approach: at each step of the building process we choose
the attribute aj “enforcing the most” a local form of monotonicity. This approach
has been already exploited in previous work [12] in case of crisp data and relies
on the introduction of rank discrimination measures (see also [8, 9]) that are
inspired by classical Shannon and Gini measures. In this paper, we introduce
fuzzy versions of measures introduced in [12], by relaying on a suitable additive
fuzzy preference structure without incomparability [5, 4, 21], used to model fuzzy
dominant sets. We also propose an algorithm to build a monotone fuzzy decision
tree by relying on the introduced fuzzy rank discrimination measures and we
perform its analysis on an artificial data set.

The paper is structured as follows. In Section 2, we define Shannon and Gini
fuzzy rank discrimination measures. Section 3 presents a greedy construction
algorithm parameterized by the introduced fuzzy rank discrimination measures
and shows an experimental analysis on an artificial data set. Finally, Section 4
gathers conclusions and future perspectives.

2 Fuzzy rank discrimination measures

In this section, after a recall on the background, fuzzy rank discrimination mea-
sures are presented. First of all, let us introduce the following notations:

– Ω = {ω1, . . . , ωn}, a finite set of objects;
– A = {a1, . . . , am}, a finite set of fuzzy attributes with totally or-
dered range of fuzzy labels, where aj refers to the set of labels Xj =
{xj1 , . . . , xjtj } and (Xj ,≤Xj ) is totally ordered;

– λ, a fuzzy labelling function referring to the set of fuzzy classes C =
{c1, . . . , ck} with (C,≤C) totally ordered.

To avoid cumbersome notation, in what follows we suppress the subscript Xj

and C from the total orders ≤Xj and ≤C , relying on the context to clarify which
relation we are referring to.

The case of crisp aj and λ has been considered in [12]: in this case, aj and λ
correspond to (crisp) partitions of Ω:

aj = {{aj = xjs} = {ωh ∈ Ω : aj(ωh) = xjs} | xjs ∈ Xj}
= {χ{aj=xjs} : Ω → {0, 1} | xjs ∈ Xj},

λ = {{λ = cq} = {ωh ∈ Ω : λ(ωh) = cq} | cq ∈ C}
= {χ{λ=cq} : Ω → {0, 1} | cq ∈ C},

thus, they induce a (crisp) total preorder on Ω due to (Xj ,≤) and (C,≤):

Raj (ωi, ωh) =

{
1 if aj(ωi) ≤ aj(ωh),
0 otherwise. Rλ(ωi, ωh) =

{
1 if λ(ωi) ≤ λ(ωh),
0 otherwise.
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The dominant sets of ωi generated by aj or λ have characteristic functions

χ
[ωi]
≤
aj

(·) = Raj (ωi, ·) χ
[ωi]
≤
λ
(·) = Rλ(ωi, ·).

Therefore, A ∪ {λ} can be regarded as a collection of (crisp) partitions. More-
over, Raj and Rλ form the preference structures (Paj , Iaj , Raj ) and (Pλ, Iλ, Rλ),
where Paj , Pλ are strict preference relations, Iaj , Iλ are indifference relations,
and Raj , Rλ are weak preference relations.

In this paper, for the fuzzy case, we assume that both aj and λ are fuzzy
partitions (in the Ruspini’s sense [20]) of Ω:

aj =

µ{aj=xjs} : Ω → [0, 1]

∣∣∣∣∣∣ xjs ∈ Xj ,
∑

xjs∈Xj

µ{aj=xjs}(ωi) = 1, ωi ∈ Ω

 ,

λ =

µ{λ=cq} : Ω → [0, 1]

∣∣∣∣∣∣ cq ∈ C,
∑
cq∈C

µ{λ=cq}(ωi) = 1, ωi ∈ Ω

 .

Therefore, in the fuzzy case, A∪{λ} can be regarded as a collection of Ruspini’s
fuzzy partitions.

