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INTRODUCTION

Audio source separation extracts audio signals of interest or removes unwanted signals from recordings [START_REF]Audio Source Separation and Speech Enhancement[END_REF][START_REF] Makino | Audio Source Separation[END_REF]. It is invaluable in many applications, including speech enhancement [START_REF] Dubey | ICASSP 2022 Deep Noise Suppression Challenge[END_REF], automatic speech recognition [START_REF] Watanabe | CHiME-6 Challenge: Tackling multispeaker speech recognition for unsegmented recordings[END_REF], music separation [START_REF] Mitsufuji | Music Demixing Challenge 2021[END_REF], and sound event detection [START_REF] Turpault | Sound event detection and separation: A benchmark on DESED synthetic soundscapes[END_REF].

One of the most modern approaches to single-channel audio source separation is to use a deep neural network (DNN) that works in the time domain, e.g., TasNet [START_REF] Luo | TasNet: Time-domain audio separation network for real-time, single-channel speech separation[END_REF], Conv-TasNet [START_REF]Conv-TasNet: Surpassing ideal time-frequency magnitude masking for speech separation[END_REF], SuDoRM-RF [START_REF] Tzinis | SuDoRM-RF: Efficient networks for universal audio source separation[END_REF], SuDoRM-RF++ [START_REF] Tzinis | Compute and memory efficient universal sound source separation[END_REF], SepFormer [START_REF] Subakan | Attention is all you need in speech separation[END_REF][START_REF] Subakan | Exploring self-attention mechanisms for speech separation[END_REF], MossFormer [START_REF] Zhao | MossFormer: Pushing the performance limit of monaural speech separation using gated single-head transformer with convolution-augmented joint self-attentions[END_REF], and WaveFormer [START_REF] Veluri | Real-time target sound extraction[END_REF]. Most such time-domain separation methods are based on the encoder-separator-decoder architecture that performs mask-based source separation in a pseudo-time-frequency (pseudo-TF) space. More specifically, the encoder transforms a timedomain mixture signal into a spectrogram-like mixture representa-This work was supported by ANR Project SAROUMANE (ANR-22-CE23-0011), JST PRESTO no. JPMJPR20CB, and JSPS KAKENHI nos. 20H00602, 21H03572, 23K16912, and 23K16913.
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Source estimates tion, the separator estimates the spectrogram-like source representations, and the decoder recovers the time-domain source signals.
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All the networks are trained jointly in a fully data-driven manner, encouraging the learned pseudo-TF space to be optimal for source separation. To further improve the performance, various architectures for the separator [7-11, 13, 14] and various filterbanks for the encoder and decoder [START_REF] Pariente | Filterbank design for end-to-end speech separation[END_REF] have been investigated.

In this paper, we revisit the classical approach to audio source separation based on the Gaussian process (GP) [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF]. If source signals follow independent GPs meaning that any finite set of sampled points is normally distributed, the mixture signal given as the sum of these signals follows a GP whose covariance function is given as the sum of the source covariance functions. Source separation is then recast as posterior inference of the latent sources from the observed mixture with Wiener filtering [START_REF] Benaroya | Audio source separation with a single sensor[END_REF][START_REF] Liutkus | Gaussian processes for underdetermined source separation[END_REF]. Although this model is strictly formulated in the continuous time domain, most conventional methods perform Wiener filtering frame-wise, assuming the local stationarity and the inter-frame independence [START_REF] Vincent | Probabilistic modeling paradigms for audio source separation[END_REF]. Specifically, the magnitude spectrogram of the mixture signal is decomposed while keeping the phase spectrogram untouched [START_REF]Audio Source Separation and Speech Enhancement[END_REF]. The performance of this strategy, however, is affected by the time and frequency resolutions. In addition, the possibly incompatible phase information causes unpleasant artifacts in reconstructed time-domain signals. To the best of our knowledge, a method based on variational sparse GPs [START_REF] Alvarado | Sparse Gaussian process audio source separation using spectrum priors in the time-domain[END_REF] is the only method that operates entirely in the time domain.

