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Abstract

This paper focuses on the numerical implementation of phase-field models of

fracture using the Fast Fourier Transform (FFT) based numerical method. Recent

studies on phase-field models focuses on the discussions of the choice of the value

of regularization length, which was proposed to smear the discontinuity of the

sharp crack. Some studies believe that should be considered as a material property

because it have a significant impact on the mechanical behavior of a material in

some phase-field models, for instance, the model proposed by Miehe. However,

our results in this study for heterogeneous materials have shown that the choice of

regularization length not only affects the macroscopic mechanical behavior but also

the local crack propagation patterns. As a result, it can be challenging to select

an appropriate value that produces both accurate macroscopic responses and local

crack patterns for certain phase-field models, such as Miehe’s model. Thus, the
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phase-field model proposed by Wu, which has been proven to reduce the length

sensitivity for homogeneneous material, has been successfully implemented in an

FFT-based solver with the application of Newton-Krylov algorithm.

The length sensitivity of Wu’s phase-field model for heterogeneous materials is also

addressed in this paper. Our tests show that Wu’s phase-field model has partial

length sensitivity for heterogeneous materials. However, the main reason for this

sensitivity is that one phase enters the damage zone of another phase, which is

different from Miehe’s model. As a result, a set of criteria for safely choosing the

regularization value has been established for Wu’s model in this work. Meanwhile,

it has also been found that Wu’s model may be more suitable for brittle failure due

to the introduction of an elastic stage compared to Miehe’s model.

Keywords: Phase-field, Damage modeling, Fast Fourier Transform (FFT), Hetero-

geneous material

1 Introduction

A well-known problem with Continuum Damage Mechanics (CDM) models, which are

frequently used to simulate the initiation and propagation of cracks, is their dependency

on the mesh size. This is because the energy dissipated can vary depending on the size of

the element [1]. To address this issue, many methods have been proposed. One technique

that has gained popularity due to its mesh independence is the phase-field model [2–4],

which is the main focus of this work.

It utilizes a damage variable (d) to describe the failure state, where sharp cracks are

regularized as diffusive crack bands by a function of d [5, 6] (as illustrated in Fig. 1(a)(b)).

The damage variable d is a continuous parameter that varies in the range [0, 1] and

describes the degradation state of the material. A value of 0 represents an intact state

and a value of 1 represents a fully degraded state. On the one hand, the evolution

of the phase-field variable itself completely describes the initiation and propagation of

cracks in the material. On the other hand, phase-field models are closely related to the

variational approach to brittle fracture [7], which enables a simultaneous approximation
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of the displacement field and the cracks by minimizing the total potential energy of the

solid.

Figure 1: A solid body Ω with the crack set Γ: (a) conventional sharp cracks and (b)

diffuse crack bands in phase-field.

While the phase-field approach is generally considered to be mesh-independent, there is a

condition on element size that must be met. Ref. [2] proved that the regularization length

of the phase-field model must be at least twice the element size of the fractured zone. In

this context, conventional finite element method (FEM) solvers can be cumbersome for

3D simulations and may require efficient parallel implementation [8] and/or automatic

mesh adaption [9] to extend computational limits. This will be even more important

when dealing with heterogeneous materials with complex microstructure cases. Thus, the

Fast Fourier Transform (FFT)-based method has gained popularity due to its intrinsic

parallelization capabilities. It was initially proposed by Moulinec and Suquet [10, 11]

as a voxel-based methodology that does not need stiffness matrix assembling, unlike

conventional FEM solvers.

In the FFT-based method, the local strain tensor is calculated by a convolution product

with a fourth-rank Continuous Green Operator (CGO) and a polarization term. This

convolution product is transformed into a simple multiplication in Fourier space. The

multiplication of the polarization term and the CGO are local operations that can be

easily parallelized [12]. Even if the FFT operation itself is not local, efficient parallel

implementations such as FFTW [13] are available. As a result, large-scale simulations

based on full-resolution images can be performed using the FFT-based method. Since

its introduction, FFT-based method has been improved and used to study a wide range
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of physical phenomena in heterogeneous materials [14, 15]. Its high performance and

comparisons with FEMs have been clearly demonstrated in Refs. [16–18].

As aforementioned, phase-field models require a minimum ratio between the minimum

regularization length and mesh size to ensure mesh independence. Therefore, for complex

microstructures, using phase-field methods necessitates a sufficiently refined mesh for

better predictions. On the other hand, FFT is more conducive to massive parallelization.

As a result, combining phase-field models with the FFT method for fracture problems

can be advantageous. Some pioneering work in this area can be found in Refs. [19–22].

The present work also implements phase-field models in an FFT-based environment.

The phase-field model has two important parameters: the critical energy release rate

(Gc) and the regularization length (lc). Gc is widely recognized as a material damage

property, while lc describes the bandwidth of the diffusive crack, as shown in Fig. 1(b).

The smaller lc is, the narrower the crack band becomes (Fig. 2). If lc = 0, a sharp

crack is fully recovered. Recently, there have been discussions in the literature about

these parameters. In our latest study, we discovered that omitting certain terms in the

phase-field evolution equation when dealing with heterogeneous materials can result in

an abnormal damage diffusion between the different material components. Details can

be found in Ref. [22], which will not be discussed in this work.