Example 1. Let Ω = {ω1, ω2, ω3} be three cars evaluated according to the fuzzy
attributes and labeling function below, where orders express preferences:

– a1 = comfort with X1 = {low, medium, high} ordered as low < medium <
high,

– a2 = price with X2 = {cheap, expensive} ordered as expensive < cheap,
– λ = appreciation with C = {low, high} ordered as low < high.

comfort price appreciation
Ω low medium high cheap expensive low high
ω1 0.3 0.1 0.6 0.6 0.4 0.7 0.3
ω2 0.8 0.1 0.1 0.3 0.7 0.1 0.9
ω3 0.2 0.2 0.6 0.7 0.3 0.2 0.8

�

The totally ordered sets (Xj ,≤) and (C,≤) induce a total order on the fuzzy
labels {aj = xjs} and {λ = cq} that we wish to “transport” somehow to Ω: the
best would be to obtain a fuzzy total T -preorder on Ω, where T is a t-norm [10].
In other terms, we search for a fuzzy counterpart of the relations Raj and Rλ
defined in the non-fuzzy (crisp) case. At this aim we recall the definition of fuzzy
total T -preorder given in [6].

Definition 1. A function R : Ω ×Ω → [0, 1] is a fuzzy total T -preorder for
a t-norm T if it satisfies:

(1) (strong completeness) max{R(ωi, ωh), R(ωh, ωi)} = 1, for all ωi, ωh ∈ Ω;
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(2) (T -transitivity) R(ωi, ωh) ≥ T (R(ωi, ωl), R(ωl, ωh)), for all ωi, ωl, ωh ∈ Ω.

A fuzzy preference structure is generally a weaker notion than a fuzzy to-
tal T -preorder. To have “common properties” analogous to the crisp case, a ϕ-
transformation of the Łukasiewicz t-norm TL (whose dual t-conorm is SL) must
be used. Below we report the definition of additive fuzzy preference structure
with no incomparability [5] (see also [4, 21]), where ∩L and ∪L refer to TL and
SL, the superscript t denotes the transpose relation and co the complement.

Definition 2. A triple (P, I,R) of functions on Ω ranging in [0, 1] are an ad-
ditive fuzzy preference structure with no incomparability if:

(1) P is irreflexive and I is reflexive;
(2) P is TL-asymmetric and I is symmetric;
(3) P ∩L I = ∅;
(4) co(P ∪L I) = P t;
(5) R = P∪LI, i.e., R(ωi, ωh) = SL(P (ωi, ωh), I(ωi, ωh)) = P (ωi, ωh)+I(ωi, ωh).

Inspired to fuzzy preference structures built in the comparison of indepen-
dent random variables (see [13–15]), we can provide the following probabilistic
interpretation of our setup. For a fixed aj ∈ A, for each ωi ∈ Ω, we set

pji,s = µ{aj=xjs}(ωi), s = 1, . . . , tj

then we have

aj(ωi) xj1 xj2 . . . xtj
pji,s pji,1 p

j
i,2 . . . p

j
i,tj


pji,s ≥ 0, s = 1, . . . , tj ,

tj∑
s=1

pji,s = 1.

The evaluation aj(ωi) can be interpreted as a discrete random variable with
assigned probability distribution.

Assumption 1 Since objects in Ω are assumed not to influence each other,
then {aj(ω1), . . . , aj(ωn)} can be considered as stochastically independent ran-
dom variables.

The above probabilistic interpretation allows us to refer to a fuzzy stochastic
preference [5]:

Fuzzy strict stochastic preference relation:

P̃aj (ωi, ωh) = max{Prob(aj(ωi) < aj(ωh))− Prob(aj(ωi) > aj(ωh)), 0},

Fuzzy stochastic indifference relation:

Ĩaj (ωi, ωh) = 1− |Prob(aj(ωi) < aj(ωh))− Prob(aj(ωi) > aj(ωh))|,
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Fuzzy weak stochastic preference relation:

R̃aj (ωi, ωh) = SL(P̃aj (ωi, ωh), Ĩaj (ωi, ωh)) = P̃aj (ωi, ωh) + Ĩaj (ωi, ωh),

where

Prob(aj(ωi) < aj(ωh)) =

{ ∑
s<q

pji,sp
j
h,q i 6= h,

0 i = h,

Prob(aj(ωi) > aj(ωh)) =

{ ∑
s>q

pji,sp
j
h,q i 6= h,

0 i = h.

We now consider the properties of (P̃aj , Ĩaj , R̃aj ). The triple (P̃aj , Ĩaj , R̃aj )
is an additive fuzzy preference structure with no incomparability sat-
isfying the following properties

– (generalization) if aj is a crisp partition then R̃aj = Raj ,
– (reflexivity) R̃aj (ωi, ωi) = 1, for all ωi ∈ Ω,
– (strong completeness)max{R̃aj (ωi, ωh), R̃aj (ωh, ωi)} = 1 for all ωi, ωh ∈ Ω.