Recent studies on GPs have focused on integrating deep learning methods into the probabilistic framework [START_REF] Wang | Bridging deep and multiple kernel learning: A review[END_REF][START_REF] Ober | The promises and pitfalls of deep kernel learning[END_REF]. One can use the covariance function of a GP for estimating the uncertainty to improve the robustness and interpretability, as in Bayesian neural networks [START_REF] Goan | Bayesian neural networks: An introduction and survey[END_REF]. Alternatively, one can parameterize the covariance function of a GP with a DNN in the framework of deep kernel learning (DKL) [START_REF] Wilson | Deep kernel learning[END_REF][START_REF] Calandra | Manifold Gaussian processes for regression[END_REF][START_REF] Bradshaw | Adversarial examples, uncertainty, and transfer testing robustness in Gaussian process hybrid deep networks[END_REF]. For example, a DNN was used for learning a lowdimensional representation of the input on which the kernel function works as a similarity measure [START_REF] Wilson | Deep kernel learning[END_REF]. Despite the theoretical support, these models tend to be hard to train in practice [START_REF] Ober | The promises and pitfalls of deep kernel learning[END_REF]. To mitigate this difficulty, heuristics (e.g., pre-training) need to be considered [START_REF] Wilson | Deep kernel learning[END_REF].
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In this paper, we propose a GP-based audio source separation method that uses a time-domain Wiener filter parameterized by a DNN for inferring source signals from a mixture signal at once (Figure 1). We assume that the non-stationarity of each source signal is governed by a time-domain sequence of latent variables. The Gram matrix of the source GP over all sampled points is computed with a kernel function over the latent variables, which are estimated from the mixture signal with an encoder-separator-decoder network, e.g., Conv-TasNet [START_REF]Conv-TasNet: Surpassing ideal time-frequency magnitude masking for speech separation[END_REF] and SepFormer [START_REF] Subakan | Attention is all you need in speech separation[END_REF]. The kernel function (GP-based generative model) and the network (DKL-based inference model) are trained jointly in the maximum likelihood framework. This is the first attempt to combine DKL with full-covariance Wiener filtering for GP-based source separation. We show that the proposed approach achieved good speech separation performances under clean, noisy, and noisy-reverberant conditions with the popular WSJ0-2mix [START_REF] Hershey | Deep clustering: Discriminative embeddings for segmentation and separation[END_REF], WHAM! [START_REF] Wichern | WHAM!: Extending speech separation to noisy environments[END_REF], and WHAMR! [START_REF] Maciejewski | WHAMR!: Noisy and reverberant single-channel speech separation[END_REF] benchmark datasets, respectively.

RELATED WORK

Let x ≜ [x1, . . . , xT ] T ∈ R T be a series of T sampled points from a mixture signal and s k ≜ [s k1 , . . . , s kT ] T ∈ R T be that from the signal of source k ∈ {1, . . . , K}, where K is the number of sources. The goal of source separation is to recover source signals {s k } K k=1 given the observed mixture signal x.

Neural time-domain audio source separation

Time-domain audio source separation methods are capable of estimating the source signal s k given the mixture signal x. The main advantage of this approach is that it can circumvent the phase estimation, which has still been a challenging problem for separation methods that estimate masks for magnitude spectrograms or phaseaware masks for complex-valued [START_REF]Audio Source Separation and Speech Enhancement[END_REF].

For this purpose, deep learning techniques have been used. In the encoder-separator-decoder approach [7-11, 13, 14], the encoder transforms x into a pseudo-TF representation from which source representations are extracted by the separator and transformed to s k using the decoder. The separation can be generally expressed as

{ŝ k } K k=1 ← Dec (Sep (Enc (x))) . (1) 
Strictly speaking, the separation is not done in the time domain but in a learned pseudo-TF space that encapsulates the signal features with phase information and is optimized for the training data. The optimizable filterbanks [START_REF] Pariente | Filterbank design for end-to-end speech separation[END_REF] used in the encoder and decoder are trained jointly with the separator that incorporates a powerful DNN, e.g., the long short-term memory network [START_REF] Luo | TasNet: Time-domain audio separation network for real-time, single-channel speech separation[END_REF], the temporal convolutional network [START_REF]Conv-TasNet: Surpassing ideal time-frequency magnitude masking for speech separation[END_REF], the multi-resolution convolutional network [START_REF] Tzinis | SuDoRM-RF: Efficient networks for universal audio source separation[END_REF][START_REF] Tzinis | Compute and memory efficient universal sound source separation[END_REF], and the transformer network [START_REF] Subakan | Attention is all you need in speech separation[END_REF][START_REF] Zhao | MossFormer: Pushing the performance limit of monaural speech separation using gated single-head transformer with convolution-augmented joint self-attentions[END_REF][START_REF] Veluri | Real-time target sound extraction[END_REF].

