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ABSTRACT
This paper revisits single-channel audio source separation based on
a probabilistic generative model of a mixture signal defined in the
continuous time domain. We assume that each source signal fol-
lows a non-stationary Gaussian process (GP), i.e., any finite set of
sampled points follows a zero-mean multivariate Gaussian distribu-
tion whose covariance matrix is governed by a kernel function over
time-varying latent variables. The mixture signal composed of such
source signals thus follows a GP whose covariance matrix is given
by the sum of the source covariance matrices. To estimate the latent
variables from the mixture signal, we use a deep neural network with
an encoder-separator-decoder architecture (e.g., Conv-TasNet) that
separates the latent variables in a pseudo-time-frequency space. The
key feature of our method is to feed the latent variables into the ker-
nel function for estimating the source covariance matrices, instead
of using the decoder for directly estimating the time-domain source
signals. This enables the decomposition of a mixture signal into the
source signals with a classical yet powerful Wiener filter that consid-
ers the full covariance structure over all samples. The kernel func-
tion and the network are trained jointly in the maximum likelihood
framework. Comparative experiments using two-speech mixtures
under clean, noisy, and noisy-reverberant conditions from the WSJ0-
2mix, WHAM!, and WHAMR! benchmark datasets demonstrated
that the proposed method performed well and outperformed the base-
line method under noisy and noisy-reverberant conditions.

Index Terms— Time-domain audio source separation, Gaussian
processes, deep kernel learning

1. INTRODUCTION

Audio source separation extracts audio signals of interest or removes
unwanted signals from recordings [1, 2]. It is invaluable in many
applications, including speech enhancement [3], automatic speech
recognition [4], music separation [5], and sound event detection [6].

One of the most modern approaches to single-channel audio
source separation is to use a deep neural network (DNN) that works
in the time domain, e.g., TasNet [7], Conv-TasNet [8], SuDoRM-
RF [9], SuDoRM-RF++ [10], SepFormer [11,12], MossFormer [13],
and WaveFormer [14]. Most such time-domain separation meth-
ods are based on the encoder-separator-decoder architecture that
performs mask-based source separation in a pseudo-time-frequency
(pseudo-TF) space. More specifically, the encoder transforms a time-
domain mixture signal into a spectrogram-like mixture representa-
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Figure 1: The proposed Gaussian process-based single-channel audio
source separation method based on time-domain Wiener filtering
with deep kernel learning.

tion, the separator estimates the spectrogram-like source represen-
tations, and the decoder recovers the time-domain source signals.
All the networks are trained jointly in a fully data-driven manner,
encouraging the learned pseudo-TF space to be optimal for source
separation. To further improve the performance, various architec-
tures for the separator [7–11, 13, 14] and various filterbanks for the
encoder and decoder [15] have been investigated.

In this paper, we revisit the classical approach to audio source
separation based on the Gaussian process (GP) [16]. If source sig-
nals follow independent GPs meaning that any finite set of sampled
points is normally distributed, the mixture signal given as the sum of
these signals follows a GP whose covariance function is given as the
sum of the source covariance functions. Source separation is then re-
cast as posterior inference of the latent sources from the observed
mixture with Wiener filtering [17,18]. Although this model is strictly
formulated in the continuous time domain, most conventional meth-
ods perform Wiener filtering frame-wise, assuming the local station-
arity and the inter-frame independence [19]. Specifically, the magni-
tude spectrogram of the mixture signal is decomposed while keep-
ing the phase spectrogram untouched [1]. The performance of this
strategy, however, is affected by the time and frequency resolutions.
In addition, the possibly incompatible phase information causes un-
pleasant artifacts in reconstructed time-domain signals. To the best
of our knowledge, a method based on variational sparse GPs [20] is
the only method that operates entirely in the time domain.

