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We report single-mode 3D optical couplers leveraging adiabatic power transfer towards up to 4 output ports.
We use the CMOS compatible additive (3+1)D flash-TPP printing for fast and scalable fabrication. Coupling
optical losses of such devices are reduced below ∼ 0.06 dB by tailoring the coupling and waveguides geometry,
and we demonstrate almost octave-spanning broadband functionality from 520 nm to 980 nm.

INTRODUCTION

Low-loss single-mode optical coupling is a funda-
mental photonic tool, in both, classical and quantum
settings. Adiabatic coupling can achieve highly ef-
ficient and broadband single-mode coupling using a
tapered/inversely-tapered waveguide sequence1, and it is
a widespread technique in current 2D photonic integrated
circuits technology2,3. Optical power transfer between
the input and output waveguides is achieved through
evanescent coupling, where the optical mode adiabati-
cally leaks from the core of the tapering input waveg-
uides through the cladding into the inversely-tapering
output waveguides. Furthermore, this principle has been
proposed as an efficient-to-integrate scheme for mode-
selective coupling4 in multi-spatial modes optical com-
munications.

For advantageous scaling of future photonic networks,
unlocking the third dimension for integration is essen-
tial5. Here, we experimentally evaluate different taper-
ing strategies in additively (3+1)D-printed6 single-mode
couplers with 1 input and up to 4 outputs. We demon-
strate that global losses remain ¡ 2 dB for an exception-
ally wide wavelengths range almost spanning an octave
from 520 nm to 980 nm, with only ∼ 0.2 dB at opti-
mal conditions. Crucially, our 3D lithography fabrication
technology is additive and CMOS compatible.

3D ADIABATIC COUPLERS

Using the case of 1 to 2 couplers for illustrating the
concept, we tapered waveguide cores according to two
different strategies as illustrated in Fig. 1 (a), where the
left (right) panel shows conical (truncated rod) geome-
tries, respectively. In both, the waveguide cross-section
continuously changes along the propagation direction z
from an input diameter d through a taper-length lt, which
is intrinsically linked to the beating length zb = λ/∆n7.
To all output ports we added a straight section l = 30 µm
to minimize cross-talk outside the tapered section. In the
conical geometry, the waveguide cross-section shrinks at
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FIG. 1. (a) Design of the conical (left) and truncated rod
(right) geometries of (3+1)D flash-TPP printed 1 to 2 cou-
plers leveraging adiabatic power transfer. (b) Experimental
output intensity profiles of the 1 to 2, 3 and 4 adiabatic cou-
plers with truncated rod geometry.

an equal rate d/lt along (x, y). In the truncated rod ge-
ometry, the waveguide only shrinks at that rate along x,
while along y it retains its original diameter d. The trun-
cated rod design restricts coupling to be parallel to the
splitting direction and increases the effective interface-
area of the waveguides. To achieve efficient adiabatic
overlapping of optical modes, we inversely tapered input
and output waveguides with equal taper-rate and there-
fore identical symmetry in order to match their effective
modal index. This approach was used for 1 to 3 and 1
to 4 couplers, too. Figure 1(b) depicts the single-mode
output profile intensities of truncated rod adiabatic cou-
plers with 2 (top), 3 (middle) and 4 (bottom) outputs. In
the following investigations we consider the truncated rod
couplers, which have on average ∼ 3 times lower overall
losses than the conical couplers, presumably due to the
extra directionality and increased effective transfer-area.

FABRICATION

We leveraged rapid fabrication by combining one-
(OPP) and two-photon polymerization (TPP) in the
(3+1)D flash-TPP lithography concept, saving up to
≈ 90 % of fabrication time8. We use the commercial 3D
direct-laser writing Nanoscribe GmbH (Photonics Pro-
fessional GT) system and the liquid negative-tone IP-
S photoresist for the fabrication. The waveguide cores
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FIG. 2. (a) Global losses of 1 to 2 couplers with truncated rod
geometry for gaps g ∈ {0.4, 0.8, 1.2} µm and taper-lengths
lt ∈ {100 : 100 : 500} µm. (b) Output intensity profiles
of the 1 to 2 adiabatic couplers for taper-length lt = 200 µm
(left) and lt = 300 µm (right) and gaps g ∈ {0.4, 0.8, 1.2} µm
(top to bottom). (c) Global losses versus injection light wave-
length λ of the 1 to 2 adiabatic couplers with lt = 500 µm
and g = 0.8 µm. (d) Output intensity profiles from (c) over
∆λ ∼ 500 nm.