Gaussian process regression with deep kernel learning

Let f be a continuous function over a space Y. If f follows a Gaussian process (GP) [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF], any finite set of T sampled points denoted by f ≜ {f (yt)} T t=1 given Y ≜ {yt ∈ Y} T t=1 follows a multivariate Gaussian distribution. Its probability density function is given by pΘ (f |Y) = N (µ, VΘ(Y)), where µ ∈ R T is a mean vector and VΘ(Y) ∈ R T ×T is a covariance matrix whose elements are computed with a kernel function kΘ(•, •) parameterized by Θ as

{VΘ(Y)} tt ′ = kΘ(yt, y t ′ ), (2) 
where, in this case, t, t ′ ∈ {1, . . . , T } serve as the row and column indices, respectively. Given another set of T * sampled points denoted by Y * , GP regression [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF] estimates the corresponding f * via the posterior distribution of f * given f , Y, and Y * .

Deep kernel learning (DKL) [START_REF] Wilson | Deep kernel learning[END_REF] exploits the expressive power of DNNs in constructing {VΘ(Y)} tt ′ via a non-linear mapping gΦ(•), where Φ denotes DNN parameters, given a kernel kΘ(•, •) as {VΘ(Y)} tt ′ = kΘ(gΦ(yt), gΦ(y t ′ )).

(3)

PROPOSED METHOD

This section describes the proposed method based on a latent variable model (Figure 1). It performs source separation in a pseudo-TF domain (latent variable estimation) with an inference model, computes the Gram matrices of source GPs, and finally estimates source signals with a Wiener filter. Let Z k = [z k1 , . . . , z kT ] T ∈ R T ×Q be a series of latent variables of source k ∈ {1, . . . , K}, where z kt ∈ R Q .

Source separation based on Gaussian processes

We assume that each source signal is drawn from a GP in the continuous time domain and thus any finite set of T sampled points, s k , follows a real multivariate Gaussian distribution with a zero-mean vector and a covariance matrix governed by a source-specific kernel function VΘ k with parameters Θ k as follows:

pΘ k s k Z k = N s k 0, VΘ k (Z k ) . (4) 
We also consider the presence of white noise. Let ϵ ∈ R T be a series of T sampled points from white noise, which is expressed as follows:

p(ϵ) = N ϵ 0, λI , (5) 
where λ ∈ R+ is the noise variance (regularization parameter).

Assuming the signal additivity, the mixture x = K k=1 s k + ϵ can be said to follow a multivariate Gaussian distribution as follows:

p Θ,λ x Z = N x 0, VΘ(Z) + λI , (6) 
where

VΘ(Z) ≜ K k=1 VΘ k (Z k ) with Θ ≜ {Θ k } K k=1 and Z ≜ {Z k } K k=1 .
The posterior distribution of s k given Z and x is given by p

Θ,λ s k Z, x = N s k µ s k , Σ s k , (7) 
µ s k = VΘ k (Z k ) (VΘ(Z) + λI) -1 x, (8) 
Σ s k = VΘ k (Z k ) -VΘ k (Z k ) (VΘ(Z) + λI) -1 VΘ k (Z k ), (9) 
where the posterior mean is considered as the estimated source, i.e., ŝk ≜ µ s k . Equation ( 8) is also known as Wiener filtering whose filter VΘ k (Z k ) (VΘ(Z) + λI) -1 requires estimation of source latent variables Z to obtain the covariance matrices {VΘ k (Z k )} K k=1 .

Estimation of latent variables and covariance matrices

We estimate Z given x using a DNN-based inference model with an encoder-separator-decoder architecture. While the decoder was originally used for estimating time-domain source signals from the pseudo-TF source representations obtained by the separator (Section 2.1), our decoder estimates the time-domain latent variables Z from the frame-varying pseudo-TF representations as follows:

Z ← InferΦ (x) = Dec ϕ D Sep ϕ S Enc ϕ E (x) , (10) 
where Φ ≜ {ϕ D , ϕ S , ϕ E } denotes the inference model parameters that gather the encoder parameters ϕ E , the separator parameters ϕ S , and the source-specific decoder parameters ϕ D ≜ {ϕ D k } K k=1 . The decoder has a 1-dimensional convolutional layer as in most vanilla decoders except that it returns a matrix of R T ×Q , not a vector of R T .

