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This paper focuses on the numerical implementation of phase-field models of fracture using the Fast Fourier Transform (FFT) based numerical method. Recent studies on phase-field models focuses on the discussions of the choice of the value of regularization length, which was proposed to smear the discontinuity of the *

sharp crack. Some studies believe that should be considered as a material property because it have a significant impact on the mechanical behavior of a material in some phase-field models, for instance, the model proposed by Miehe. However, our results in this study for heterogeneous materials have shown that the choice of regularization length not only affects the macroscopic mechanical behavior but also the local crack propagation patterns. As a result, it can be challenging to select an appropriate value that produces both accurate macroscopic responses and local crack patterns for certain phase-field models, such as Miehe's model. Thus, the

Introduction

A well-known problem with Continuum Damage Mechanics (CDM) models, which are frequently used to simulate the initiation and propagation of cracks, is their dependency on the mesh size. This is because the energy dissipated can vary depending on the size of the element [START_REF] Ernst | Multiscale progressive failure analysis of textile composites[END_REF]. To address this issue, many methods have been proposed. One technique that has gained popularity due to its mesh independence is the phase-field model [START_REF] Miehe | Thermodynamically consistent phasefield models of fracture: Variational principles and multi-field FE implementations[END_REF][START_REF] Miehe | A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[END_REF][START_REF] Wu | A unified phase-field theory for the mechanics of damage and quasibrittle failure[END_REF], which is the main focus of this work.

It utilizes a damage variable (d) to describe the failure state, where sharp cracks are regularized as diffusive crack bands by a function of d [START_REF] Bourdin | Numerical experiments in revisited brittle fracture[END_REF][START_REF] Bourdin | The Variational Approach to Fracture[END_REF] (as illustrated in Fig. 1(a)(b)).

The damage variable d is a continuous parameter that varies in the range [0, 1] and describes the degradation state of the material. A value of 0 represents an intact state and a value of 1 represents a fully degraded state. On the one hand, the evolution of the phase-field variable itself completely describes the initiation and propagation of cracks in the material. On the other hand, phase-field models are closely related to the variational approach to brittle fracture [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF], which enables a simultaneous approximation of the displacement field and the cracks by minimizing the total potential energy of the solid. While the phase-field approach is generally considered to be mesh-independent, there is a condition on element size that must be met. Ref. [START_REF] Miehe | Thermodynamically consistent phasefield models of fracture: Variational principles and multi-field FE implementations[END_REF] proved that the regularization length of the phase-field model must be at least twice the element size of the fractured zone. In this context, conventional finite element method (FEM) solvers can be cumbersome for 3D simulations and may require efficient parallel implementation [START_REF] Nguyen | Large-scale simulations of quasi-brittle microcracking in realistic highly heterogeneous microstructures obtained from micro CT imaging[END_REF] and/or automatic mesh adaption [START_REF] Zhou | Adaptive phase field simulation of quasi-static crack propagation in rocks[END_REF] to extend computational limits. This will be even more important when dealing with heterogeneous materials with complex microstructure cases. Thus, the Fast Fourier Transform (FFT)-based method has gained popularity due to its intrinsic parallelization capabilities. It was initially proposed by Moulinec and Suquet [START_REF] Moulinec | A fast numerical method for computing the linear and nonlinear mechanical properties of composites[END_REF][START_REF] Moulinec | A FFT-Based Numerical Method for Computing the Mechanical Properties of Composites from Images of their Microstructures[END_REF] as a voxel-based methodology that does not need stiffness matrix assembling, unlike conventional FEM solvers.

In the FFT-based method, the local strain tensor is calculated by a convolution product with a fourth-rank Continuous Green Operator (CGO) and a polarization term. This convolution product is transformed into a simple multiplication in Fourier space. The multiplication of the polarization term and the CGO are local operations that can be easily parallelized [START_REF] Chen | Analysis of the damage initiation in a SiC/SiC composite tube from a direct comparison between large-scale numerical simulation and synchrotron X-ray micro-computed tomography[END_REF]. Even if the FFT operation itself is not local, efficient parallel implementations such as FFTW [START_REF]FFTW[END_REF] are available. As a result, large-scale simulations based on full-resolution images can be performed using the FFT-based method. Since its introduction, FFT-based method has been improved and used to study a wide range of physical phenomena in heterogeneous materials [START_REF] Leclerc | A numerical investigation of effective thermoelastic properties of interconnected alumina/Al composites using FFT and FE approaches[END_REF][START_REF] Wang | Progressive damage analysis of 3D braided composites using FFTbased method[END_REF]. Its high performance and comparisons with FEMs have been clearly demonstrated in Refs. [START_REF] Eisenlohr | A spectral method solution to crystal elasto-viscoplasticity at finite strains[END_REF][START_REF] Lucarini | Adaptation and validation of FFT methods for homogenization of lattice based materials[END_REF][START_REF] Ma | Numerical artifacts of Fast Fourier Transform solvers for elastic problems of multi-phase materials: their causes and reduction methods[END_REF].

As aforementioned, phase-field models require a minimum ratio between the minimum regularization length and mesh size to ensure mesh independence. Therefore, for complex microstructures, using phase-field methods necessitates a sufficiently refined mesh for better predictions. On the other hand, FFT is more conducive to massive parallelization.

As a result, combining phase-field models with the FFT method for fracture problems can be advantageous. Some pioneering work in this area can be found in Refs. [START_REF] Chen | A FFT solver for variational phase-field modeling of brittle fracture[END_REF][START_REF] Ernesti | Fast implicit solvers for phase-field fracture problems on heterogeneous microstructures[END_REF][START_REF] Cao | A novel FFT-based phase field model for damage and cracking behavior of heterogeneous materials[END_REF][START_REF] Ma | Simplified and complete phase-field fracture formulations for heterogeneous materials and their solution using a Fast Fourier Transform based numerical method[END_REF].