Therefore, we can define the fuzzy dominant set generated by aj as

µ
[̃ωi]
≤
aj

(·) = R̃aj (ωi, ·). (2)

A natural question concerns the T -transitivity of R̃aj . The following example
shows that generally R̃aj is not guaranteed to be T -transitive for a t-norm T ,
even though it may be the case.

Example 2. Take A = {a1, a2} with X1 = X2 = {1, 2, 3} with the natural order
of numbers, and Ω = {ω1, ω2, ω3, ω4}.

{a1 = 1} {a1 = 2} {a1 = 3}
ω1 0.3 0.5 0.2
ω2 0.2 0.4 0.4
ω3 0.1 0.8 0.1
ω4 0.7 0.2 0.1

R̃a1 ω1 ω2 ω3 ω4

ω1 1 1 1 0.61
ω2 0.78 1 0.82 0.46
ω3 0.91 1 1 0.46
ω4 1 1 1 1

It follows that R̃a1 is not TL-transitive and so it is not T -transitive for any Frank
t-norm T (see [10]):

0.46 = R̃a1(ω3, ω4) < TL(R̃a1(ω3, ω1), R̃a1(ω1, ω4))

= max{0.91 + 0.61− 1, 0} = 0.52.

{a2 = 1} {a2 = 2} {a2 = 3}
ω1 0.3 0.3 0.4
ω2 0.3 0.3 0.4
ω3 0.4 0.3 0.3
ω4 0.4 0.3 0.3

R̃a2 ω1 ω2 ω3 ω4

ω1 1 1 0.87 0.87
ω2 1 1 0.87 0.87
ω3 1 1 1 1
ω4 1 1 1 1
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On the other hand, we get that R̃a2 is TM -transitive and so it is T -transitive for
any t-norm T . �

Analogously, we can define the fuzzy dominant set generated by λ as

µ
[̃ωi]
≤
λ

(·) = R̃λ(ωi, ·). (3)

The previous discussion allows us to fuzzify the rank discrimination measures
H∗S and H∗G introduced in [12] (see also [8, 9]). To this purpose:

– we fix the Łukasiewicz De Morgan triple (TL, SL, 1 − x) for uniformity, to
compute fuzzy set-theoretic operations;

– we use the sigma-count to compute fuzzy cardinalities.

Definition 3. Given aj and λ we define

Fuzzy rank Shannon discrimination measure:

H̃∗S(λ|aj) =
|Ω|∑
i=1

1

|Ω|

− log2

 |̃[ωi]≤λ ∩L [̃ωi]
≤
aj |

˜|[ωi]≤aj |

 ,
Fuzzy rank Gini discrimination measure:

H̃∗G(λ|aj) =
|Ω|∑
i=1

1

|Ω|

1−
 |[̃ωi]≤λ ∩L [̃ωi]

≤
aj |

˜|[ωi]≤aj |

 .
The following example shows the computation of measures H̃∗S and H̃∗G.

Example 3. Let A = {a1} with X1 = {1, 2, 3} and C = {1, 2} with the usual
order of numbers and consider the following evaluations

{a1 = 1} {a1 = 2} {a1 = 3} {λ = 1} {λ = 2}
ω1 0.7 0.3 0 0.5 0.5
ω2 0.5 0.1 0.4 0.2 0.8
ω3 0.8 0.1 0.1 0.1 0.9
ω4 0.6 0.3 0.1 1 0

R̃a1 ω1 ω2 ω3 ω4

ω1 1 1 0.93 1
ω2 0.68 1 0.67 0.79
ω3 1 1 1 1
ω4 0.87 1 0.82 1

R̃λ ω1 ω2 ω3 ω4

ω1 1 1 1 0.5
ω2 0.7 1 1 0.2
ω3 0.6 0.9 1 0.1
ω4 1 1 1 1

Both R̃a1 and R̃λ are TL-transitive and it holds that

H̃∗S(λ|a1) = 0.3582 H̃∗G(λ|a1) = 0.2060.

�
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3 Enforcing monotonicity in decision tree construction

In order to evaluate the introduced fuzzy rank discrimination measures, we pro-
pose the following algorithm for building a fuzzy decision tree, in which mono-
tonicity between attributes and class labels is enforced in a greedy way. The
algorithm is parameterized by the choice of H̃∗ ∈ {H̃∗S , H̃∗G}. Since we deal with
a recursive algorithm, we keep notation simple by referring to Ω and A as those
available at the current stage of recursion.