Figure 2: Illustration of diffusive damage profile of a crack at x = 0 for various length

parameters lc.
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Meanwhile, there have been discussions about the selection of the lc value. The primary

focus of these discussions is the relationship between lc and the predicted mechanical

behavior of the material. Initially, lc was intended to be used as a numerical parameter

to describe the degree of crack diffusion (crack band-width). However, some studies

[23, 24] have found that it can significantly affect the simulated mechanical behavior

of materials in certain phase-field models, such as Miehe’s phase-field model [2]. As a

result, this parameter is now commonly treated as a material parameter [25, 26]. In the

literature, there are two main approaches to determining lc values. One approach involves

an analytical calculation of a 1D bar problem with a homogeneous crack phase-field [23],

while the other involves an inverse analysis of experimental results [27].

Although these techniques can produce satisfactory results in some cases, they can also

complicate the calculation. Additionally, Mandal et al. [28] have demonstrated that

these lc estimates can sometimes be too large compared to the model size, resulting in

some unusual phenomena. Our recent research [22] has shown that the impact of lc on

mechanical response is more significant for heterogeneous materials. Furthermore, our

results in this study for composite materials have shown that the choice of regularization

length not only affects the macroscopic mechanical behavior but also the local crack

propagation patterns. As a result, it can be challenging to select an appropriate lc that

produces both accurate macroscopic responses and local crack patterns for certain phase-

field models, such as Miehe’s model. One of the solutions is to decouple the connection

between lc and mechanical behavior and ensure that lc only fulfills its original role of

describing the degree of crack diffusion. This is one of the main attractions of Wu’s

phase-field model [29], which introduces traction-separation laws from the cohesive zone

model into the phase-field thoery to make lc independent of mechanical response.

Mandal et al. [28] found that Wu’s phase-field method demonstrates lc insensitivity

when applied to homogeneous materials. As such, the main goal of this paper is to

incorporate Wu’s phase-field into the FFT solver and investigate its sensitivity when

applied to heterogeneous materials such as composites. A short reminder of Miehe’s and

Wu’s phase-field method will be presented in Sec. 2. The implementation of Wu’s phase-

field into the FFT solver is presented in Sec. 3. Its results and comparison with Miehe’s
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phase-field are shown in Sec. 4, and the final conclusions will be in Sec. 5.

2 Review of Miehe’s and Wu’s phase-field models

2.1 Regularization of sharp cracks

The starting point of the phase-field method is to smear the sharp crack using a diffusive

crack band. The smear function can vary for different phase-field models. Those used in

Miehe’s (Eq. (1)(a)) and Wu’s models (Eq. (1)(b)) are described below:

dM = exp

(
−|x|
lc

)
, (1a)

dW = 1− sin

(
|x|
lc

)
(1b)

The damage profiles of both models are clearly depicted in Fig. 3. From the figure, it

is evident that Wu’s phase-field has a narrower diffusion band-width that disappears at

x = πlc
2
, while for Miehe’s model this value is equal to ∞.

Figure 3: The damage profile of different diffusive crack functions [30].

With Eq. (1), it is straightforward to calculate the diffusive crack surface (B) and its

density (γ), where their generic forms can be expressed as follows,

B =

∫ +∞

−∞
γdV, (2a)

γ =
1

c0

[
α (d) + lc (∇d)2

]
, (2b)

α (d) = ξd+ (1− ξ)d2, (2c)
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where ξ and c0 are parameters that vary depending on the specific phase-field model

being used. For Miehe’s and Wu’s models, their values and expressions can be found in

Table 1.

Model name ξ α (d) c0 d (x)

Miehe [2, 3] 0 d2 2 exp
(
− |x|

lc

)
Wu [4, 29] 2 2d− d2 π 1− sin

(
|x|
lc

)
Table 1: The parameters of different phase-field models.

2.2 Variational approach

The diffusive crack surface (Eq. (2)) can then be incorporated into the variational ap-

proach to brittle fracture, which is based on Griffith’s energy principle [31] for a cracked

body. In this energetic approach, the damage evolution and crack propagation are a

competition between the bulk energy stored in the body and the energy dissipation from

the opening of the crack surface. From this point of view, in quasi-static loading, the

total energy Π can be expressed as:

Π := Φs + Φd − P, (3)

where Φs represents the strain energy stored in the cracked body, Φd represents the energy

dissipated by opening the crack surface, and P represents the external loading.

In the phase-field method, the dissipated energy Φd can be approximated as the energy

required to open the diffusive crack band, as described in Eq. (2). As a result, Φd

can be converted from a surface integral to a volume integral. Meanwhile, an energetic

degradation function, denoted as g(d), is used to compute the value Φs. We consider a

domain Ω ⊂ Rn (n = 1, 2, 3) that contains a crack set Γ with Γ ⊂ Rn−1 and is subject

to volumetric loading by a body force f ∗, a displacement u∗ on the boundary ∂Ωu, and

a surface force t∗ on the complementary boundary ∂Ωt. The symbol ()∗ indicates a
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prescribed term. In summary, a detailed formulation of the components in Eq. 3 is

provided below:

Φs =

∫
Ω

φ (ε,Γ) dV =

∫
Ω

g (d)φ0 (ε (u)) dV, (4a)

Φd =

∫
Γ

GcdS ≈
∫
B

Gcγ (d,∇d) dV, (4b)

P =

∫
Ω

f ∗ · udV +

∫
∂Ωt

t∗ · udS +

∫
∂Ωu

(σ · n) · u∗dS. (4c)

In Eq. (4)(a), φ denotes the elastic strain energy density stored in the cracked body,

while ε and φ0 represent the strain tensor and initial strain energy, respectively. In

Eq. (4)(b), Gc stands for the critical energy release rate. Typically, the diffused crack

domain B is much smaller than the considered domain Ω with B ⊂ Ω. In Eq. (4)(c), the

symbols σ and n correspond to the Cauchy-stress tensor and the normal vector outside

the boundary, respectively. Additionally, the symbols
∫
dV and

∫
dS represent volume

and surface integration, respectively.