The present work also implements phase-field models in an FFT-based environment.

The phase-field model has two important parameters: the critical energy release rate (G c ) and the regularization length (l c ). G c is widely recognized as a material damage property, while l c describes the bandwidth of the diffusive crack, as shown in Fig. 1(b).

The smaller l c is, the narrower the crack band becomes (Fig. 2). If l c = 0, a sharp crack is fully recovered. Recently, there have been discussions in the literature about these parameters. In our latest study, we discovered that omitting certain terms in the phase-field evolution equation when dealing with heterogeneous materials can result in an abnormal damage diffusion between the different material components. Details can be found in Ref. [START_REF] Ma | Simplified and complete phase-field fracture formulations for heterogeneous materials and their solution using a Fast Fourier Transform based numerical method[END_REF], which will not be discussed in this work. Meanwhile, there have been discussions about the selection of the l c value. The primary focus of these discussions is the relationship between l c and the predicted mechanical behavior of the material. Initially, l c was intended to be used as a numerical parameter to describe the degree of crack diffusion (crack band-width). However, some studies [START_REF] Nguyen | On the choice of parameters in the phase field method for simulating crack initiation with experimental validation[END_REF][START_REF] Zhang | Numerical evaluation of the model for brittle fracture with emphasis on the length scale[END_REF] have found that it can significantly affect the simulated mechanical behavior of materials in certain phase-field models, such as Miehe's phase-field model [START_REF] Miehe | Thermodynamically consistent phasefield models of fracture: Variational principles and multi-field FE implementations[END_REF]. As a result, this parameter is now commonly treated as a material parameter [START_REF] Espadas-Escalante | A phase-field model for strength and fracture analyses of fiber-reinforced composites[END_REF][START_REF] Guillén-Hernández | A micromechanical analysis of inter-fiber failure in long reinforced composites based on the phase field approach of fracture combined with the cohesive zone model[END_REF]. In the literature, there are two main approaches to determining l c values. One approach involves an analytical calculation of a 1D bar problem with a homogeneous crack phase-field [START_REF] Nguyen | On the choice of parameters in the phase field method for simulating crack initiation with experimental validation[END_REF],

while the other involves an inverse analysis of experimental results [START_REF] Nguyen | Initiation and propagation of complex 3D networks of cracks in heterogeneous quasi-brittle materials: Direct comparison between in situ testing-microCT experiments and phase field simulations[END_REF].

Although these techniques can produce satisfactory results in some cases, they can also complicate the calculation. Additionally, Mandal et al. [START_REF] Mandal | Length scale and mesh bias sensitivity of phase-field models for brittle and cohesive fracture[END_REF] have demonstrated that these l c estimates can sometimes be too large compared to the model size, resulting in some unusual phenomena. Our recent research [START_REF] Ma | Simplified and complete phase-field fracture formulations for heterogeneous materials and their solution using a Fast Fourier Transform based numerical method[END_REF] has shown that the impact of l c on mechanical response is more significant for heterogeneous materials. Furthermore, our results in this study for composite materials have shown that the choice of regularization length not only affects the macroscopic mechanical behavior but also the local crack propagation patterns. As a result, it can be challenging to select an appropriate l c that produces both accurate macroscopic responses and local crack patterns for certain phasefield models, such as Miehe's model. One of the solutions is to decouple the connection between l c and mechanical behavior and ensure that l c only fulfills its original role of describing the degree of crack diffusion. This is one of the main attractions of Wu's phase-field model [START_REF] Wu | A length scale insensitive phase-field damage model for brittle fracture[END_REF], which introduces traction-separation laws from the cohesive zone model into the phase-field thoery to make l c independent of mechanical response.

Mandal et al. [START_REF] Mandal | Length scale and mesh bias sensitivity of phase-field models for brittle and cohesive fracture[END_REF] found that Wu's phase-field method demonstrates l c insensitivity when applied to homogeneous materials. As such, the main goal of this paper is to incorporate Wu's phase-field into the FFT solver and investigate its sensitivity when applied to heterogeneous materials such as composites. A short reminder of Miehe's and Wu's phase-field method will be presented in Sec. 2. The implementation of Wu's phasefield into the FFT solver is presented in Sec. 3. Its results and comparison with Miehe's phase-field are shown in Sec. 4, and the final conclusions will be in Sec. 5.

2 Review of Miehe's and Wu's phase-field models

Regularization of sharp cracks

The starting point of the phase-field method is to smear the sharp crack using a diffusive crack band. The smear function can vary for different phase-field models. Those used in Miehe's (Eq. (1)(a)) and Wu's models (Eq. (1)(b)) are described below:

d M = exp -|x| l c , ( 1a 
)
d W = 1 -sin |x| l c (1b)
The damage profiles of both models are clearly depicted in Fig. 3. From the figure, it is evident that Wu's phase-field has a narrower diffusion band-width that disappears at x = πlc 2 , while for Miehe's model this value is equal to ∞.

Figure 3: The damage profile of different diffusive crack functions [START_REF] Wu | Phase-field modeling of fracture[END_REF].

With Eq. ( 1), it is straightforward to calculate the diffusive crack surface (B) and its density (γ), where their generic forms can be expressed as follows,

B = +∞ -∞ γdV, (2a) 
γ = 1 c 0 α (d) + l c (∇d) 2 , (2b) 
α (d) = ξd + (1 -ξ)d 2 , (2c) 
where ξ and c 0 are parameters that vary depending on the specific phase-field model being used. For Miehe's and Wu's models, their values and expressions can be found in Table 1.

Model name ξ α (d) c 0 d (x) Miehe [2, 3] 0 d 2 2 exp -|x| lc Wu [4, 29] 2 2d -d 2 π 1 -sin |x| lc Table 1:
The parameters of different phase-field models.

