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Abstract. Greenland ice sheet mass loss continues to accel-
erate as global temperatures increase. The surface albedo of
the ice sheet determines the amount of absorbed solar en-
ergy, which is a key factor in driving surface snow and ice
melting. Satellite-retrieved snow albedo allows us to com-
pare and optimise modelled albedo over the entirety of the ice
sheet. We optimise the parameters of the albedo scheme in
the ORCHIDEE (Organizing Carbon and Hydrology in Dy-
namic Ecosystems) land surface model for 3 random years
taken over the 2000–2017 period and validate over the re-
maining years. In particular, we want to improve the albedo
at the edges of the ice sheet, since they correspond to ab-
lation areas and show the greatest variations in runoff and
surface mass balance. By giving a larger weight to points at
the ice sheet’s edge, we improve the model–data fit by re-
ducing the root-mean-square deviation by over 25 % for the
whole ice sheet for the summer months. This improvement
is consistent for all years, even those not used in the cali-
bration step. We also show the optimisation successfully im-
proves the model–data fit at 87.5 % of in situ sites from the
PROMICE (Programme for Monitoring of the Greenland Ice
Sheet) network. We conclude by showing which additional
model outputs are impacted by changes to the albedo param-
eters, encouraging future work using multiple data streams
when optimising these parameters.

1 Introduction

The melting of the Greenland ice sheet (GrIS) is one of the
main contributors to sea-level rise (Frederikse et al., 2020).
As global temperatures continue to increase under climate
change, further melting and surface mass loss are expected
(The IMBIE team, 2020), potentially affecting deep ocean
circulation (Hu et al., 2011). Increased warming also darkens
the GrIS (Tedesco et al., 2016), decreasing the surface reflec-
tivity (i.e. albedo). This darkening has already been observed
over the last few decades, driven by snowmelt, the retreat of
the snow line, dust deposition (Dumont et al., 2014), and al-
gae growth (Perini et al., 2019; Cook et al., 2020; Williamson
et al., 2020), and is expected to worsen. Since surface albedo
determines the land surface energy balance by controlling the
amount of reflected solar (shortwave) radiation, reductions
in albedo – through the darkening of the ice sheet – result
in increased shortwave absorption. This, in turn, enhances
melting, creating a strong feedback to the atmosphere (Le
clec’h et al., 2019; Box et al., 2022). The melt–albedo feed-
back is an essential contributor to mass loss (Qu and Hall,
2014; Zeitz et al., 2021) and can be used as an emergent con-
straint to reduce the inter-model variability in projections of
climate change (Thackeray et al., 2021).

Both dynamical effects and surface processes drive Green-
land’s evolution. However, recent studies show that surface
mass balance changes dominate mass balance changes (Van
den Broeke et al., 2016; Ryan et al., 2019; The IMBIE team,
2020). To correctly represent the surface mass balance and
its components (sublimation and runoff), it is important to
simulate the physical processes within the snowpack. These
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depend on the surface energy balance and, therefore, on the
albedo. Given the importance of this albedo, it is crucial that
it is accurately simulated in land surface models (LSMs) used
to generate climate change projections. Therefore it is impor-
tant to confront LSM albedo estimates with observed values.
With large areas such as the GrIS, we can rely on remote-
sensing-based albedo measurements derived from various
polar-orbiting satellites (Qu et al., 2015). We can use these
data to evaluate and optimise LSMs using data assimilation.