We then compute a covariance matrix VΘ k (Z k ) using a nonstationary, non-degenerate composite kernel resulting from multiplying the linear kernel and the squared-exponential kernel [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF]:

VΘ k (Z k ) tt ′ = ω k0 δ tt ′ + ω k1 z T kt z kt ′ e -θ k ∥zkt-z kt ′ ∥ 2 , (11) 
where Θ k ≜ {ω k0 , ω k1 , θ k } ∈ R 3 + gathers the kernel parameters.

Parameter optimization

The inference model Φ, the kernel parameters Θ, and the noise parameter λ are optimized, in principle, such that the log-likelihood of the sources given the mixture and latent variables, ln p Θ,λ (s|Z, x), is maximized. This is performed by gradient descent with backpropagation using permutation-invariant training (PIT) [START_REF] Yu | Permutation invariant training of deep models for speaker-independent multitalker speech separation[END_REF]. For better optimization, we opt for a two-stage training approach.

In the first stage, we train a vanilla encoder-separator-decoder model, e.g., Conv-TasNet [START_REF]Conv-TasNet: Surpassing ideal time-frequency magnitude masking for speech separation[END_REF], by minimizing the negative scaleinvariant signal-to-distortion ratio (SI-SDR) [START_REF] Roux | SDR -half-baked or well done?[END_REF] given by

L SI-SDR ≜ - K k=1 10 log 10 α 2 s T k s k (αs k -µ s k ) T (αs k -µ s k ) , (12) 
where, in this stage, the estimated sources {µ s k } K k=1 are the output of the vanilla decoder and α = (

µ s k ) T s k s T k s k -1
is the optimal scaling factor that minimizes (αs k -µ s k ) T (αs k -µ s k ). In the second stage, we construct an inference model by combining the encoder and separator of the pre-trained vanilla model with our decoder. Although fine-tuning the parameters ϕ E and ϕ S may provide some improvement, it is not easy to effectively configure the fine-tuning procedure. As a preliminary attempt, we opt to freeze ϕ E and ϕ S in this paper and only optimize ϕ D together with Θ and λ by minimizing the negative log-likelihood (NLL) given by

L NLL ≜ -ln p Θ,λ (s|Z, x) = - K k=1 ln p Θ,λ (s k |Z, x) = 1 2 K k=1 L Σ k -1 (s k -µ s k ) T L Σ k -1 (s k -µ s k ) + K k=1 T t=1 ln L Σ k tt + KT 2 ln 2π, (13) 
where L Σ k is obtained by the Cholesky decomposition for regularized

Σ s k , i.e., Σ s k + ε L Tr Σ s k I = L Σ k L Σ k
T with ε working to ensure the positive definiteness of the left-hand side. In this paper, we set the default value to ε = 10 -6 , but when it is needed, we let it be larger to allow a successful decomposition of a particular Σ s k . Instead of L NLL , L SI-SDR can also be used in this stage.

Dimensionality reduction

Our model performs source separation based on the covariance matrix VΘ k (Z k ) ∈ R T ×T , which is computationally prohibitive in practice. For example, a 1-s signal sampled at 8 kHz has a covariance matrix of size (8000 × 8000). To deal with it, we perform partitioning during both the training phase and the test phase.

In the training phase, the latent variables

{Z k ∈ R T ×Q } K k=1 are estimated once given x ∈ R T . Each source latent variable Z k is partitioned into non-overlapping L segments {Z kl ∈ R T ′ ×Q } L l=1
, where T ′ ≪ T and l is the segment index. In this paper, we set T ′ = 1600 (200 ms at 8 kHz). The covariance matrix construction and source separation are then performed given these segmented latent variables. L NLL is computed segment-wise, whereas L SI-SDR is calculated after concatenating the separated source segments.