Variational approach

The diffusive crack surface (Eq. ( 2)) can then be incorporated into the variational approach to brittle fracture, which is based on Griffith's energy principle [START_REF] Griffith | The phenomena of rupture and flow in solids[END_REF] for a cracked body. In this energetic approach, the damage evolution and crack propagation are a competition between the bulk energy stored in the body and the energy dissipation from the opening of the crack surface. From this point of view, in quasi-static loading, the total energy Π can be expressed as:

Π := Φ s + Φ d -P, (3) 
where Φ s represents the strain energy stored in the cracked body, Φ d represents the energy dissipated by opening the crack surface, and P represents the external loading.

In the phase-field method, the dissipated energy Φ d can be approximated as the energy required to open the diffusive crack band, as described in Eq. ( 2). As a result, Φ d can be converted from a surface integral to a volume integral. Meanwhile, an energetic degradation function, denoted as g(d), is used to compute the value Φ s . We consider a domain Ω ⊂ R n (n = 1, 2, 3) that contains a crack set Γ with Γ ⊂ R n-1 and is subject to volumetric loading by a body force f * , a displacement u * on the boundary ∂Ω u , and a surface force t * on the complementary boundary ∂Ω t . The symbol () * indicates a prescribed term. In summary, a detailed formulation of the components in Eq. 3 is provided below:

Φ s = Ω φ (ε, Γ) dV = Ω g (d) φ 0 (ε (u)) dV, (4a) 
Φ d = Γ G c dS ≈ B G c γ (d, ∇d) dV, (4b) 
P = Ω f * • udV + ∂Ωt t * • udS + ∂Ωu (σ • n) • u * dS. ( 4c 
)
In Eq. ( 4)(a), φ denotes the elastic strain energy density stored in the cracked body, while ε and φ 0 represent the strain tensor and initial strain energy, respectively. In Eq. ( 4)(b), G c stands for the critical energy release rate. Typically, the diffused crack domain B is much smaller than the considered domain Ω with B ⊂ Ω. In Eq. ( 4)(c), the symbols σ and n correspond to the Cauchy-stress tensor and the normal vector outside the boundary, respectively. Additionally, the symbols dV and dS represent volume and surface integration, respectively.

The strain and phase-fields (ε, d) can then be determined by minimizing the total energy under the constraint of irreversibility, which is stated as ḋ ≥ 0, and under the boundary conditions: u(x) = u * at ∂Ω u , and σ •n = t * at ∂Ω t with n the outward unit normal vector to the external boundary ∂Ω (∂Ω = ∂Ω u ∂Ω t ). Eq.( 3) can be written in a variational form:

δΠ (u, d) = Ω σδεdV + B ∂φ ∂d δddV + B G c ∂γ ∂d δd + ∂γ ∂∇d δ∇d dV - ∂Ωt t * •δudS, (5) 
where σ = ∂φ ∂ε denotes the Cauchy stress, and δu = 0 for ∀x ∈ ∂Ω u . Eq. ( 5) can generally be split into two components: δΠ (u, d) P 1 and δΠ (u, d) P 2 , which represent the mechanical and phase-field parts, respectively. This enables a separate solution for the mechanical and damage fields, and a coupling scheme would then be employed to link these two fields. Further details about the algorithms will be provided in Sec. 3. This section work only focuses the phase-field part δΠ (u, d) P 2 , which can be expressed as:

δΠ (u, d) P 2 = B g ′ (d) φ 0 δddV + B G c c 0 l c α ′ (d) δddV + B 2G c l c c 0 ∇d∇δddV, (6) 
where -′ means the first derivative. Eq. ( 6) allows us to easily derive the governing function for the damage field in phase-field models, and its expression is given in Eq. [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF].

Further details can be found in [START_REF] Ma | The elastic and damage modeling of heterogeneous materials based on the Fast Fourier Transform[END_REF].

g ′ (d) H + G c c 0 l c α ′ (d) -∇ • 2G c l c c 0 ∇d = 0, (7) 
Eq. ( 7) represents the generic form of the governing equation for the phase-field. The regularization parameters, α and c 0 , are already known for each phase-field model and are shown in Table . 1. Therefore, the next step is to determine H and g(d) for each phase-field.

Energetic degradation functions

The energetic degradation function, g (d), varies for different phase-field models. For Miehe's phase-field model, a quadratic energetic degradation function is used, as shown in Eq. ( 8)(a). In contrast, Wu's model with a linear softening law, which is used in this work, employs a more complex degradation function as described in Eq. ( 8)(b).

g(d) M = (1 -d) 2 , (8a) 
g(d) W = (1 -d) 2 (1 -d) 2 + a 1 d(1 -1 2 d) , a 1 = EG c σ 2 c • 4 πl c , (8b) 
where E stands for the Young's modulus of the material in the case of isotropic material, while σ c represents the material's strength. In contrast to the gradation function used in Miehe's model, the formula for a 1 in Eq. ( 8)(b) includes σ c . As a result, Wu's model has an elastic stage.

History variables

Damage models should reflect the physical properties of materials. A fully damaged material cannot be further damaged and the damage state cannot be reversed. As a result, the boundedness d ∈ [0, 1] and irreversibility condition ḋ ≥ 0 must be carefully considered. To ensure the irreversibility condition, the history field H is introduced into Eq. ( 7). This field represents the maximum initial strain energy from [0, t n ], where t n is the current time. The two history fields for both Miehe's (subscript M ) and Wu's (subscript W ) models are defined as follows:

H M (x, t n ) := max 0≤t≤tn φ + 0 (x, t) , (9a) 
H W (x, t n ) := max 0≤t≤tn φ + 0 (x, t) , 1 2 σ 2 c E , (9b) 
where φ + 0 (x, t) represents the initial tensile strain energy at time t, as the compressive part does not contribute to damage in phase-field models. The φ + 0 (x, t) of Wu's model is calculated as:

φ + 0 = 1 2 (⟨ σ1 ⟩ + ) 2 E , (10) 
where σ1 represents the major principal value of the effective stress σ, which is determined by the elastic relation σ = C : ε. Here, C refers to the material stiffness tensor without damage. The split operation, denoted by ⟨-⟩ + , is defined as ⟨x⟩ + = {x, 0}. Since Miehe's model is not the main focus of this work, details about the initial strain energy and split formula can be found in Refs. [START_REF] Miehe | A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[END_REF][START_REF] Chen | A FFT solver for variational phase-field modeling of brittle fracture[END_REF][START_REF] Ma | Simplified and complete phase-field fracture formulations for heterogeneous materials and their solution using a Fast Fourier Transform based numerical method[END_REF], but will not be presented here.