are printed in a single-step via TPP, with an optimal
laser power (LP = 15 mW) and small hatching distance
(h = 0.4 µm), to ensure smooth surfaces. Mechanical
supports, i.e. the cuboid-surface, are printed with larger
hatching distance (h = 0.8 µm). The slicing distance is
maximized to s = 1 µm since it does not crucially affect
optical performance for purely vertical waveguides. Af-
ter complete-TPP of the IP-S photoresist (n ≈ 1.51)9,
the unexposed photoresist is removed following a stan-
dard two-step development process. Finally, the entire
3D circuit is UV blanket exposed, polymerizing the un-
exposed volume inside the photonic chip via OPP with
a UV exposure dose of 3000 mJ/cm2. Furthermore, we
polymerized with a low TPP laser power (LP = 1 mW)
the volume in-between tapers. This provides an auxiliary
matrix that improves the stability for complex structures
during fabrication without significantly modifying the re-
fractive index contrast (∆n ≈ 5 × 10−3) between core-
cladding waveguides8.

RESULTS

We evaluate the performance of the couplers via the
global losses, which include injection, coupling and prop-
agation losses. Figure 2(a) shows the global losses of the
1 to 2 adiabatic couplers with truncated rod geometry
for different gaps g ∈ {0.4, 0.8, 1.2} µm, where we scan
taper-length lt from 100 to 500 µm, and we generally use
a diameter of d = 3.3 µm. We find optimal coupling be-

havior for lt = 500 µm and g = 0.4 µm, with total losses
of ∼ 0.2 dB, which corresponds to an exceptionally low
∼ 0.06 dB coupling losses8, and output intensities at the
two output ports differ only by ∼ 3.4 %. From the 1 to
2 output intensity profiles in Fig. 2(b) it is clear that
for lt = 200 µm (left) the outputs profiles are not the
fundamental LP01 mode, and for g = 1.2 µm (bottom)
individual output modes are not sufficiently decoupled.
In contrast, we obtain full splitting of LP01 single-modes
for lt = 300 µm (right) for all g. Consequently, the adi-
abatic criterion of our 1 to 2 couplers is fulfilled for a
taper-length lt ¿ 200 µm, which agrees with the theo-
retical value of zb ≈ 132 µm, at injection wavelenght
λ = 660 nm7. The adiabatic criterion was numerically
validated by 2D-simulations via COMSOL Multiphysics.
There, the fundamental eigenmode is launched at the
waveguide’s input facet via the Port boundary condi-
tions, and then propagates throughout a 2D projection
of the splitters from Fig. 1(a) with scattering boundary
conditions and ∆n ≈ 5 × 10−3. This further confirms
the adiabatic signature of our truncated rod 3D opti-
cal splitters. Finally, considering the optimal parameters
lt = 500 µm and g = 0.4 µm, we fabricated 1 to 3 and 1
to 4 adiabatic couplers (cf. Fig. 1(b)) with total losses
of only ∼ 0.7 dB and intensity difference between output
ports of ∼ 4.6 % (∼ 6.1 %) for 1 to 3 (1 to 4) adiabatic
couplers.

A major advantage of adiabatic power transfer com-
pared to interference-based directional couplers is a
wavelength-independent splitting of optical signals. We
test the broadband functionality of our 1 to 2 adiabatic
couplers with lt = 500 µm by injecting different wave-
lengths ranging from λ = 520 nm to λ = 980 nm. Cru-
cially, the bulk absorption of the IP-S photoresist does
not play a role on our short relevant length lt across the
entire wavelenght range investigated here9. According
to data shown in Fig. 2(c), global losses remain below
∼ 2 dB for the 1 to 2 adiabatic couplers over this range
almost spanning an octave. For λ ≥ 660 nm, global
losses start to increase due to lower modal confinement
for which larger gap g is required for adiabaticity. At
λ = 520 nm, we approach the single-mode cut-off wave-
length, i.e. ∼ 480 nm. Higher-order modes are excited for
which the evanescent coupling decreases due to reduced
modal overlap. Finally, Fig. 2(d) depicts the output in-
tensity profiles of the couplers across this entire range
of wavelengths, which clearly show the discussed effects
of higher-order modes as well as non-separated single-
modes.

CONCLUSIONS

In summary, we have shown the (3+1)D flash-TPP
fabrication of single-mode 3D optical couplers leverag-
ing adiabatic power transfer between one input and up
to 4 output ports. After optimization of the coupling
geometry, we obtain ∼ 0.2 dB (∼ 0.06 dB) global (cou-
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pling) losses and adiabatic broadband functionality over
∆λ ∼ 500 nm. The scalability of output ports here ad-
dressed5 can only be achieved by using the three spa-
tial dimensions. This further demonstrates this printing
strategy as a powerful tool for complex 3D integrated
photonic circuits, particularly towards future integration
of parallel optical interconnects.
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