In the test phase, the covariance matrix construction and source separation are performed given possibly overlapping latent variable segments. The final separated sources are obtained by simple concatenation of separated source segments (for non-overlapping seg-ments) or by the overlap-add (OLA) technique [START_REF] Griffin | Signal estimation from modified shorttime fourier transform[END_REF] with a Hann weighting window (for overlapping segments). In this paper, we use segments with an overlap of size T ′ /2 = 800 (i.e., 100 ms at 8 kHz).

EVALUATION

We considered single-channel separations of two speech signals from mixtures under clean (ideal), noisy, and noisy-reverberant conditions. We used the 'min' variants of the WSJ0-2mix dataset [START_REF] Hershey | Deep clustering: Discriminative embeddings for segmentation and separation[END_REF] for the clean condition, the WHAM! dataset [START_REF] Wichern | WHAM!: Extending speech separation to noisy environments[END_REF] for noisy conditions, and the WHAMR! dataset [START_REF] Maciejewski | WHAMR!: Noisy and reverberant single-channel speech separation[END_REF] for noisy-reverberant conditions. Each dataset has training, validation, and test sets of 20 000, 5000, and 3000 mixtures, respectively. All data are sampled at 8 kHz.

For clean speech mixtures, we set all separation models to output the two speech signals (K = 2). For noisy or noisy-reverberant mixtures, all models were set to additionally output the residual signal, corresponding to the noise component or the noise-and-reverberation component, respectively (K = 3). Nonetheless, the performance assessment took into account only the estimated speech signals.

Speech separation performance was assessed in terms of improvements of the SI-SDR (SI-SDRi), the perceptual evaluation of speech quality (PESQi), and the short-time objective intelligibility (STOIi) [START_REF] Roux | SDR -half-baked or well done?[END_REF][START_REF] Rix | Perceptual evaluation of speech quality (PESQ): A new method for speech quality assessment of telephone networks and codecs[END_REF][START_REF] Taal | An algorithm for intelligibility prediction of time-frequency weighted noisy speech[END_REF]. A permutation solver that maximizes SI-SDR (as in PIT [START_REF] Yu | Permutation invariant training of deep models for speaker-independent multitalker speech separation[END_REF]) was used to decide the best source ordering.

Configurations

We considered a non-causal Conv-TasNet [START_REF]Conv-TasNet: Surpassing ideal time-frequency magnitude masking for speech separation[END_REF] based on the Asteroid library [START_REF] Pariente | Asteroid: The PyTorch-based audio source separation toolkit for researchers[END_REF] or a non-causal SepFormer [START_REF] Subakan | Attention is all you need in speech separation[END_REF][START_REF] Subakan | Exploring self-attention mechanisms for speech separation[END_REF] based on the Speech-Brain library [START_REF] Ravanelli | SpeechBrain: A general-purpose speech toolkit[END_REF] as the baseline model. 1 We trained a baseline model with a batch of 16 (Conv-TasNet) or 4 (SepFormer) 4-s segments (T = 32000) for 300 epochs on the original training dataset (without data augmentation as in, e.g., [START_REF] Tzinis | SuDoRM-RF: Efficient networks for universal audio source separation[END_REF][START_REF] Tzinis | Compute and memory efficient universal sound source separation[END_REF]). The learning rate of the Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] was initially set to 10 -3 (Conv-TasNet) or 10 -4 (SepFormer) and halved when the validation loss did not improve after 5 consecutive epochs. A norm-based gradient clipping [START_REF] Pascanu | On the difficulty of training recurrent neural networks[END_REF] with a threshold of 5 was applied.

Our GP-based model, Conv-TasNet+GP or SepFormer+GP, was built utilizing the parameters of encoder ϕ E and separator ϕ S of Conv-TasNet or SepFormer, respectively, trained for 200 epochs, at which the SI-SDRi scores have stopped improving, and were virtually the same after 300 epochs (cf. Table 1). We substituted the original decoder with our decoder that outputs 8-dimensional source latent variables (Q = 8). The parameters of our decoder ϕ D were initialized using random semi-orthogonal matrices [START_REF] Saxe | Exact solutions to the nonlinear dynamics of learning in deep linear neural networks[END_REF], while the other parameters were initialized as ω k0 = 10 -2 , ω k1 ← N (1, 10 -4 ), θ k ← N (1, 10 -4 ), and λ = 10 -2 . The training configuration of a GPbased model was the same as that of the vanilla model, except that it was trained with a batch of 16 4-s segments for 100 epochs. If we take into account the pre-training of the vanilla model, the GP-based model was trained for 300 epochs in total. Based on a grid-searchbased hyperparameter tuning, we found that the generally-optimal initial learning rate for L NLL was 2×10 -5 , while that for L SI-SDR was 5×10 -5 (ConvTasNet+GP) or 5×10 -6 (SepFormer+GP).