As shown in Refs. [START_REF] Mandal | Length scale and mesh bias sensitivity of phase-field models for brittle and cohesive fracture[END_REF][START_REF] Wu | Phase-field modeling of fracture[END_REF][START_REF] Ma | The elastic and damage modeling of heterogeneous materials based on the Fast Fourier Transform[END_REF], the damage value in Miehe's model inherently satisfies the boundedness d ∈ [0, 1]. However, this is not the case for Wu's model due to its elastic stage. As a result, an additional condition, the Rankine energy ( 1 2 σ 2 c E ), must be included in the history field H for Wu's model to ensure that d = 0 during the elastic stage.

Phase-field governing equations

According to Eqs. ( 7) to [START_REF] Moulinec | A fast numerical method for computing the linear and nonlinear mechanical properties of composites[END_REF], the governing equations for Miehe's and Wu's model are written as

-2 (1 -d) H M + G c l c d -∇ • (G c l c ∇d) = 0, (11a) 
- 4a 1 (1 -d) (2a 1 d -4d -a 1 d 2 + 2d 2 + 2) 2 H W + 2 π G c l c (1 -d) -∇ • 2G c l c π ∇d = 0, (11b) 
where Eq. ( 11)(a) is specific to Miehe's model while Eq. ( 11)(b) applies to Wu's model.

Implementation of Wu's phase-field model into an FFT-based solver

In our previous work [START_REF] Ma | Numerical artifacts of Fast Fourier Transform solvers for elastic problems of multi-phase materials: their causes and reduction methods[END_REF][START_REF] Ma | Simplified and complete phase-field fracture formulations for heterogeneous materials and their solution using a Fast Fourier Transform based numerical method[END_REF], for Miehe's model, the derivative operations can be easily converted into simple multiplications. As a result, Eq. ( 11)(a) is a linear function that can be solved using a fixed-point algorithm. However, Wu's model introduces a new degradation function that introduces non-linearity. This creates a significant challenge when attempting to solve Wu's model using a fixed-point algorithm, as demonstrated in [START_REF] Ma | The elastic and damage modeling of heterogeneous materials based on the Fast Fourier Transform[END_REF].

An algorithm based on the Newton-Krylov method

Therefore, Newton-Raphson method, one of the most traditional method for solving nonlinear equations, is applied in the present work. This approach is based on the iteration:

d i+1 = d i - R(d) R ′ (d) , (12) 
where the residual function R(d) is

R(d) = g ′ (d)H + 2 π G c l c (1 -d) -∇ • ( 2G c l c π ∇d), (13) 
and its derivative

R ′ (d) = ∂R(d) ∂d . (14) 
Note that H in Eq. ( 13) is equal to H W in Eq. ( 9)(b). Eq. 12 can be re-written as:

R ′ (d)δd = -R(d) (15) 
with δd = d i+1 -d i . Because most terms in R(d) are linear, we only should compute g ′′ (d), where -′′ represents the second derivative. We get

         g ′′ (d) = a 1 -3(1-d) 2 +a 1 (1.5d 2 -3d+2) (1-d) 2 +a 1 d(1-0.5d) 3 R ′ (d)δd = g ′′ (d)H W δd -2 π Gc lc δd -∇ • 2Gclc π • ∇δd . (16) 
This linear problem is solved using a Conjugate Gradient (CG) solver, which does not require to introduce a reference material or a polarization term. The non-local term is directly computed using

∇ • 2G c l c π ∇d = F -1 J • k • F Q ′ (x) • F -1 (J • k • d(x)) , (17) 
where J = √ -1, d is expression of d in Fourier space, k is the frequency vector, F () and F -1 () denotes the Fast Fourier transform (FFT) and its inverse.

The FFT and its inverse only need to be computed for the calculation of this non-local term. Ma et al. [START_REF] Ma | Numerical artifacts of Fast Fourier Transform solvers for elastic problems of multi-phase materials: their causes and reduction methods[END_REF] have shown that Willot's rotated scheme, proposed in Ref. [START_REF] Willot | Fourier-based schemes for computing the mechanical response of composites with accurate local fields[END_REF],

produces fewer numerical artifacts than Moulinec and Suquet's original collocation scheme proposed in [START_REF] Moulinec | A numerical method for computing the overall response of nonlinear composites with complex microstructure[END_REF]. However, we were unable to implement Willot's rotated scheme for the phase-field solver in this work. To avoid using different schemes for the mechanical and phase-field parts, we used Moulinec and Suquet's original collocation scheme for both solvers. This could be an interesting area for future research.

Regarding the CG solver, we need to introduce LP (d) and RP (δd) as follows:

     LP (δd) = -2 π Gc lc δd + g ′′ (d)Hδd -∇ • ( 2Gclc π • ∇δd), RP (d) = -g ′ (d)H -2 π Gc lc (1 -d) + ∇ • ( 2Gclc π ∇d), (18) 
where LP (d) in Eq. ( 18) represents the left-hand side (LHS) of Eq. ( 15), while RP (δd) is the right-hand side (RHS) of that equation. The pseudo-code of the CG solver for Wu's phase-field is presented in Appendix 1. It is a standard CG solver except for operation f 1 which is a special treatment to remove the accumulation of floating point error. The convergence criterion of the CG solver (tol) is set as 1.00 • 10 -6 .