Recent studies on GPs have focused on integrating deep learn-
ing methods into the probabilistic framework [21, 22]. One can use
the covariance function of a GP for estimating the uncertainty to im-
prove the robustness and interpretability, as in Bayesian neural net-
works [23]. Alternatively, one can parameterize the covariance func-
tion of a GP with a DNN in the framework of deep kernel learning
(DKL) [24–26]. For example, a DNN was used for learning a low-
dimensional representation of the input on which the kernel function
works as a similarity measure [24]. Despite the theoretical support,
these models tend to be hard to train in practice [22]. To mitigate this
difficulty, heuristics (e.g., pre-training) need to be considered [24].
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or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
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In this paper, we propose a GP-based audio source separation
method that uses a time-domain Wiener filter parameterized by a
DNN for inferring source signals from a mixture signal at once
(Figure 1). We assume that the non-stationarity of each source signal
is governed by a time-domain sequence of latent variables. The Gram
matrix of the source GP over all sampled points is computed with a
kernel function over the latent variables, which are estimated from
the mixture signal with an encoder-separator-decoder network, e.g.,
Conv-TasNet [8] and SepFormer [11]. The kernel function (GP-based
generative model) and the network (DKL-based inference model)
are trained jointly in the maximum likelihood framework. This is the
first attempt to combine DKL with full-covariance Wiener filtering
for GP-based source separation. We show that the proposed approach
achieved good speech separation performances under clean, noisy,
and noisy-reverberant conditions with the popular WSJ0-2mix [27],
WHAM! [28], and WHAMR! [29] benchmark datasets, respectively.

2. RELATED WORK

Let x ≜ [x1, . . . , xT ]
T ∈ RT be a series of T sampled points from

a mixture signal and sk ≜ [sk1, . . . , skT ]
T ∈ RT be that from the

signal of source k ∈ {1, . . . ,K}, where K is the number of sources.
The goal of source separation is to recover source signals {sk}Kk=1

given the observed mixture signal x.

2.1. Neural time-domain audio source separation
Time-domain audio source separation methods are capable of esti-
mating the source signal sk given the mixture signal x. The main
advantage of this approach is that it can circumvent the phase esti-
mation, which has still been a challenging problem for separation
methods that estimate masks for magnitude spectrograms or phase-
aware masks for complex-valued spectrograms [1].

For this purpose, deep learning techniques have been used. In
the encoder-separator-decoder approach [7–11, 13, 14], the encoder
transforms x into a pseudo-TF representation from which source
representations are extracted by the separator and transformed to sk
using the decoder. The separation can be generally expressed as

{ŝk}Kk=1 ← Dec (Sep (Enc (x))) . (1)

Strictly speaking, the separation is not done in the time domain
but in a learned pseudo-TF space that encapsulates the signal fea-
tures with phase information and is optimized for the training data.
The optimizable filterbanks [15] used in the encoder and decoder
are trained jointly with the separator that incorporates a powerful
DNN, e.g., the long short-term memory network [7], the temporal
convolutional network [8], the multi-resolution convolutional net-
work [9, 10], and the transformer network [11, 13, 14].

2.2. Gaussian process regression with deep kernel learning
Let f be a continuous function over a space Y . If f follows a
Gaussian process (GP) [16], any finite set of T sampled points
denoted by f ≜ {f(yt)}Tt=1 given Y ≜ {yt ∈ Y}Tt=1 follows a
multivariate Gaussian distribution. Its probability density function
is given by pΘ (f |Y) = N (µ,VΘ(Y)), where µ ∈ RT is a mean
vector and VΘ(Y) ∈ RT×T is a covariance matrix whose elements
are computed with a kernel function kΘ(·, ·) parameterized by Θ as

{VΘ(Y)}tt′ = kΘ(yt,yt′), (2)

where, in this case, t, t′∈{1, . . . , T} serve as the row and column
indices, respectively. Given another set of T ∗ sampled points de-
noted by Y∗, GP regression [16] estimates the corresponding f∗ via
the posterior distribution of f∗ given f , Y, and Y∗.