Results and discussion

Table 1 compares the performance of different models in terms of SI-SDRi, PESQi, and STOIi scores. These scores demonstrate that Table 1: Average speech separation performance scores of the different models on the test set. Higher is better for all metrics. OLA denotes the overlap-add operation required for separation with overlapping segments. Boldface numbers show the top performances taking into account the 95% confidence interval over the best performances (indicated by ⋆ ) in each group separated based on the baseline model (shown in italics). the proposed GP-based models outperformed the vanilla models, especially under the more challenging noisy (WHAM!) and noisyreverberant (WHAMR!) conditions. 2 Although the SI-SDRi scores of SepFormer+GPs are not significantly different from those of Sep-Former under these two conditions, the PESQi and STOIi scores imply that the pure time-domain modeling in the GP-based models, including SepFormer+GPs, improves perceptual quality, likely due to better phase consistency. These results also suggest that separation could benefit from the estimation of the residual covariance structure during the Wiener filter computation. Separation with overlapping segments (denoted by OLA) is shown to be useful probably by eliminating the boundary effect that causes the discontinued waveform in separation with non-overlapping segments. The GP-based models trained with L SI-SDR generally performed better speech separation 2 Our baseline performance is generally higher than that in the literature. The reported SI-SDRi scores on WSJ0-2mix, WHAM!, and WHAMR! for Conv-TasNet are 15.3 dB, 12.7 dB, and 8.3 dB [START_REF]Conv-TasNet: Surpassing ideal time-frequency magnitude masking for speech separation[END_REF][START_REF] Zhao | MossFormer: Pushing the performance limit of monaural speech separation using gated single-head transformer with convolution-augmented joint self-attentions[END_REF], while those for SepFormer are 20.4 dB, 14.7 dB, and 11.4 dB [START_REF] Subakan | Exploring self-attention mechanisms for speech separation[END_REF]. This could be attributed to differences in the details of the network and training configurations. than those trained with L NLL . It may indicate that constraining the covariance matrices as in L NLL makes optimization more challenging.

Model

Figure 2 provides insight using examples of source latent variables, covariance matrices, and signals estimated using Sep-Former+GPs. The estimated signals and the SI-SDR scores (shown within the figures) look similar. Although we may notice differences in the details, the estimated covariance matrices also show a similar pattern reflecting the temporal structure of the time domain signal.

CONCLUSION

This paper proposes a novel time-domain audio source separation based on Gaussian processes with deep kernel learning that effectively combines the expressive power of a DNN with the rigorous full-covariance Wiener filtering. With comparable numbers of parameters, the proposed GP-based models outperformed the corresponding vanilla models in speech separations under challenging noisy and noisy-reverberant conditions. Future work includes extensive ablation studies to investigate the effective training procedures and interpreting our approach within the variational framework.

Figure 1 :

 1 Figure 1: The proposed Gaussian process-based single-channel audio source separation method based on time-domain Wiener filtering with deep kernel learning.

Figure 2 :

 2 Figure2: Separation examples of a mixture segment under a noisy-reverberant condition (of WHAMR! dataset) using SepFormer+GPs. For each subfigure, the columns from left to right show the first speech signal, the second speech signal, and the residual. The rows from top to bottom show latent variable estimates (Q = 8), covariance matrix estimates, time-domain waveform estimates, and time-domain waveform targets.

The total number of parameters for WSJ0-2mix (K =

2) was 5.05 M (Conv-TasNet), 5.17 M (Conv-TasNet+GP), 25.68 M (SepFormer), or 25.81 M (SepFormer+GP), whereas the total number of parameters for WHAM! or WHAMR! (K = 3) was 5.12 M (Conv-TasNet), 5.31 M (Conv-TasNet+GP), 25.75 M (SepFormer), or 25.94 M (SepFormer+GP).
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