Starting from the original Ω and A, that are assumed not to be empty, the
algorithm proceeds recursively, until a leaf is created with a label in C. If we are
in a stage of the recursion with set of objects Ω and set of attributes A, we first
check if a leaf can be created. The creation of a leaf is justified when a sufficient
degree of uniformity on the class label is observed in the current Ω. To choose
the label in C, we compute the local threshold for class labels

αC = max
cq∈C

∑
ω∈Ω

1

|Ω|
µ{λ=cq}(ω), (4)

which corresponds to the highest average membership value to a class label, of
objects in the current Ω.

Next, for each cq ∈ C, we compute the percentage of objects in Ω whose
membership is greater than or equal to αC as

f cq =
|{ω ∈ Ω : µ{λ=cq}(ω) ≥ αC}|

|Ω|
. (5)

We avoid over-fitting by creating a leaf in case there is at least one class label cq
such that f cq ≥ ρ, where ρ is a fixed hyper-parameter chosen from the beginning
of the procedure. We choose the class label cq with maximum percentage f cq .
Possible ties are broken by choosing the greatest class label, according to the
total order of C. If no leaf is created in the current stage, then we need to split
the current Ω by choosing an element of the current A. For that, we proceed by
computing H̃∗(λ|a), for all a ∈ A, and by solving

a∗ = argmin
a∈A

H̃∗(λ|a), (6)

where ties are broken choosing randomly. Once the splitting attribute a∗ has
been chosen, a branch is created for every element of the corresponding set of
labels X∗. Moreover, the following splitting threshold is computed

αa
∗
= max
x∈X∗

∑
ω∈Ω

1

|Ω|
µ{a∗=x}(ω), (7)

which, again, corresponds to the highest average membership value to an at-
tribute label, of objects in the current Ω.

Next, for every x ∈ X∗, we form the set

Ωx = {ω ∈ Ω : µ{a∗=x}(ω) ≥ αa
∗
}, (8)
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and repeat the procedure recursively on Ωx and A\{a∗}. We point out that for
different x, x′ ∈ X∗ it may happen Ωx ∩Ωx′ 6= ∅.

We notice that the overlapping of splitting sets can affect labeling when
|A| = 1 and the creation of a leaf at current stage is not optimal. Indeed, in
this case the only choice for the splitting attribute is the unique element a∗
of A, so, the computation of (6) can be skipped. Therefore, a leaf is directly
created for each value of X∗ and labeling is carried out, again maximizing the
f cq ’s. Nevertheless, this could lead to some non-monotonicities due to objects
appearing in more than one splitting set. Hence, once the labeling of leaves is
over, a possible relabeling is applied to enforce monotonicity in the generated
leaves, by changing those leaves with lower value of f cq first. If the generated
sub-tree has leaves with all equal labels, then it is replaced by a single leaf with
the same label.

Algorithm 1 reports the pseudo-code of the procedure described above.

Algorithm 1 Construction of a fuzzy decision tree enforcing monotonicity
. input: A, λ,Ω, data set
. input: ρ, over-fitting hyper-parameter
. output: T , tree of fuzzy labels

Compute the threshold αC as in (4)
Compute fcq as in (5), for all cq ∈ C
if there is cq ∈ C such that fcq ≥ ρ then

Create a leaf in T choosing cq ∈ C with maximum fcq , possibly breaking ties
else if |A| = 1 then

for x in X∗ do
Create a leaf in T for the branch x
Compute Ωx as in (8)
Choose cq ∈ C with maximum fcq in Ωx, possibly breaking ties

end for
if there are non-monotone leaves then relabel those with lower fcq first
if all leaves have the same label then replace the sub-tree with a single leaf

else
Determine the splitting attribute a∗ as in (6), possibly breaking ties
for x in X∗ do

Compute Ωx as in (8)
Call Algorithm 1 on A \ {a∗}, λ,Ωx, and ρ

end for
end if

We test Algorithm 1 by considering an artificial data set described by at-
tributes in the set A = {a1, a2, a3} and a labeling function λ. We assume that
the aj ’s and λ range in the interval [0, 10] and each is fuzzyfied using the set
of ordered labels Xj = C = {low, medium, high} that correspond to the fuzzy
partition (in Ruspini’s sense) reported in Figure 1.
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Fig. 1. Fuzzy partition {low, medium, high}.