Deep kernel learning (DKL) [24] exploits the expressive power
of DNNs in constructing {VΘ(Y)}tt′ via a non-linear mapping
gΦ(·), where Φ denotes DNN parameters, given a kernel kΘ(·, ·) as

{VΘ(Y)}tt′ = kΘ(gΦ(yt), gΦ(yt′)). (3)

3. PROPOSED METHOD

This section describes the proposed method based on a latent variable
model (Figure 1). It performs source separation in a pseudo-TF do-
main (latent variable estimation) with an inference model, computes
the Gram matrices of source GPs, and finally estimates source signals
with a Wiener filter. Let Zk = [zk1, . . . , zkT ]

T ∈ RT×Q be a series
of latent variables of source k ∈ {1, . . . ,K}, where zkt ∈ RQ.

3.1. Source separation based on Gaussian processes
We assume that each source signal is drawn from a GP in the con-
tinuous time domain and thus any finite set of T sampled points, sk,
follows a real multivariate Gaussian distribution with a zero-mean
vector and a covariance matrix governed by a source-specific kernel
function VΘk with parameters Θk as follows:

pΘk

(
sk
∣∣Zk

)
= N

(
sk
∣∣0,VΘk (Zk)

)
. (4)

We also consider the presence of white noise. Let ϵ ∈ RT be a series
of T sampled points from white noise, which is expressed as follows:

p(ϵ) = N
(
ϵ
∣∣0, λI) , (5)

where λ ∈ R+ is the noise variance (regularization parameter).
Assuming the signal additivity, the mixture x =

∑K
k=1 sk + ϵ can

be said to follow a multivariate Gaussian distribution as follows:

pΘ,λ

(
x
∣∣Z) = N (x∣∣0,VΘ(Z) + λI

)
, (6)

where VΘ(Z) ≜
∑K

k=1 VΘk (Zk) with Θ ≜ {Θk}Kk=1 and Z ≜
{Zk}Kk=1. The posterior distribution of sk given Z and x is given by

pΘ,λ

(
sk
∣∣Z,x) = N (sk∣∣µs

k,Σ
s
k

)
, (7)

µs
k = VΘk (Zk) (VΘ(Z) + λI)−1 x, (8)

Σs
k = VΘk (Zk)−VΘk (Zk) (VΘ(Z) + λI)−1 VΘk (Zk), (9)

where the posterior mean is considered as the estimated source, i.e.,
ŝk ≜ µs

k. Equation (8) is also known as Wiener filtering whose fil-
ter VΘk (Zk) (VΘ(Z) + λI)−1 requires estimation of source latent
variables Z to obtain the covariance matrices {VΘk (Zk)}Kk=1.

3.2. Estimation of latent variables and covariance matrices
We estimate Z given x using a DNN-based inference model with
an encoder-separator-decoder architecture. While the decoder was
originally used for estimating time-domain source signals from the
pseudo-TF source representations obtained by the separator (Sec-
tion 2.1), our decoder estimates the time-domain latent variables Z
from the frame-varying pseudo-TF representations as follows:

Z← InferΦ (x) = DecϕD
(
SepϕS

(
EncϕE (x)

))
, (10)

where Φ ≜ {ϕD, ϕS, ϕE} denotes the inference model parameters
that gather the encoder parameters ϕE, the separator parameters ϕS,
and the source-specific decoder parameters ϕD ≜ {ϕD

k}Kk=1 . The
decoder has a 1-dimensional convolutional layer as in most vanilla
decoders except that it returns a matrix of RT×Q, not a vector of RT .

We then compute a covariance matrix VΘk (Zk) using a non-
stationary, non-degenerate composite kernel resulting from multiply-
ing the linear kernel and the squared-exponential kernel [16]:{

VΘk (Zk)
}
tt′

= ωk0δtt′ + ωk1z
T
ktzkt′e

−θk∥zkt−zkt′∥2 , (11)
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where Θk ≜ {ωk0, ωk1, θk} ∈ R3
+ gathers the kernel parameters.