The strain and phase-fields (ε, d) can then be determined by minimizing the total energy

under the constraint of irreversibility, which is stated as ḋ ≥ 0, and under the boundary

conditions: u(x) = u∗ at ∂Ωu, and σ ·n = t∗ at ∂Ωt with n the outward unit normal vector

to the external boundary ∂Ω (∂Ω = ∂Ωu

⋃
∂Ωt). Eq.(3) can be written in a variational

form:

δΠ(u, d) =

∫
Ω

σδεdV +

∫
B

∂φ

∂d
δddV +

∫
B

Gc

(
∂γ

∂d
δd+

∂γ

∂∇d
δ∇d

)
dV −

∫
∂Ωt

t∗ ·δudS, (5)

where σ = ∂φ
∂ε

denotes the Cauchy stress, and δu = 0 for ∀x ∈ ∂Ωu. Eq. (5) can generally

be split into two components: δΠ(u, d)P1 and δΠ(u, d)P2, which represent the mechanical

and phase-field parts, respectively. This enables a separate solution for the mechanical

and damage fields, and a coupling scheme would then be employed to link these two

fields. Further details about the algorithms will be provided in Sec. 3. This section work

only focuses the phase-field part δΠ(u, d)P2, which can be expressed as:

δΠ(u, d)P2 =

∫
B

g′ (d)φ0δddV +

∫
B

Gc

c0lc
α′ (d) δddV +

∫
B

2Gclc
c0

∇d∇δddV, (6)
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where −′ means the first derivative. Eq. (6) allows us to easily derive the governing

function for the damage field in phase-field models, and its expression is given in Eq. (7).

Further details can be found in [32].

g′ (d)H +
Gc

c0lc
α′ (d)−∇ ·

(
2Gclc
c0

∇d

)
= 0, (7)

Eq. (7) represents the generic form of the governing equation for the phase-field. The

regularization parameters, α and c0, are already known for each phase-field model and

are shown in Table. 1. Therefore, the next step is to determine H and g(d) for each

phase-field.

2.3 Energetic degradation functions

The energetic degradation function, g (d), varies for different phase-field models. For

Miehe’s phase-field model, a quadratic energetic degradation function is used, as shown

in Eq. (8)(a). In contrast, Wu’s model with a linear softening law, which is used in this

work, employs a more complex degradation function as described in Eq. (8)(b).

g(d)M = (1− d)2, (8a)

g(d)W =
(1− d)2

(1− d)2 + a1d(1− 1
2
d)
, a1 =

EGc

σ2
c

· 4

πlc
, (8b)

where E stands for the Young’s modulus of the material in the case of isotropic material,

while σc represents the material’s strength. In contrast to the gradation function used in

Miehe’s model, the formula for a1 in Eq. (8)(b) includes σc. As a result, Wu’s model has

an elastic stage.

2.4 History variables

Damage models should reflect the physical properties of materials. A fully damaged

material cannot be further damaged and the damage state cannot be reversed. As a

result, the boundedness d ∈ [0, 1] and irreversibility condition ḋ ≥ 0 must be carefully

considered. To ensure the irreversibility condition, the history field H is introduced into

Eq. (7). This field represents the maximum initial strain energy from [0, tn], where tn

is the current time. The two history fields for both Miehe’s (subscript M) and Wu’s
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(subscript W ) models are defined as follows:

HM (x, tn) := max0≤t≤tn

[
φ+
0 (x, t)

]
, (9a)

HW (x, tn) := max0≤t≤tn

[
φ+
0 (x, t) ,

1

2

σ2
c

E

]
, (9b)

where φ+
0 (x, t) represents the initial tensile strain energy at time t, as the compressive

part does not contribute to damage in phase-field models. The φ+
0 (x, t) of Wu’s model

is calculated as:

φ+
0 =

1

2

(⟨σ̄1⟩+)2

E
, (10)

where σ̄1 represents the major principal value of the effective stress σ̄, which is determined

by the elastic relation σ̄ = C : ε. Here, C refers to the material stiffness tensor without

damage. The split operation, denoted by ⟨−⟩+, is defined as ⟨x⟩+ = {x, 0}. Since Miehe’s

model is not the main focus of this work, details about the initial strain energy and split

formula can be found in Refs. [3, 19, 22], but will not be presented here.

As shown in Refs. [28, 30, 32], the damage value in Miehe’s model inherently satisfies the

boundedness d ∈ [0, 1]. However, this is not the case for Wu’s model due to its elastic

stage. As a result, an additional condition, the Rankine energy (1
2
σ2
c

E
), must be included

in the history field H for Wu’s model to ensure that d = 0 during the elastic stage.