We derive the description of n = 1000 objects by generating three indepen-
dent random variables Aj ∼ Unif([0, 10]) and setting Λ = max

{
A1,

A2
2

10 ,
A3

3

100

}
,

so as to range in [0, 10] as well. Next, the realizations of each Aj and Λ are
fuzzyfied according to the fuzzy partition reported in Figure 1, so each object
ωi ∈ Ω gives rise to a collection of probability distributions on the label set
Xj = C. Table 1 shows the fuzzy partitions (2 decimal rounding) of Ω for the
first 3 objects. We further fix the over-fitting parameter to ρ = 70%.

a1 a2 a3 λ

Ω low medium high low medium high low medium high low medium high
ω1 0 0.82 0.18 0.65 0.35 0 1 0 0 0 0.82 0.18
ω2 1 0 0 0 0 1 0 0 1 0 0.69 0.31
ω3 0 0.97 0.03 0 0.35 0.65 0 1 0 0 0.97 0.03
...

...
...

...
...

Table 1. Fuzzy partitions for the first three objects.

Below, we show the explicit execution of Algorithm 1 on the generated data
set. To keep track of the evolution in the recursion, we add a subscript index
staring at 0 to all quantities, related to the current level in the tree.

Therefore, we initially set Ω0 := Ω and A0 := A, where |Ω0| = 1000. The
terminal condition is not met since flow0 = 0.1600, fmedium0 = 0.4660, fhigh0 =
0.4310. Moreover, being |A0| > 1, since H∗S(λ|a1) = 0.2475, H∗S(λ|a2) = 0.4547,
H∗S(λ|a3) = 0.6274, and H∗G(λ|a1) = 0.1427, H∗G(λ|a2) = 0.2419, H∗G(λ|a3) =
0.3131, both measures agree in selecting a1 for splitting. Now, the set of objects
Ω0 is split in three subsets corresponding to labels in X1. The sets Ωlow

1 , Ωmedium
1

and Ωhigh
1 are not disjoint since |Ωlow

1 ∩Ωmedium
1 | = 42, |Ωlow

1 ∩Ω
high
1 | = 0, |Ωmedium

1 ∩
Ωhigh

1 | = 42.
We focus on Ωlow

1 with Alow
1 := {a2, a3}, where |Ωlow

1 | = 322. The terminal
condition is not met since flow1 = 0.4814, fmedium1 = 0.4006, fhigh1 = 0.1615.



10 C. Marsala and D. Petturiti

Moreover, being |Alow
1 | > 1, since H∗S(λ|a2) = 0.3001, H∗S(λ|a3) = 0.7780, and

H∗G(λ|a2) = 0.1691, H∗G(λ|a3) = 0.3194, both measures agree in selecting a2 for
splitting. Now, the set of objects Ωlow

1 is split in three subsets corresponding to
labels in X2. The sets Ωlow,low

2 , Ωlow,medium
2 and Ω

low,high
2 are not disjoint since

|Ωlow,low
2 ∩Ωlow,medium

2 | = 10, |Ωlow,low
2 ∩Ωlow,high

2 | = 0, |Ωlow,medium
2 ∩Ωlow,high

2 | = 12.
We focus on Ωmedium

1 with Amedium
1 := {a2, a3}, where |Ωmedium

1 | = 440. The
terminal condition is not met since flow1 = 0, fmedium1 = 0.5955, fhigh1 = 0.1227.
Moreover, being |Amedium

1 | > 1, since H∗S(λ|a2) = 0.2505, H∗S(λ|a3) = 0.4605, and
H∗G(λ|a2) = 0.1432, H∗G(λ|a3) = 0.2092, both measures agree in selecting a2 for
splitting. Now, the set of objects Ωmedium

1 is split in three subsets corresponding to
labels inX2. The sets Ω

medium,low
2 , Ωmedium,medium

2 and Ωmedium,high
2 are not disjoint as

|Ωmedium,low
2 ∩Ωmedium,medium

2 | = 14, |Ωmedium,low
2 ∩Ωmedium,high

2 | = 0, |Ωmedium,medium
2 ∩

Ω
medium,high
2 | = 18.
We focus on Ωhigh

1 with Ahigh
1 := {a2, a3}, where |Ωhigh

1 | = 322. The terminal
condition is met since flow1 = 0, fmedium1 = 0, fhigh1 = 0.7546. Thus, since fhigh1 ≥
ρ, a leaf with label λ = high is created.