3.3. Parameter optimization

The inference model Φ, the kernel parameters Θ, and the noise pa-
rameter λ are optimized, in principle, such that the log-likelihood of
the sources given the mixture and latent variables, ln pΘ,λ(s|Z,x),
is maximized. This is performed by gradient descent with backprop-
agation using permutation-invariant training (PIT) [30]. For better
optimization, we opt for a two-stage training approach.

In the first stage, we train a vanilla encoder-separator-decoder
model, e.g., Conv-TasNet [8], by minimizing the negative scale-
invariant signal-to-distortion ratio (SI-SDR) [31] given by

LSI-SDR ≜ −
K∑

k=1

10 log10

(
α2sTksk

(αsk−µs
k)

T (αsk−µs
k)

)
, (12)

where, in this stage, the estimated sources {µs
k}Kk=1 are the output

of the vanilla decoder and α = (µs
k)

T sk
(
sTksk

)−1
is the optimal

scaling factor that minimizes (αsk−µs
k)

T (αsk−µs
k).

In the second stage, we construct an inference model by combin-
ing the encoder and separator of the pre-trained vanilla model with
our decoder. Although fine-tuning the parameters ϕE and ϕS may
provide some improvement, it is not easy to effectively configure the
fine-tuning procedure. As a preliminary attempt, we opt to freeze ϕE

and ϕS in this paper and only optimize ϕD together with Θ and λ by
minimizing the negative log-likelihood (NLL) given by

LNLL ≜ − ln pΘ,λ(s|Z,x) = −
K∑

k=1

ln pΘ,λ(sk|Z,x)

=
1

2

K∑
k=1

((
LΣ

k

)−1

(sk−µs
k)

)T((
LΣ

k

)−1

(sk−µs
k)

)

+

K∑
k=1

T∑
t=1

ln
{
LΣ

k

}
tt
+

KT

2
ln 2π, (13)

where LΣ
k is obtained by the Cholesky decomposition for regularized

Σs
k, i.e., Σs

k + ε
L
Tr
(
Σs

k

)
I = LΣ

k

(
LΣ

k

)T
with ε working to ensure

the positive definiteness of the left-hand side. In this paper, we set the
default value to ε = 10−6, but when it is needed, we let it be larger
to allow a successful decomposition of a particular Σs

k. Instead of
LNLL, LSI-SDR can also be used in this stage.

3.4. Dimensionality reduction

Our model performs source separation based on the covariance ma-
trix VΘk (Zk) ∈ RT×T , which is computationally prohibitive in
practice. For example, a 1-s signal sampled at 8 kHz has a covari-
ance matrix of size (8000× 8000). To deal with it, we perform par-
titioning during both the training phase and the test phase.

In the training phase, the latent variables {Zk ∈ RT×Q}Kk=1 are
estimated once given x ∈ RT . Each source latent variable Zk is
partitioned into non-overlapping L segments {Zkl ∈ RT ′×Q}Ll=1,
where T ′ ≪ T and l is the segment index. In this paper, we set
T ′ = 1600 (200ms at 8 kHz). The covariance matrix construction
and source separation are then performed given these segmented
latent variables. LNLL is computed segment-wise, whereas LSI-SDR is
calculated after concatenating the separated source segments.

In the test phase, the covariance matrix construction and source
separation are performed given possibly overlapping latent variable
segments. The final separated sources are obtained by simple con-
catenation of separated source segments (for non-overlapping seg-

ments) or by the overlap-add (OLA) technique [32] with a Hann
weighting window (for overlapping segments). In this paper, we use
segments with an overlap of size T ′/2 = 800 (i.e., 100ms at 8 kHz).