2.5 Phase-field governing equations

According to Eqs. (7) to (10), the governing equations for Miehe’s and Wu’s model are

written as

−2 (1− d)HM +
Gc

lc
d−∇ · (Gclc∇d) = 0, (11a)

− 4a1 (1− d)

(2a1d− 4d− a1d2 + 2d2 + 2)2
HW +

2

π

Gc

lc
(1− d)−∇ ·

(
2Gclc
π

∇d

)
= 0, (11b)

where Eq. (11)(a) is specific to Miehe’s model while Eq. (11)(b) applies to Wu’s model.
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3 Implementation of Wu’s phase-field model into an

FFT-based solver

In our previous work [18, 22], for Miehe’s model, the derivative operations can be easily

converted into simple multiplications. As a result, Eq. (11)(a) is a linear function that

can be solved using a fixed-point algorithm. However, Wu’s model introduces a new

degradation function that introduces non-linearity. This creates a significant challenge

when attempting to solve Wu’s model using a fixed-point algorithm, as demonstrated in

[32].

3.1 An algorithm based on the Newton-Krylov method

Therefore, Newton-Raphson method, one of the most traditional method for solving

nonlinear equations, is applied in the present work. This approach is based on the

iteration:

di+1 = di − R(d)

R′(d)
, (12)

where the residual function R(d) is

R(d) = g′(d)H +
2

π

Gc

lc
(1− d)−∇ · (2Gclc

π
∇d), (13)

and its derivative

R′(d) =
∂R(d)

∂d
. (14)

Note that H in Eq. (13) is equal to HW in Eq. (9)(b). Eq. 12 can be re-written as:

R′(d)δd = −R(d) (15)

with δd = di+1 − di. Because most terms in R(d) are linear, we only should compute

g′′(d), where −′′ represents the second derivative. We get
g′′(d) =

a1

(
−3(1−d)2+a1(1.5d2−3d+2)

)
[
(1−d)2+a1d(1−0.5d)

]3
R′(d)δd = g′′(d)HW δd− 2

π
Gc

lc
δd−∇ ·

(
2Gclc
π

· ∇δd
)
.

(16)
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This linear problem is solved using a Conjugate Gradient (CG) solver, which does not

require to introduce a reference material or a polarization term. The non-local term is

directly computed using

∇ ·
(
2Gclc
π

∇d

)
= F−1

(
J · k · F

(
Q′(x) · F−1(J · k · d̂(x))

))
, (17)

where J =
√
−1, d̂ is expression of d in Fourier space, k is the frequency vector, F () and

F−1() denotes the Fast Fourier transform (FFT) and its inverse.

The FFT and its inverse only need to be computed for the calculation of this non-local

term. Ma et al. [18] have shown that Willot’s rotated scheme, proposed in Ref. [33],

produces fewer numerical artifacts than Moulinec and Suquet’s original collocation scheme

proposed in [34]. However, we were unable to implement Willot’s rotated scheme for the

phase-field solver in this work. To avoid using different schemes for the mechanical and

phase-field parts, we used Moulinec and Suquet’s original collocation scheme for both

solvers. This could be an interesting area for future research.

Regarding the CG solver, we need to introduce LP (d) and RP (δd) as follows:LP (δd) = − 2
π
Gc

lc
δd+ g′′(d)Hδd−∇ · (2Gclc

π
· ∇δd),

RP (d) = −g′(d)H− 2
π
Gc

lc
(1− d) +∇ · (2Gclc

π
∇d),

(18)

where LP (d) in Eq. (18) represents the left-hand side (LHS) of Eq. (15), while RP (δd) is

the right-hand side (RHS) of that equation. The pseudo-code of the CG solver for Wu’s

phase-field is presented in Appendix 1. It is a standard CG solver except for operation

f1 which is a special treatment to remove the accumulation of floating point error. The

convergence criterion of the CG solver (tol) is set as 1.00 · 10−6.

The output of the CG solver is δd, so the new damage field is calculated as dnew = dold+δd,

and convergence is checked for this new field, and the tolerance of this Newton algorithm

is also set to 1.00 · 10−6. Unlike the conventional convergence criteria used in Refs. [19,

22], our implementation uses the residual RP (d) of the phase-field evolution equation as

the convergence criterion for Newton algorithm. This is because RP (d) is derived from

the phase-field governing equation, so every value of d is checked against this equation.

The algorithm is summarized in pseudo-code in Eq. (19).
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Initialization, if tn = 0 :

(a0) dtn=0(x) = 0

If tn ̸= 0 :

(a1) dtn is known

Time tn + 1 : first input dtn+1
i=0 = dtn

While convergence criterion is not met:

(a2) Call CG solver, with input dtn+1
i=0

(b2) dtn+1
i+1 = dtn+1

i + δd

(c2) Re-calculate RP (dtn+1
i+1 , x)

(d2) if ||RP ||2 < than tolerance (1.00 · 10−6), convergence is met,

(19)

where || − ||2 represents the L2 norm. The next step is to input this new dtn+1
i+1 into the

mechanical part (δΠ(u, d)P1). Then the new mechanical fields (tn+1) can be calculated.

In order to simplify the calculation, this implementation adopts a hybrid formulation

where the history variable used for damage evolution Eq. (9) is split, but there is no

tension/compression split in the mechanical part. The possibility of applying a hybrid

formulation has been confirmed in Ref. [30], and more details can be found in Ref. [32].

Thus, the equations for the mechanical part can be written as:
div(σ(u, d)) = 0,

σ = g(d)∂φ0

∂ε
,

ε = ∇u+∇Tu
2

.