The output of the CG solver is δd, so the new damage field is calculated as

d new = d old +δd,
and convergence is checked for this new field, and the tolerance of this Newton algorithm is also set to 1.00 • 10 -6 . Unlike the conventional convergence criteria used in Refs. [START_REF] Chen | A FFT solver for variational phase-field modeling of brittle fracture[END_REF][START_REF] Ma | Simplified and complete phase-field fracture formulations for heterogeneous materials and their solution using a Fast Fourier Transform based numerical method[END_REF], our implementation uses the residual RP (d) of the phase-field evolution equation as the convergence criterion for Newton algorithm. This is because RP (d) is derived from the phase-field governing equation, so every value of d is checked against this equation.

The algorithm is summarized in pseudo-code in Eq. [START_REF] Chen | A FFT solver for variational phase-field modeling of brittle fracture[END_REF].

Initialization, if t n = 0 :

(a 0 ) d tn=0 (x) = 0 If t n ̸ = 0 : (a 1 ) d tn is known Time t n + 1 : first input d tn+1 i=0 = d tn
While convergence criterion is not met:

(a 2 ) Call CG solver, with input d tn+1 i=0 (b 2 ) d tn+1 i+1 = d tn+1 i + δd (c 2 ) Re-calculate RP (d tn+1 i+1 , x) (d 2 ) if ||RP || 2 < than tolerance (1.00 • 10 -6 ), convergence is met, (19) 
where || -|| 2 represents the L 2 norm. The next step is to input this new d tn+1 i+1 into the mechanical part (δΠ (u, d) P 1 ). Then the new mechanical fields (t n+1 ) can be calculated.

In order to simplify the calculation, this implementation adopts a hybrid formulation where the history variable used for damage evolution Eq. ( 9) is split, but there is no tension/compression split in the mechanical part. The possibility of applying a hybrid formulation has been confirmed in Ref. [START_REF] Wu | Phase-field modeling of fracture[END_REF], and more details can be found in Ref. [START_REF] Ma | The elastic and damage modeling of heterogeneous materials based on the Fast Fourier Transform[END_REF].

Thus, the equations for the mechanical part can be written as:

             div(σ(u, d)) = 0, σ = g(d) ∂φ 0 ∂ε , ε = ∇u+∇ T u 2 . ( 20 
)

The choice of coupling scheme

This workflow can be solved using the same weak coupling approach used for Miehe's model (Refs. [START_REF] Chen | A FFT solver for variational phase-field modeling of brittle fracture[END_REF][START_REF] Ma | Simplified and complete phase-field fracture formulations for heterogeneous materials and their solution using a Fast Fourier Transform based numerical method[END_REF]), where the damage and strain fields are solved only once per loading step. However, to obtain converged results, this approach requires the use of a sufficiently fine loading step. In this work, to use larger loading steps, we opted for a stronger coupling and switched to an alternating minimization algorithm. 

e = ||d alt -d alt-1 || 2 , (21) 
where || -|| 2 represents the L 2 norm over the model. Due to this convergence check, the damage field computed by the phase-field solver can be used to update the degradation function and return to the mechanical solver. The new strain field would then update the history variable and enter the phase-field solver again. This process can be repeated several times until convergence of the alternating minimization scheme is achieved, thus ensuring a strong coupling between the strain field and the phase-field.

The advantage of this algorithm is that we do not need a very refined loading step to get accurate results. Based on our tests, δ⟨ε⟩ = 1.00 • 10 -4 is acceptable, which is 200 times larger than the value used with the weak coupling. Details will be discussed in Sec. 4.

Summary

Generally speaking, this new algorithm involves three nested loops to compute the strain field and phase-field at each increment. The top loop is the alternating minimization, in which we alternately solve the phase-field solver where the degradation function is updated at each iteration and the mechanical solver where the history variable is updated at each iteration. Due to its nonlinearity, the phase-field evolution equation is solved using a Newton-Krylov loop, of which each iteration involves a linear system of equations that is solved using a CG solver. The last loop is the CG solver itself, where at each iteration, the FFT and its inverse are used to compute the non-local term with the correct formulation for heterogeneous materials. Same as the fixed-point algorithm, most operations of this algorithm are still in local that does not require a global assembly hence can be easily parallelized. Considering that the efficiency of FFT has been largely proven in the literature [START_REF] Eisenlohr | A spectral method solution to crystal elasto-viscoplasticity at finite strains[END_REF], the comparison of computational time between FFT and FEM will not be presented in this work.

4 Numerical experiments and analysis

Introduction

The algorithm we propose is designed to solve general 3D problems. However, to reduce computation time in our tests, we used models with only one voxel thickness in the third dimension. Due to the periodic boundary conditions, the out-of-plane strain components are constant in the third direction, which is equivalent to a generalized plane strain condition.

In these analyses, the notch models are subjected to a macroscopic strain along the y-direction with a loading steps of δ⟨ε⟩ yy = 1.00 • 10 -4 until final failure, where ⟨-⟩ means the average operation over the whole domain. Stress-free conditions are imposed in the other directions (⟨σ⟩ xx = ⟨σ⟩ zz = ⟨σ⟩ xy = ⟨σ⟩ xz = ⟨σ⟩ yz = 0). These mixed-type loading conditions are applied using the method presented in Ref. [START_REF] Kabel | Mixed boundary conditions for FFTbased homogenization at finite strains[END_REF]. Due to stress-free boundaries, Poisson's effect is active during loading. For the two-fibers composite models, the loading direction is changed to x with δ⟨ε⟩ xx = 1.00 • 10 -4 and ⟨σ⟩ yy = 0, while the other conditions remain unchanged.