4. EVALUATION

We considered single-channel separations of two speech signals from
mixtures under clean (ideal), noisy, and noisy-reverberant conditions.
We used the ‘min’ variants of the WSJ0-2mix dataset [27] for the
clean condition, the WHAM! dataset [28] for noisy conditions, and
the WHAMR! dataset [29] for noisy-reverberant conditions. Each
dataset has training, validation, and test sets of 20 000, 5000, and
3000 mixtures, respectively. All data are sampled at 8 kHz.

For clean speech mixtures, we set all separation models to output
the two speech signals (K = 2). For noisy or noisy-reverberant mix-
tures, all models were set to additionally output the residual signal,
corresponding to the noise component or the noise-and-reverberation
component, respectively (K = 3). Nonetheless, the performance
assessment took into account only the estimated speech signals.

Speech separation performance was assessed in terms of im-
provements of the SI-SDR (SI-SDRi), the perceptual evaluation of
speech quality (PESQi), and the short-time objective intelligibility
(STOIi) [31, 33, 34]. A permutation solver that maximizes SI-SDR
(as in PIT [30]) was used to decide the best source ordering.

4.1. Configurations
We considered a non-causal Conv-TasNet [8] based on the Asteroid
library [35] or a non-causal SepFormer [11,12] based on the Speech-
Brain library [36] as the baseline model.1 We trained a baseline
model with a batch of 16 (Conv-TasNet) or 4 (SepFormer) 4-s seg-
ments (T =32000) for 300 epochs on the original training dataset
(without data augmentation as in, e.g., [9, 10]). The learning rate of
the Adam optimizer [37] was initially set to 10−3 (Conv-TasNet)
or 10−4 (SepFormer) and halved when the validation loss did not
improve after 5 consecutive epochs. A norm-based gradient clip-
ping [38] with a threshold of 5 was applied.

Our GP-based model, Conv-TasNet+GP or SepFormer+GP, was
built utilizing the parameters of encoder ϕE and separator ϕS of Conv-
TasNet or SepFormer, respectively, trained for 200 epochs, at which
the SI-SDRi scores have stopped improving, and were virtually the
same after 300 epochs (cf. Table 1). We substituted the original de-
coder with our decoder that outputs 8-dimensional source latent vari-
ables (Q=8). The parameters of our decoder ϕD were initialized
using random semi-orthogonal matrices [39], while the other pa-
rameters were initialized as ωk0=10−2, ωk1←N (1, 10−4), θk←
N (1, 10−4), and λ = 10−2. The training configuration of a GP-
based model was the same as that of the vanilla model, except that it
was trained with a batch of 16 4-s segments for 100 epochs. If we
take into account the pre-training of the vanilla model, the GP-based
model was trained for 300 epochs in total. Based on a grid-search-
based hyperparameter tuning, we found that the generally-optimal
initial learning rate for LNLL was 2×10−5, while that for LSI-SDR

was 5×10−5 (ConvTasNet+GP) or 5×10−6 (SepFormer+GP).

4.2. Results and discussion
Table 1 compares the performance of different models in terms of
SI-SDRi, PESQi, and STOIi scores. These scores demonstrate that

1The total number of parameters for WSJ0-2mix (K =2) was 5.05M
(Conv-TasNet), 5.17M (Conv-TasNet+GP), 25.68M (SepFormer), or
25.81M (SepFormer+GP), whereas the total number of parameters for
WHAM! or WHAMR! (K=3) was 5.12M (Conv-TasNet), 5.31M (Conv-
TasNet+GP), 25.75M (SepFormer), or 25.94M (SepFormer+GP).
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Table 1: Average speech separation performance scores of the different models on the test set. Higher is better for all metrics. OLA denotes the
overlap-add operation required for separation with overlapping segments. Boldface numbers show the top performances taking into account the
95% confidence interval over the best performances (indicated by ⋆) in each group separated based on the baseline model (shown in italics).

Model Loss
function OLA

SI-SDRi (dB) PESQi STOIi
WSJ0-2mix WHAM! WHAMR! WSJ0-2mix WHAM! WHAMR! WSJ0-2mix WHAM! WHAMR!