Data assimilation (DA) refers to the act of incorporating
observational information into a model to constrain its es-
timates or parameters. Several studies have used remotely
sensed albedo for DA in LSMs. Due to albedo’s influence
on the partitioning of surface energy fluxes and the subse-
quent effect on the development of planetary boundary con-
ditions and clouds (Pielke and Avissar, 1990), some studies
have focused on the impact assimilating surface albedo has
on numerical weather prediction (e.g. Cedilnik et al., 2012;
Boussetta et al., 2015). Others have mainly used remotely
sensed data to derive new vegetation and soil background
albedo parameters to use in land surface models (e.g. Liang
et al., 2005; Houldcroft et al., 2009). There are also a num-
ber of examples of using snow albedo to improve snow mod-
els. For example, Malik et al. (2012) used MODIS (Moderate
Resolution Imaging Spectroradiometer; Schaaf et al., 2002)-
based snow albedo and the direct-insertion methodology in
the Noah LSM over three sites in Colorado to improve sim-
ulated snow depth and snow season duration. Satellite-based
albedo data were also used by Wang et al. (2015) to cali-
brate the ORCHIDEE (Organizing Carbon and Hydrology
in Dynamic Ecosystems; Krinner et al., 2005) LSM and in-
vestigate the impacts of albedo assimilation on offline and
coupled model simulations. Dumont et al. (2012) assimi-
lated remotely sensed albedo in the Crocus snowpack model
(Vionnet et al., 2012) to improve the modelling of the spa-
tial distribution of the glacier mass balance. Navari et al.
(2018) further improved the Crocus model using satellite-
derived albedo to improve surface mass balance (SMB) along
Greenland’s Kangerlussuaq transect. Other datasets have also
been assimilated to improve snow estimation, including snow
cover fraction estimates from optical sensors (e.g. Toure et
al., 2018; Xue et al., 2019) and measured ice surface temper-
atures (e.g. Navari et al., 2018). There have also been several
studies assimilating joint datasets. For example, the MODIS-
based snow cover fraction and albedo have been assimilated
in the Common Land Model LSM (Xu and Shu, 2014) and
the Noah LSM (Kumar et al., 2020). All these snow model
studies use DA for state estimation, i.e. updating the model
state whilst keeping the model parameters fixed. The tech-
niques used range from relatively simple methods like direct
insertion to more advanced statistical techniques like the en-
semble Kalman filter and particle filters.

Examples of DA used for parameter estimation, i.e. opti-
mising internal model parameters, in snow modelling are less
common. Su et al. (2011) demonstrated how DA can be used

for joint state and parameter assimilation in snow modelling.
Nevertheless, DA for parameter estimation remains more
commonly used by the LSM community to optimise vegeta-
tion parameters (see https://orchidas.lsce.ipsl.fr/ (last access:
3 July 2023) for such examples calibrating the ORCHIDEE
LSM). In these types of studies, it is common to optimise
over a single site (or single pixel) or a group of individual
pixels that usually share a common trait (e.g. the dominant
vegetation present), in what is known as a “multisite” ap-
proach (e.g. Kuppel et al., 2012; Raoult et al., 2016). In each
case, the optimisation results in sets of parameters that apply
to that individual site or trait tested. These approaches were
used because, historically, models were optimised against in
situ measurements from sites that are sparsely and unevenly
distributed. Advances in satellite data retrieval have helped
provide data over large areas for which we previously had no
measurements. However, with large quantities of data, com-
putational power and time still limit the experiments we can
perform.

In this study, using MODIS snow albedo, we use DA for
parameter estimation to improve the albedo parameterisation
inside the ORCHIDEE LSM (Krinner et al., 2005). While
albedo parameters in ORCHIDEE have been optimised for
vegetation and bare soil, this will be the first study optimis-
ing them for ice sheets. Our target area from this study is the
Greenland ice sheet. This study is the first test of applying the
ORCHIDEE data assimilation system over ice sheets to im-
prove modelling albedo and, in turn, the surface mass balance
of the ice sheet. Instead of using a single-site or multisite ap-
proach which samples the space, here, to exploit the full spa-
tial coverage of the satellite retrievals, we optimise over the
whole area of the GrIS to obtain one best set of model param-
eters applicable over the full ice sheet. Although this study is
only over the GrIS, we can apply the method to other regions.
We show how robust Bayesian parameter estimation is an im-
portant tool for model development. We further highlight the
different limitations and considerations needed to apply such
an approach. The paper is organised as follows. Methods and
data, including details about the ORCHIDEE LSM and its
DA framework, driving and observational datasets, and per-
formed experiments, can be found in Sect. 2. Section 3 lists
the results, starting with an assessment of the prior. This is
followed by the results of the main experiments and an eval-
uation over PROMICE (Programme for Monitoring of the
Greenland Ice Sheet) in situ sites. In Sect. 3.3, we look at the
impact of the optimisation on the modelling of the SMB of
the GrIS, as well as the different SMB components. In this
section, we also perform a sensitivity analysis of the differ-
ent parameters of the snow model for future work. Finally,
the discussion and conclusions can be found in Sect. 4.
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2 Methods and data