A single-notch plate 4.2.1 Influence of the loading step

As shown in Ref. [START_REF] Chen | A FFT solver for variational phase-field modeling of brittle fracture[END_REF], the fixed-point algorithm used in Miehe's model is highly sensitive to the loading step size and requires a very small increment size. Based on our previous work [START_REF] Ma | Simplified and complete phase-field fracture formulations for heterogeneous materials and their solution using a Fast Fourier Transform based numerical method[END_REF], δ⟨ε⟩ = 5.00 • 10 -7 is a good value for Miehe's model and is also used in this work. For Wu's model, thanks to alternating minimization, it is not as sensitive as the fixed-point algorithm, but using too large an increment size can still lead to inaccurate results. Therefore, the first numerical experiment is to find an acceptable increment using a single notch plate model.

This example is a widely used benchmark test to verify phase-field models for brittle fracture [START_REF] Chen | A FFT solver for variational phase-field modeling of brittle fracture[END_REF][START_REF] Wu | A length scale insensitive phase-field damage model for brittle fracture[END_REF][START_REF] Ambati | A review on phase-field models of brittle fracture and a new fast hybrid formulation[END_REF]. As shown in Fig. 5, it consists of a square plate with a length of 1mm. A straight horizontal notch of 0.5mm is located at the mid-height of the left edge and has a width of one voxel size. Due to the intrinsic periodicity of the FFT solver, lateral bands denoted as M2 (purple color) are added to prevent spurious effects from the boundary conditions. Material M2 is also used for the notch. In order to minimize the effect of the lateral bands, its dimension should be as small as possible. Based on our tests, a dimension of 5 voxels is the minimum value to get convergence in the FFT solver and break the periodicity.

In the single notch model tests, the following material parameters are used for M1: ing to Ref. [START_REF] Wu | Phase-field modeling of fracture[END_REF], a 1 ≥ 3 2 is an exigence to ensure the convexity of degradation function of Wu's phase-field model. That means l c ≤ 0.08mm must be satisfied for this material. On the other side, to ensure the non-locality property, Miehe's criterion regarding the ratio between l c and the voxel size h still needs to be verified for Wu's model. The l c /h ratio is set to be larger than 5 in some references [START_REF] Zhang | Modelling progressive failure in multi-phase materials using a phase field method[END_REF] for Wu's model rather than 2 for Miehe's model. But, our next exmaple will show that 2 is still acceptable for Wu's model. Thus, we have an interval for the choice of l c : 2h < l c ≤ 0.08mm.

Additionally, the choice of void-like properties (M2) is arbitrary. In this work, they are set as follows: E e 0 = 21MPa, ν e = 0.3, σ e c = 24.45MPa, and G e c = 2.7N/mm, which result in the same l ch value as for M1.

In this work, three loading steps are used: δ⟨ε⟩ = 1.00 • 10 -4 , 5.00 • 10 -5 and 2.00 • 10 -5 .

The model has a resolution of N = 251 with a voxel size of h = 4.00 • 10 -3 mm and the value of l c is set to l c = 0.02mm. The averaged stress-strain relations are shown in Figure 6. The figure shows that the averaged stress-strain curves are coincident even when the loading step is decreased by a factor of five. Thus, a loading step of 1.00 • 10 -4 can be considered acceptable. 

Influence of the loading step for high contrast models

In our previous study [START_REF] Ma | Simplified and complete phase-field fracture formulations for heterogeneous materials and their solution using a Fast Fourier Transform based numerical method[END_REF], we discovered that the number of iterations when using an FFT-based solver for Miehe's phase-field evolution equation is sensitive to the contrast in damage properties. As a result, it is crucial to examine the impact of the loading step for Wu's model under varying contrast ratios. The critical energy release rate (G c ) of material M1 remain fixed while those of void-like material M2 vary from 2.7N/mm to 2.7.10 3 N/mm to represent different material contrast ratios. It is important to note that these properties do not represent the actual physics and are only used for numerical studies. Three contrast values are presented in Table 2. Table 2: The critical energy release rates for different contrast ratios.

The results of contrast 1 are shown in Figure 6. Figure 7 only shows the results of contrasts 10 and 1000. This figure clearly shows that the loading step convergence is not affected by different contrast ratios, which confirms the loading step used in this work: δ⟨ε⟩ = 1.00 • 10 -4 . During this study, the authors also observed that the computation time for a high contrast model is significantly longer with same computational hardware.

Therefore, further quantitative examination of the number of interactions of Newton-Krylov, CG, and alternating minimization schemes under varying contrasts in damage properties remains an interesting point of study. However, this will be left for future work. (remark: the curve thickness of different loading steps are different, which is for distinguishing the curves between each other).

Analysis of the sensitivity to the regularization length

In this part, the material properties stays unchanged as in Sec. 4.1.1, and the contrast ratio G e c /G c = 1. Fig. 8 displays stress-strain curves for various l c values. The FEM results, which lack lateral bands and notch material, are also shown as reference. The resolution of FEM model is set to N = 1000. It's important to note that the model and solver differ between FFT and FEM, so their results cannot be compared directly. This figure indicates that there is always sensitivity to l c for the single notch model. However, there is a clear trend: as l c decreases, the results approach those of FEM, where the lateral bands are absent. Meanwhile, it should be noted that the residual stress values shown in Fig. 8 for the FFT-based solver may be primarily due to the presence of lateral bands. In this scenario, cracks always initiate at the notch location, which can also be viewed as an interface between two phases. Due to the non-locality criteria, the l c value cannot be smaller than twice the mesh size. This means that two materials always exist in the damage region of M1, which may contribute to the l c sensitivity. From a physical perspective, adding M2 material to the single notch model is similar to adding an adhesive or glue layer that strengthens the model's damage behavior. Reducing l c decreases the area of M2 material considered and weakens this effect, bringing the results closer to those of FEM.