(20)

3.2 The choice of coupling scheme

This workflow can be solved using the same weak coupling approach used for Miehe’s

model (Refs. [19, 22]), where the damage and strain fields are solved only once per

loading step. However, to obtain converged results, this approach requires the use of a

sufficiently fine loading step. In this work, to use larger loading steps, we opted for a
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stronger coupling and switched to an alternating minimization algorithm.

Figure 4: The flow chart of Wu’s phase-field method based on the Newton-Krylov al-

gorithm in FFT solver. (remark: CV is damage field convergence check. AltCV is

alternating minimization convergence check.)

The flow chart of the alternating minimization is shown in Fig. 4. As depicted in

this figure, the mechanical solve is performed first, followed by the phase-field solve,

which includes the details of the Newton-Krylov algorithm. Outside these two loops is

another loop called the alternating minimization loop, which ensures that all damage

and mechanical fields are updated in the current time increment. This loop is controlled

by the alternating minimization iteration number << alt >> and the convergence check

<< AltCV >>, which is based on the change of damage variable (d):

e = ||dalt − dalt−1||2, (21)

where || − ||2 represents the L2 norm over the model. Due to this convergence check, the

damage field computed by the phase-field solver can be used to update the degradation

function and return to the mechanical solver. The new strain field would then update

the history variable and enter the phase-field solver again. This process can be repeated

several times until convergence of the alternating minimization scheme is achieved, thus

ensuring a strong coupling between the strain field and the phase-field.
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The advantage of this algorithm is that we do not need a very refined loading step to get

accurate results. Based on our tests, δ⟨ε⟩ = 1.00 · 10−4 is acceptable, which is 200 times

larger than the value used with the weak coupling. Details will be discussed in Sec. 4.

3.3 Summary

Generally speaking, this new algorithm involves three nested loops to compute the strain

field and phase-field at each increment. The top loop is the alternating minimization,

in which we alternately solve the phase-field solver where the degradation function is

updated at each iteration and the mechanical solver where the history variable is updated

at each iteration. Due to its nonlinearity, the phase-field evolution equation is solved

using a Newton-Krylov loop, of which each iteration involves a linear system of equations

that is solved using a CG solver. The last loop is the CG solver itself, where at each

iteration, the FFT and its inverse are used to compute the non-local term with the

correct formulation for heterogeneous materials. Same as the fixed-point algorithm, most

operations of this algorithm are still in local that does not require a global assembly hence

can be easily parallelized. Considering that the efficiency of FFT has been largely proven

in the literature [16], the comparison of computational time between FFT and FEM will

not be presented in this work.

4 Numerical experiments and analysis

4.1 Introduction

The algorithm we propose is designed to solve general 3D problems. However, to reduce

computation time in our tests, we used models with only one voxel thickness in the third

dimension. Due to the periodic boundary conditions, the out-of-plane strain components

are constant in the third direction, which is equivalent to a generalized plane strain

condition.

In these analyses, the notch models are subjected to a macroscopic strain along the

y-direction with a loading steps of δ⟨ε⟩yy = 1.00 · 10−4 until final failure, where ⟨−⟩
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means the average operation over the whole domain. Stress-free conditions are imposed

in the other directions (⟨σ⟩xx = ⟨σ⟩zz = ⟨σ⟩xy = ⟨σ⟩xz = ⟨σ⟩yz = 0). These mixed-type

loading conditions are applied using the method presented in Ref. [35]. Due to stress-free

boundaries, Poisson’s effect is active during loading. For the two-fibers composite models,

the loading direction is changed to x with δ⟨ε⟩xx = 1.00 · 10−4 and ⟨σ⟩yy = 0, while the

other conditions remain unchanged.

4.2 A single-notch plate

4.2.1 Influence of the loading step

As shown in Ref. [19], the fixed-point algorithm used in Miehe’s model is highly sensitive

to the loading step size and requires a very small increment size. Based on our previous

work [22], δ⟨ε⟩ = 5.00 · 10−7 is a good value for Miehe’s model and is also used in this

work. For Wu’s model, thanks to alternating minimization, it is not as sensitive as the

fixed-point algorithm, but using too large an increment size can still lead to inaccurate

results. Therefore, the first numerical experiment is to find an acceptable increment using

a single notch plate model.

This example is a widely used benchmark test to verify phase-field models for brittle

fracture [19, 29, 36]. As shown in Fig. 5, it consists of a square plate with a length of

1mm. A straight horizontal notch of 0.5mm is located at the mid-height of the left edge

and has a width of one voxel size. Due to the intrinsic periodicity of the FFT solver,

lateral bands denoted as M2 (purple color) are added to prevent spurious effects from the

boundary conditions. Material M2 is also used for the notch. In order to minimize the

effect of the lateral bands, its dimension should be as small as possible. Based on our

tests, a dimension of 5 voxels is the minimum value to get convergence in the FFT solver

and break the periodicity.

In the single notch model tests, the following material parameters are used for M1:

Young’s modulus of E = 2.1 · 105 MPa, Poisson’s ratio of ν = 0.3, failure strength

of σc = 2.45 ·103 MPa, and critical energy release rate of Gc = 2.7 N/mm, which are from

Ref. [29]. These properties result in an internal length of lch = EGc

σ2
c

= 0.095 mm. Accord-
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Figure 5: An illustration of the geometry of single notch plate. Material 1 (M1) is in

yellow and Material 2 (M2) in purple.

ing to Ref. [30], a1 ≥ 3
2
is an exigence to ensure the convexity of degradation function of

Wu’s phase-field model. That means lc ≤ 0.08mm must be satisfied for this material. On

the other side, to ensure the non-locality property, Miehe’s criterion regarding the ratio

between lc and the voxel size h still needs to be verified for Wu’s model. The lc/h ratio is

set to be larger than 5 in some references [37] for Wu’s model rather than 2 for Miehe’s

model. But, our next exmaple will show that 2 is still acceptable for Wu’s model. Thus,

we have an interval for the choice of lc: 2h < lc ≤ 0.08mm.