2.1 ORCHIDEE land surface model

The ORCHIDEE land surface model (Krinner et al., 2005) is
the terrestrial component of the IPSL Earth System Model
(ESM) used in climate projections (Boucher et al., 2020;
Cheruy et al., 2020). Either run offline (i.e. driven by pre-
scribed meteorological forcing) or coupled with an atmo-
spheric model (i.e. as part of the ESM), ORCHIDEE de-
scribes the exchanges of energy, water, and carbon between
the atmosphere and the continental biosphere. The land sur-
faces are represented as fractions of bare soil and plant func-
tional types. These surfaces can further be covered with
snow.

In this study, we adapted the CMIP6 (Coupled Model In-
tercomparison Project Phase 6) version of ORCHIDEE to run
over the GrIS. The CMIP6 version of ORCHIDEE uses the
three-layered snow model presented in Wang et al. (2013). To
apply ORCHIDEE over the GrIS, we implemented a new soil
type in this version of ORCHIDEE to mimic the presence of
ice in regions defined by the present-day ice mask (Bamber et
al., 2013). In ORCHIDEE, each soil type is defined accord-
ing to the USDA (United States Department of Agriculture)
taxonomy, which classifies soils as a function of their chem-
ical, physical, and biological properties (Carsel and Parrish,
1988). For the new icy soil type, the porosity and the sat-
urated volumetric water content are set to 0.98 to simulate
a soil filled with frozen water. This amounts to considering
ice an impermeable medium. However, it does not allow for
the representation of processes such as moulins where water
seeps through a network of galleries because the model does
not simulate the lateral transport of water. All the other char-
acteristics of this new soil type were set to those of the loam
soil type because it is the dominant soil type in the ice-free
regions around the GrIS (Fischer et al., 2021). Furthermore,
to be able to compare directly modelled to satellite-retrieved
albedo values, we computed the mean of albedo in both vis-
ible (VIS) and near-infrared (NIR) spectral domains. This is
done to be in accordance with MODIS data. We only con-
sider this averaged albedo in the rest of the study.

The snow albedo in ORCHIDEE is modelled following
the formulation of Chalita and Le Treut (1994). In the ab-
sence of fresh snow, snow-covered albedo in ORCHIDEE
(αsnow) decreases exponentially with time from its fresh
value (Aaged+Bdec) to a minimum value after ageing, i.e.
albedo of old snow (Aaged):

αsnow = Aaged+Bdec exp
(
−
τsnow

τdec

)
. (1)

Here the Bdec and τdec parameters control the decay rate of
snow albedo. This formula can be used to calculate the snow-
covered albedo over different vegetation types, with differ-
ent values of Aaged and Bdec accounting for the variability in
snow coverings. The parameterisation of snow age, τsnow, is

shown in Eq. (2):

τsnow(t + dt)= τsnow(t)+ fage, (2)

where t is the time and dt is the model time step (1800 s).
The latter term of equation, fage, represents the effect of low
temperatures on metamorphism:

fage =
(
τsnow(t)+

(
1− τsnow

τmax

)
· dt
)
· exp

(
−
Psnow

δc

)
− τsnow(t)

1+ gtemp(Tsoil)

 ,
gtemp(Tsoil)=

[
max(T0− Tsoil,0)

ω

]β
, (3)

where Psnow is snowfall, δc is the snowfall depth required to
reset the age of the snow, τmax is the maximum snow age,
T0 is the melting temperature (0 ◦C), Tsoil is soil temperature,
and ω and β are tuning constants. Parameters Aaged, Bdec,
τdec, τmax, δc, ω, and β from Eqs. (1) and (3), along with the
albedo of ice, αICE, are the parameters we focused on in this
study (listed in Table 1).