We focus on Ωlow,low
2 with Alow,low

2 := {a3}, where |Ωlow,low
2 | = 93. The ter-

minal condition is met since flow2 = 0.7097, fmedium2 = 0, fhigh2 = 0. Thus, since
flow2 ≥ ρ, a leaf with label λ = low is created.

We focus on Ωlow,medium
2 with Alow,medium

2 := {a3}, where |Ωlow,medium
2 | = 140.

The terminal condition is not met since flow2 = 0.5071, fmedium2 = 0.4285, fhigh2 =
0. The splitting is made on a3 and the sets Ωlow,medium,low

3 , Ωlow,medium,medium
3 ,

Ω
low,medium,high
3 give rise to three leaves labelled, respectively, as λ = medium,

λ = low, λ = medium. Thus, we relabel leaves by setting, respectively, λ = low,
λ = low, λ = medium: the first label is indeed that with lower value of f cq .

We focus on Ωlow,high
2 withAlow,high

2 := {a3}, where |Ωlow,high
2 | = 111. The ter-

minal condition is not met since flow2 = 0, fmedium2 = 0.5405, fhigh2 = 0.4595. The
splitting is made on a3 and the setsΩlow,high,low

3 ,Ωlow,high,medium
3 ,Ωlow,high,high

3 give
rise to three leaves labelled, respectively, as λ = high, λ = medium, λ = medium.
Thus, we relabel leaves by setting, respectively, λ = medium, λ = medium,
λ = medium: the first label is indeed that with lower value of f cq . Therefore,
we replace the built sub-tree with a single leaf labelled as λ = medium.

We focus on Ωmedium,low
2 with Amedium,low

2 := {a3}, where |Ωmedium,low
2 | = 138.

The terminal condition is not met since flow2 = 0, fmedium2 = 0.6087, fhigh2 =
0. The splitting is made on a3 and the sets Ωmedium,low,low

3 , Ωmedium,low,medium
3 ,

Ωmedium,low,high
3 give rise to three leaves all labeled as λ = medium. Therefore,

we replace the built sub-tree with a single leaf labelled as λ = medium.
We focus on Ωmedium,medium

2 with Amedium,medium
2 := {a3}, where |Ωmedium,medium

2 | =
186. The terminal condition is not met since flow2 = 0, fmedium2 = 0.6290, fhigh2 =
0. The splitting is made on a3 and the sets Ωmedium,medium,low

3 , Ωmedium,medium,medium
3 ,

Ωmedium,medium,high
3 give rise to three leaves all labeled as λ = medium. Therefore,

we replace the built sub-tree with a single leaf labelled as λ = medium.
We focus on Ωmedium,high

2 with Amedium,high
2 := {a3}, where |Ωmedium,high

2 | = 148.
The terminal condition is not met since flow2 = 0, fmedium2 = 0.4595, fhigh2 =
0.4865. The splitting is made on a3 and the sets Ωmedium,high,low

3 , Ωmedium,high,medium
3 ,
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Ωmedium,high,high
3 give rise to three leaves labeled, respectively, as λ = medium,

λ = high, λ = high.
Figure 2 shows the monotone fuzzy decision tree T obtained by applying

Algorithm 1, where low, medium, and high, are abbreviated as l, m, and h,
respectively. A direct inspection shows that the λ′ encoded in T satisfies (1).

Fig. 2. Monotone fuzzy decision tree.

4 Conclusion

In this paper we consider the problem of building a fuzzy decision tree by en-
forcing monotonicity of the class label with respect to attributes labels, both
assumed to range in totally ordered sets of labels. We propose two fuzzy versions
of rank discrimination measures that generalize those proposed in [12], together
with an associated construction algorithm. Due to space limitations we provided
an experimental analysis on an artificial data set. A first line of future research
consists in developing a hierarchical construction model of a general fuzzy rank
discrimination measure in analogy with [12], and a systematic analysis of their
analytical properties. Finally, we also plan to perform a deeper experimental
analysis on real data: at this aim we point out the necessity of a suitable fuzzy
non-monotonicity index, obtained, for instance, generalizing that in [16].
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