Additionally, the choice of void-like properties (M2) is arbitrary. In this work, they are

set as follows: Ee
0 = 21MPa, νe = 0.3, σe

c = 24.45MPa, and Ge
c = 2.7N/mm, which result

in the same lch value as for M1.

In this work, three loading steps are used: δ⟨ε⟩ = 1.00 · 10−4, 5.00 · 10−5 and 2.00 · 10−5.

The model has a resolution of N = 251 with a voxel size of h = 4.00 · 10−3 mm and the

value of lc is set to lc = 0.02mm. The averaged stress-strain relations are shown in Figure

6. The figure shows that the averaged stress-strain curves are coincident even when the

loading step is decreased by a factor of five. Thus, a loading step of 1.00 · 10−4 can be

considered acceptable.

17



Figure 6: Averaged stress-strain relation curves (remark: the curve thickness of different

loading steps are different, which is for distinguishing the curves between each other).

4.2.2 Influence of the loading step for high contrast models

In our previous study [22], we discovered that the number of iterations when using an

FFT-based solver for Miehe’s phase-field evolution equation is sensitive to the contrast

in damage properties. As a result, it is crucial to examine the impact of the loading

step for Wu’s model under varying contrast ratios. The critical energy release rate (Gc)

of material M1 remain fixed while those of void-like material M2 vary from 2.7N/mm

to 2.7.103N/mm to represent different material contrast ratios. It is important to note

that these properties do not represent the actual physics and are only used for numerical

studies. Three contrast values are presented in Table 2.

Ge
c (N/mm) 2.70 27 2700

Contrast

Ge
c/Gc

1 10 1000

Table 2: The critical energy release rates for different contrast ratios.

The results of contrast 1 are shown in Figure 6. Figure 7 only shows the results of

contrasts 10 and 1000. This figure clearly shows that the loading step convergence is not

affected by different contrast ratios, which confirms the loading step used in this work:
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δ⟨ε⟩ = 1.00 · 10−4. During this study, the authors also observed that the computation

time for a high contrast model is significantly longer with same computational hardware.

Therefore, further quantitative examination of the number of interactions of Newton-

Krylov, CG, and alternating minimization schemes under varying contrasts in damage

properties remains an interesting point of study. However, this will be left for future

work.

Figure 7: Averaged stress-strain relation curves of (a) contrast 10, (b) contrast 1000.

(remark: the curve thickness of different loading steps are different, which is for distin-

guishing the curves between each other).

4.2.3 Analysis of the sensitivity to the regularization length

In this part, the material properties stays unchanged as in Sec. 4.1.1, and the contrast

ratio Ge
c/Gc = 1. Fig. 8 displays stress-strain curves for various lc values. The FEM

results, which lack lateral bands and notch material, are also shown as reference. The

resolution of FEM model is set to N = 1000. It’s important to note that the model and

solver differ between FFT and FEM, so their results cannot be compared directly. This

figure indicates that there is always sensitivity to lc for the single notch model. However,

there is a clear trend: as lc decreases, the results approach those of FEM, where the

lateral bands are absent. Meanwhile, it should be noted that the residual stress values

shown in Fig. 8 for the FFT-based solver may be primarily due to the presence of lateral

bands.
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Figure 8: Results of Wu’s phase-field model for single notch model with different lc values.

(Ge
c/Gc = 1.)

In this scenario, cracks always initiate at the notch location, which can also be viewed

as an interface between two phases. Due to the non-locality criteria, the lc value cannot

be smaller than twice the mesh size. This means that two materials always exist in

the damage region of M1, which may contribute to the lc sensitivity. From a physical

perspective, adding M2 material to the single notch model is similar to adding an adhesive

or glue layer that strengthens the model’s damage behavior. Reducing lc decreases the

area of M2 material considered and weakens this effect, bringing the results closer to

those of FEM.

Based on this, it can be inferred that for a given lc value, the smaller theGe
c of M2 material,

the closer the results are to FEM. When Ge
c = 0, a full void notch is obtained. However,

due to differences in models and solvers used by FFT and FEM, a direct comparison of

their results is not possible. Nonetheless, Fig. 7 can be used to illustrate this trend. By

selecting a loading step value of 1.00 · 10−4 and plotting three contrast results in Fig. 9,

a clear trend can be observed that validates our earlier hypothesis.

4.3 Two-fibers unit cell composite model

In the next step, a composite unit-cell model with two fibers is analyzed, as shown in

Figure 10. Because, cracks will initiate in the matrix if there is no debonding model. The

model size is 0.02mm (20µm) with a fiber volume fraction of Vf = 0.15 with one voxel size

in thickness. The resolution of the model is N = 225. The blue part represents the fiber,
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Figure 9: Stress-strain relation of single notch model with different contrasts.

which is made of E-glass with properties: Ef = 7.4 · 104MPa, νf = 0.2, Gf = 60N/mm

and σc
f = 3.40 ·103MPa. The red part represents the matrix, which is made of Epoxy with

properties: Em = 4.65 · 103MPa, νm = 0.35, Gm = 3.00 · 10−3N/mm and σc
m = 80MPa.