Based on this, it can be inferred that for a given l c value, the smaller the G e c of M2 material, the closer the results are to FEM. When G e c = 0, a full void notch is obtained. However, due to differences in models and solvers used by FFT and FEM, a direct comparison of their results is not possible. Nonetheless, Fig. 7 can be used to illustrate this trend. By selecting a loading step value of 1.00 • 10 -4 and plotting three contrast results in Fig. 9, a clear trend can be observed that validates our earlier hypothesis.

Two-fibers unit cell composite model

In the next step, a composite unit-cell model with two fibers is analyzed, as shown in [ [START_REF] Nguyen | On the choice of parameters in the phase field method for simulating crack initiation with experimental validation[END_REF][START_REF] Zhang | Numerical evaluation of the model for brittle fracture with emphasis on the length scale[END_REF]. Increasing l c reduces the maximum stress and accelerates damage evolution. This is why l c is linked to the mechanical response. Furthermore, the crack patterns in Fig. 11(d) are in the center zone, while those in Figs. 11(b) and(c) are on the model borders. Sakata et al. [START_REF] Sakata | A Local Sensitivity-Based Multiscale Stochastic Stress Analysis of a Unidirectional Fiber-Reinforced Composite Material Considering Random Location Variation of Multifibers[END_REF] have shown that stress/strain concentration can depend on the inter-fiber distance (l f ). The smaller the inter-fiber distance, the higher the concentration. In this case, the inter-fiber distance of the periodic unit-cell implies that strain concentration is not expected to be on the boundaries for crack initiation position. Thus, the crack patterns in Figs. 11(c) and (d) may not be physical. However, as mentioned earlier, l c is linked to the mechanical response and cannot be freely chosen.

Therefore, for Miehe's model, it is difficult to choose an appropriate l c that produces both proper macro-responses and local crack patterns. In contrast, the results of Wu's model in Fig. 12 show much less sensitivity to the l c values. In some cases (l c ranges 8.00 • 10 -4 mm to 2.30 • 10 -4 mm), Wu's model shows full l c insensitivity. In Wu's phase-field model, the l c values and material mechanical response are uncoupled. However, based on our studies, especially for heterogeneous models, there is still a criterion for choosing l c . Because heterogeneous models are generally multi-phase systems, it is necessary to ensure that other phases do not enter the fracture zone of the damaged phase. If it is the case where l c value is too large, the macroscopic mechanical response can be affected (e.g., l c = 1.60 • 10 -3 mm). As shown in Fig. 3, the fracture zone of Wu's phase-field model is limited at a value of πl c . Thus, for a composite model, a criterion l c ≤ l f π should be satisfied.

Another difference between Wu's and Miehe's models was found in this study. Wu's phase-field model introduces an elastic stage where the damage at a point is always zero until it exceeds the limit, while in Miehe's model the damage state becomes positive from the start of the load. This suggests that Wu's model may be more suitable for brittle failure. An example illustrating this difference is as follows. As can be seen in Fig. 13(c), the strain concentration is in the center zone for both models. But because Miehe's model does not have an elastic part, the damage on the borders is much more significant than in Wu's model, where that region stays intact because the stresses are not beyond the limit.

Study with a fixed regularization length

Moreover, if the l f lc ratio is too small, the local crack patterns may not be physical even for Wu's model. To demonstrate this, a new series of simulations have been carried out.

In these tests, l c is kept constant at l c = 5.00 • 10 -4 mm while the inter-fiber distance varies from 2.67 • 10 -4 mm to 2.75 • 10 -3 mm, which means that the l f /l c ratio varies from 0.53 to 5.5. Fig. 14 shows three representative results. When the ratio is too small, such as 0.53 when l f = 2.67 • 10 -4 mm, both mechanical and damage behaviors become unrealistic as shown in Figs. 14 (a) and (b). In this case, the crack should be at the center zone and damage should initiate earlier due to the much more significant strain concentration effect compared to a larger inter-fiber distance. However, if the ratio is larger than π, both mechanical and damage behaviors remain good and show more realistic behavior.

For example, in Figs. 14 (a),(c) and (d), the results for l f = 1.80 • 10 -3 mm show more concentration effect and earlier damage initiation than l f = 2.75 • 10 -3 mm. Additionally, both cracks remain at the center zone which is more realistic according to theory. Therefore, a too small l f lc ratio is unacceptable. However, l f is considered a geometric property of a model. Therefore, for Wu's model, l c should be selected as small as possible.

As mentioned earlier, a 1 must be greater than or equal to 1.5, which means that l c ≤ 4EGc πσ 2 c to ensure that Wu's phase-field equation can be solved. All of the above tests provide upper limits for the value of l c . Meanwhile, l c also has a lower limit to ensure the nonlocality property of the phase-field. In Ref. [START_REF] Miehe | Thermodynamically consistent phasefield models of fracture: Variational principles and multi-field FE implementations[END_REF], the l c /h ratio should be larger than 2, while in Ref. [START_REF] Wu | A unified phase-field theory for the mechanics of damage and quasibrittle failure[END_REF] it should be larger than 5. Based on our studies shown in Figure 12, a proper result can also be obtained when l c /h = 2.5. Therefore, this work prefers the proposition in Ref. [START_REF] Miehe | Thermodynamically consistent phasefield models of fracture: Variational principles and multi-field FE implementations[END_REF] in terms of the lc h ratio criterion. In summary, the proposed criteria for Wu's phase-field are:

             l c > 2h, l c ≤ l f π , l c ≤ 4EGc πσ 2 c . ( 22 
)

Conclusion

In the present work, the Wu's phase-field model has been successfully implemented into a FFT-based solver, which is our first main contributions. In Wu's phase-field model, degradation function g(d) is nonlinear, which makes it quite difficult to solve Wu's phasefield evolution equation using the FFT solver with a fixed-point algorithm. Thus, we developed a new phase-field solver based on the FFT method. We took advantage of this new implementation to consider a strong coupling of the phase-field with the strain field to alleviate restrictions on the loading step.