Conv-TasNet [8] LSI-SDR n/a 15.8 13.3 10.6 1.55 0.71 0.45 0.219 0.240 0.214
Conv-TasNet+GP LNLL ✗ 16.0 13.6 10.7 1.52 0.76 0.51 0.224 0.248 0.221
Conv-TasNet+GP LNLL ✓ 16.0⋆ 13.7 10.9 1.54 0.79 0.53⋆ 0.226⋆ 0.250 0.224
Conv-TasNet+GP LSI-SDR ✗ 15.4 13.7 10.9 1.56 0.79 0.51 0.224 0.251 0.224
Conv-TasNet+GP LSI-SDR ✓ 15.5 13.9⋆ 11.0⋆ 1.58⋆ 0.81⋆ 0.53 0.225 0.253⋆ 0.227⋆

SepFormer [11] LSI-SDR n/a 19.8⋆ 15.5⋆ 13.0⋆ 2.03 0.99 0.68 0.241 0.281 0.265
SepFormer+GP LNLL ✓ 19.2 15.3 12.8 1.91 1.05 0.77⋆ 0.241 0.282 0.268
SepFormer+GP LSI-SDR ✓ 19.6 15.5 12.9 2.03⋆ 1.06⋆ 0.76 0.243⋆ 0.285⋆ 0.270⋆
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Figure 2: Separation examples of a mixture segment under a noisy-reverberant condition (of WHAMR! dataset) using SepFormer+GPs. For each
subfigure, the columns from left to right show the first speech signal, the second speech signal, and the residual. The rows from top to bottom
show latent variable estimates (Q = 8), covariance matrix estimates, time-domain waveform estimates, and time-domain waveform targets.

the proposed GP-based models outperformed the vanilla models,
especially under the more challenging noisy (WHAM!) and noisy-
reverberant (WHAMR!) conditions.2 Although the SI-SDRi scores
of SepFormer+GPs are not significantly different from those of Sep-
Former under these two conditions, the PESQi and STOIi scores im-
ply that the pure time-domain modeling in the GP-based models, in-
cluding SepFormer+GPs, improves perceptual quality, likely due to
better phase consistency. These results also suggest that separation
could benefit from the estimation of the residual covariance structure
during the Wiener filter computation. Separation with overlapping
segments (denoted by OLA) is shown to be useful probably by elim-
inating the boundary effect that causes the discontinued waveform
in separation with non-overlapping segments. The GP-based models
trained with LSI-SDR generally performed better speech separation

2Our baseline performance is generally higher than that in the literature.
The reported SI-SDRi scores on WSJ0-2mix, WHAM!, and WHAMR! for
Conv-TasNet are 15.3dB, 12.7dB, and 8.3dB [8, 13], while those for
SepFormer are 20.4dB, 14.7dB, and 11.4dB [12]. This could be attributed
to differences in the details of the network and training configurations.

than those trained withLNLL. It may indicate that constraining the co-
variance matrices as in LNLL makes optimization more challenging.

Figure 2 provides insight using examples of source latent
variables, covariance matrices, and signals estimated using Sep-
Former+GPs. The estimated signals and the SI-SDR scores (shown
within the figures) look similar. Although we may notice differences
in the details, the estimated covariance matrices also show a similar
pattern reflecting the temporal structure of the time domain signal.

5. CONCLUSION

This paper proposes a novel time-domain audio source separation
based on Gaussian processes with deep kernel learning that effec-
tively combines the expressive power of a DNN with the rigorous
full-covariance Wiener filtering. With comparable numbers of pa-
rameters, the proposed GP-based models outperformed the corre-
sponding vanilla models in speech separations under challenging
noisy and noisy-reverberant conditions. Future work includes exten-
sive ablation studies to investigate the effective training procedures
and interpreting our approach within the variational framework.
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