Additionally, the inter-fiber distance is much smaller than twice the distance from the

fiber-matrix interface to the border. Considering the periodic boundary conditions, the

strain concentration point should be at the center of the model.

Figure 10: Two-fibers unit-cell composite model. (blue part: fiber and red part: matrix.)
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4.3.1 Study with a fixed inter-fiber distance

In this study, the value of lc is varied to study its impact, and an inter-fiber distance (lf ) is

set to 2.75 ·10−3mm. The variation of lc values ranges from 1.6 ·10−3mm to 2.3 ·10−4mm.

Figure 11: Results of Miehe’s phase-field model for two-fibers unit-cell composite model

(lf = 2.75 · 10−3mm): (a) Averaged stress-strain curves; (b) Local crack patterns for

lc = 1.60 · 10−3mm; (c) Local crack patterns for lc = 8.00 · 10−4mm; (d) Local crack

patterns for lc = 5.00 · 10−4mm.(Remark: The orange dash circles are fiber contours.)

Fig. 11 shows the results of Miehe’s phase-field model with different lc values. As shown

in the Fig. 11(a), the results of the stress-strain relation confirm the conclusion in Refs.

[23, 24]. Increasing lc reduces the maximum stress and accelerates damage evolution.

This is why lc is linked to the mechanical response. Furthermore, the crack patterns in

Fig. 11(d) are in the center zone, while those in Figs. 11(b) and (c) are on the model

borders. Sakata et al. [38] have shown that stress/strain concentration can depend

on the inter-fiber distance (lf ). The smaller the inter-fiber distance, the higher the
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concentration. In this case, the inter-fiber distance of the periodic unit-cell implies that

strain concentration is not expected to be on the boundaries for crack initiation position.

Thus, the crack patterns in Figs. 11(c) and (d) may not be physical. However, as

mentioned earlier, lc is linked to the mechanical response and cannot be freely chosen.

Therefore, for Miehe’s model, it is difficult to choose an appropriate lc that produces both

proper macro-responses and local crack patterns.

Figure 12: Results of Wu’s phase-field model for two-fibers unit-cell composite model:

(a) Averaged stress-strain curves (lf = 2.75 · 10−3mm); (b) Local crack patterns for

lc = 8.00 · 10−4mm; (c) Local crack patterns for lc = 5.00 · 10−4mm; (d) Local crack

patterns for lc = 2.30·10−4mm. (remark: the curves for 8.00·10−4mm to lc = 2.30·10−4mm

are superimposed. The orange dash circles are fiber contours.)

In contrast, the results of Wu’s model in Fig. 12 show much less sensitivity to the lc

values. In some cases (lc ranges 8.00 · 10−4mm to 2.30 · 10−4mm), Wu’s model shows full

lc insensitivity. In Wu’s phase-field model, the lc values and material mechanical response
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are uncoupled. However, based on our studies, especially for heterogeneous models, there

is still a criterion for choosing lc. Because heterogeneous models are generally multi-phase

systems, it is necessary to ensure that other phases do not enter the fracture zone of the

damaged phase. If it is the case where lc value is too large, the macroscopic mechanical

response can be affected (e.g., lc = 1.60 · 10−3mm). As shown in Fig. 3, the fracture zone

of Wu’s phase-field model is limited at a value of πlc. Thus, for a composite model, a

criterion lc ≤ lf
π
should be satisfied.

Another difference between Wu’s and Miehe’s models was found in this study. Wu’s

phase-field model introduces an elastic stage where the damage at a point is always zero

until it exceeds the limit, while in Miehe’s model the damage state becomes positive from

the start of the load. This suggests that Wu’s model may be more suitable for brittle

failure. An example illustrating this difference is as follows.

Fig. 13(a) shows the damage field of Miehe’s model, while Fig. 13(b) shows that of Wu’s

model. Fig. 13(c) represents the damage profiles of center line for both models. In this

figure, both Miehe’s and Wu’s models are set as lc = 5.00 · 10−4. As can be seen in Fig.

13(c), the strain concentration is in the center zone for both models. But because Miehe’s

model does not have an elastic part, the damage on the borders is much more significant

than in Wu’s model, where that region stays intact because the stresses are not beyond

the limit.

4.3.2 Study with a fixed regularization length

Moreover, if the
lf
lc

ratio is too small, the local crack patterns may not be physical even

for Wu’s model. To demonstrate this, a new series of simulations have been carried out.

In these tests, lc is kept constant at lc = 5.00 · 10−4mm while the inter-fiber distance

varies from 2.67 · 10−4 mm to 2.75 · 10−3mm, which means that the lf/lc ratio varies from

0.53 to 5.5.

Fig. 14 shows three representative results. When the ratio is too small, such as 0.53

when lf = 2.67 · 10−4mm, both mechanical and damage behaviors become unrealistic

as shown in Figs. 14 (a) and (b). In this case, the crack should be at the center zone
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Figure 13: (a) Damage fields of Miehe’s model; (b) Damage fields of Wu’s models; (c)

Damage profiles along the center line. (Remark: lf = 2.75 ·10−3mm and lf = 5 ·10−4mm)

and damage should initiate earlier due to the much more significant strain concentration

effect compared to a larger inter-fiber distance. However, if the ratio is larger than π,

both mechanical and damage behaviors remain good and show more realistic behavior.