This new algorithm involves three nested loops to compute the strain field and phase-field at each increment. The top loop is the alternating minimization, in which we alternately solve the phase-field solver where the degradation function is updated at each iteration and the mechanical solver where the history variable is updated at each iteration. Due to its nonlinearity, the phase-field evolution equation is solved using a Newton-Krylov loop, of which each iteration involves a linear system of equations that is solved using a CG solver. The last loop is the CG solver itself, where at each iteration, the FFT and its inverse are used to compute the non-local term with the correct formulation for heterogeneous materials.

Our second contribution is a detailed investigation of the l c sensitivity of Wu's phase-field model for heterogeneous materials. This is an important topic for phase-field modeling that has not been studied much. Our tests show that Wu's phase-field model has partial l c sensitivity for heterogeneous materials. But the main reason for this sensitivity is different from Miehe's model. In this respect, Wu's phase-field model has some advantages over Miehe's model.

• In Miehe's model, the main reason for l c sensitivity is that l c is coupled with the mechanical behavior. The l c value also plays a crucial role in forming crack patterns.

This makes choosing an appropriate l c value for Miehe's model very difficult.

• In Wu's model, l c and mechanical behavior are completely decoupled. The main reason for l c sensitivity is that one phase enters the damage zone of another phase.

As a result, a set of criteria for safely choosing l c value has been established in this work.

However, if the crack starts at the interface, Wu's model always shows l c sensitivity. This is mainly because the damage zones always contain multiple phases. But this effect 
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 1 Figure 1: A solid body Ω with the crack set Γ: (a) conventional sharp cracks and (b) diffuse crack bands in phase-field.

Figure 2 :

 2 Figure 2: Illustration of diffusive damage profile of a crack at x = 0 for various length parameters l c .

Figure 4 :

 4 Figure 4: The flow chart of Wu's phase-field method based on the Newton-Krylov algorithm in FFT solver. (remark: CV is damage field convergence check. AltCV is alternating minimization convergence check.)
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 211025 Figure 5: An illustration of the geometry of single notch plate. Material 1 (M1) is in yellow and Material 2 (M2) in purple.
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 6 Figure 6: Averaged stress-strain relation curves (remark: the curve thickness of different loading steps are different, which is for distinguishing the curves between each other).

Figure 7 :

 7 Figure 7: Averaged stress-strain relation curves of (a) contrast 10, (b) contrast 1000.
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 8 Figure 8: Results of Wu's phase-field model for single notch model with different l c values. (G e c /G c = 1.)

Figure 10 .

 10 Figure 10. Because, cracks will initiate in the matrix if there is no debonding model. The model size is 0.02mm (20µm) with a fiber volume fraction of V f = 0.15 with one voxel size in thickness. The resolution of the model is N = 225. The blue part represents the fiber,
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 9 Figure 9: Stress-strain relation of single notch model with different contrasts.

Figure 10 :

 10 Figure 10: Two-fibers unit-cell composite model. (blue part: fiber and red part: matrix.)

Figure 11 :

 11 Figure 11: Results of Miehe's phase-field model for two-fibers unit-cell composite model (l f = 2.75 • 10 -3 mm): (a) Averaged stress-strain curves; (b) Local crack patterns for l c = 1.60 • 10 -3 mm; (c) Local crack patterns for l c = 8.00 • 10 -4 mm; (d) Local crack patterns for l c = 5.00 • 10 -4 mm.(Remark: The orange dash circles are fiber contours.)

Figure 12 :

 12 Figure 12: Results of Wu's phase-field model for two-fibers unit-cell composite model: (a) Averaged stress-strain curves (l f = 2.75 • 10 -3 mm); (b) Local crack patterns for l c = 8.00 • 10 -4 mm; (c) Local crack patterns for l c = 5.00 • 10 -4 mm; (d) Local crack patterns for l c = 2.30•10 -4 mm. (remark: the curves for 8.00•10 -4 mm to l c = 2.30•10 -4 mm are superimposed. The orange dash circles are fiber contours.)

Fig. 13 (

 13 Fig. 13(a) shows the damage field of Miehe's model, while Fig. 13(b) shows that of Wu's model. Fig. 13(c) represents the damage profiles of center line for both models. In this figure, both Miehe's and Wu's models are set as l c = 5.00 • 10 -4 . As can be seen in Fig.

Figure 13 :

 13 Figure 13: (a) Damage fields of Miehe's model; (b) Damage fields of Wu's models; (c) Damage profiles along the center line. (Remark: l f = 2.75 • 10 -3 mm and l f = 5 • 10 -4 mm)

Figure 14 :

 14 Figure 14: Results of Wu's phase-field model for two-fibers unit-cell composite model (l c = 5.00 • 10 -4 mm): (a) Averaged stress-strain curves; (b) Local crack patterns for l f = 2.67 • 10 -4 mm; (c) Local crack patterns for l f = 1.80 • 10 -3 mm; (d) Local crack patterns for l f = 2.75 • 10 -3 mm. (Remark: The orange dash circles are fiber contours.)
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can be reduced by decreasing the l c value while satisfying the criteria set in this work.

The authors also note that there has been increased attention to interface modeling in phase-field, with proposals for multi-phase-field models or CZMs. These techniques could also be used to reduce l c sensitivity at the interface, but that is beyond the scope of this paper. The comparison of computational time between Wu's and Miehe's models, which is not included in this work, would still be valuable for the future work.

Another difference between Wu's and Miehe's models was found in this study. Wu's phase-field model introduces an elastic stage where the damage at a point is always zero until it exceeds the limit, while in Miehe's model the damage state becomes positive from the start of the load. This suggests that Wu's model may be more suitable for brittle failure.