For example, in Figs. 14 (a), (c) and (d), the results for lf = 1.80 · 10−3mm show more

concentration effect and earlier damage initiation than lf = 2.75 · 10−3mm. Additionally,

both cracks remain at the center zone which is more realistic according to theory. There-

fore, a too small
lf
lc
ratio is unacceptable. However, lf is considered a geometric property

of a model. Therefore, for Wu’s model, lc should be selected as small as possible.

As mentioned earlier, a1 must be greater than or equal to 1.5, which means that lc ≤ 4EGc

πσ2
c

to ensure that Wu’s phase-field equation can be solved. All of the above tests provide

upper limits for the value of lc. Meanwhile, lc also has a lower limit to ensure the non-

locality property of the phase-field. In Ref. [2], the lc/h ratio should be larger than 2,
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Figure 14: Results of Wu’s phase-field model for two-fibers unit-cell composite model

(lc = 5.00 · 10−4mm): (a) Averaged stress-strain curves; (b) Local crack patterns for

lf = 2.67 · 10−4mm; (c) Local crack patterns for lf = 1.80 · 10−3mm; (d) Local crack

patterns for lf = 2.75 · 10−3mm. (Remark: The orange dash circles are fiber contours.)

while in Ref. [4] it should be larger than 5. Based on our studies shown in Figure 12,

a proper result can also be obtained when lc/h = 2.5. Therefore, this work prefers the

proposition in Ref. [2] in terms of the lc
h
ratio criterion. In summary, the proposed criteria

for Wu’s phase-field are: 
lc > 2h,

lc ≤ lf
π
,

lc ≤ 4EGc

πσ2
c
.

(22)

5 Conclusion

In the present work, the Wu’s phase-field model has been successfully implemented into

a FFT-based solver, which is our first main contributions. In Wu’s phase-field model,
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degradation function g(d) is nonlinear, which makes it quite difficult to solve Wu’s phase-

field evolution equation using the FFT solver with a fixed-point algorithm. Thus, we

developed a new phase-field solver based on the FFT method. We took advantage of this

new implementation to consider a strong coupling of the phase-field with the strain field

to alleviate restrictions on the loading step.

This new algorithm involves three nested loops to compute the strain field and phase-field

at each increment. The top loop is the alternating minimization, in which we alternately

solve the phase-field solver where the degradation function is updated at each iteration

and the mechanical solver where the history variable is updated at each iteration. Due

to its nonlinearity, the phase-field evolution equation is solved using a Newton-Krylov

loop, of which each iteration involves a linear system of equations that is solved using

a CG solver. The last loop is the CG solver itself, where at each iteration, the FFT

and its inverse are used to compute the non-local term with the correct formulation for

heterogeneous materials.

Our second contribution is a detailed investigation of the lc sensitivity of Wu’s phase-field

model for heterogeneous materials. This is an important topic for phase-field modeling

that has not been studied much. Our tests show that Wu’s phase-field model has partial lc

sensitivity for heterogeneous materials. But the main reason for this sensitivity is different

from Miehe’s model. In this respect, Wu’s phase-field model has some advantages over

Miehe’s model.

• In Miehe’s model, the main reason for lc sensitivity is that lc is coupled with the

mechanical behavior. The lc value also plays a crucial role in forming crack patterns.

This makes choosing an appropriate lc value for Miehe’s model very difficult.

• In Wu’s model, lc and mechanical behavior are completely decoupled. The main

reason for lc sensitivity is that one phase enters the damage zone of another phase.

As a result, a set of criteria for safely choosing lc value has been established in this

work.

However, if the crack starts at the interface, Wu’s model always shows lc sensitivity.

This is mainly because the damage zones always contain multiple phases. But this effect
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can be reduced by decreasing the lc value while satisfying the criteria set in this work.

The authors also note that there has been increased attention to interface modeling in

phase-field, with proposals for multi-phase-field models or CZMs. These techniques could

also be used to reduce lc sensitivity at the interface, but that is beyond the scope of this

paper. The comparison of computational time between Wu’s and Miehe’s models, which

is not included in this work, would still be valuable for the future work.

Another difference between Wu’s and Miehe’s models was found in this study. Wu’s

phase-field model introduces an elastic stage where the damage at a point is always zero

until it exceeds the limit, while in Miehe’s model the damage state becomes positive from

the start of the load. This suggests that Wu’s model may be more suitable for brittle

failure.
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6 Appendix 1

Initialization: d(x) is already known for previous iteration

(a0) Define the CG solver tolerance (tol)

(b0) i = 0 (Iteration number of CG solver)

(c0) δdi=0 = 0

(d0) Calculate RP (d) and LP (δdi=0)

(e0) Calculate r = RP − LP

(f0) Define a = r

(g0) Define ERRnew = rT · r

While (ERRnew ≥ tol2):

(a1) Calculate i = i+ 1

(b1) Calculate LP (a)

(c1) Define q = LP (a)

(d1) Calculate α = ERRnew

aT ·q

(e1) Calculate δid = δi−1
d + α · a

(f1) if i is divisible by 10

Calculate LP (δid)

Calculate r = RP − LP

else

Calculate r = r − α · q

end

(g1) Define ERRold = ERRnew

(h1) Calculate ERRnew = rT · r

(i1) Define β = ERRnew

ERRold

(j1) Calculate a = r + β · a

End

(23)
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