2.2 Driving and observational datasets

2.2.1 Forcing provided by regional model (MAR)

The ORCHIDEE model was forced using meteorological
outputs from the regional climate model Modèle Atmo-
sphérique Régional (MAR; Gallée and Schayes, 1994; Kit-
tel, 2021), version 3.11.4. MAR is a regional atmospheric
model that uses 6-hourly ERA-Interim reanalyses data from
the European Centre for Medium-Range Weather Forecasts
(ECMWF; Dee et al., 2011) to prescribe the atmospheric
boundary conditions outside the domain. Outputs from MAR
have a resolution of 20 km and a 3-hourly time step. In addi-
tion to the MAR meteorological outputs, we consider runoff,
sublimation, and SMB outputs in this study to assess the im-
pact of the optimisation on these simulated quantities. MAR
was specifically developed for polar regions and offers good
performance for the calculation of SMB and its components.
Furthermore, it has been shown to outperform reanalysis
products such as ERA5 (Delhasse et al., 2020), especially
in providing the near-surface temperature in summer, which
plays a critical role in representing snow and ice processes.

2.2.2 MODIS snow albedo

In this study, we used satellite-derived snow albedo from
the NASA (National Aeronautics and Space Administra-
tion) MODIS MOD10A1 product (Hall et al., 1995). This
product uses data from the Terra satellite, which has a sun-
synchronous, near-polar circular orbit crossing the Equator at
approximately 10:30 local time (Hall and Riggs, 2016) and
providing global coverage every 1–2 d. MOD10A1 is a clear-
sky daily product. When more than one retrieval is available
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Table 1. Parameters of the snow model. The default values represent the values used in the standard simulation of ORCHIDEE; min and max
refer to the range over which the parameters are allowed to vary during our experiments.

Parameter Description Name in code Default values Min Max

Aaged Albedo of old snow SNOWA_AGED∗ 0.62 0.50 0.70
Bdec Sum with Aaged for the albedo of fresh snow SNOWA_DEC 0.169 0.10 0.40
δc Snowfall depth required to reset the snow age (m) SNOW_TRANS_NOBIO 0.2 0.2 2
τdec Snow age decay rate (d) TCST_SNOWA_NOBIO 10 1 10
ω

Tuning constants for glaciated snow-covered areas
OMG1 7 1 7

β OMG2 4 0.5 4.5
τmax Maximum snow age (d) MAX_SNOW_AGE 50 40 60
αICE Ice albedo ALB_ICE 0.4 0.3 0.5

∗ Note the sum of Aaged and Bdec must be less than or equal to 1 – this constraint is enforced during the optimisations.

on a given day, which is the case near the poles, the best
value is kept. This best value is chosen based on solar eleva-
tion, distance from nadir, and cell coverage (Hall and Riggs,
2016). In addition, pixels in MOD10A1 with solar zenith an-
gles greater than 70◦ are masked (night is defined as a solar
zenith angle greater than 85◦). Note that this dataset does not
include data from the Aqua satellite.

The version of MOD10A1 we used in this study was fur-
ther processed by Box et al. (2017). Using data from col-
lection 6 of MOD10A1 (Riggs et al., 2015; Hall and Riggs,
2016), Box et al. (2017) de-noised, gap-filled, and cali-
brated the data into a daily 5 km grid covering Greenland
for the years 2000–2017. This dataset was further validated
against ground-based measurements from the PROMICE
(Programme for Monitoring of the Greenland Ice Sheet) sta-
tions (Fausto et al., 2021), and the residual bias in the dataset
based on the solar zenith angle was corrected for using a
linear regression according to time and latitude (Box et al.,
2017). Finally, in this dataset, the April values are used for
the winter months (January, February, November, and De-
cember). This is because there is inadequate solar illumina-
tion to compute the albedo during these months.

In this study, we used this dataset processed by Box et al.
(2017), further aggregating these data using bilinear interpo-
lation to the resolution of the ORCHIDEE outputs imposed
by the meteorological forcing files (20 km).

2.2.3 PROMICE in situ data

Albedo observations from the PROMICE in situ network
were used to evaluate the optimisation. The PROMICE pro-
gramme was initiated in 2007 (Ahlstrøm et al., 2008; van As
et al., 2011), creating a network of on-ice automatic weather
stations to provide in situ measurements of accumulation, ab-
lation, and energy balance of the GrIS. Most sites come in
pairs, with a lower station (L) placed near the ice sheet mar-
gin and an upper station (U) placed higher up in the ablation
area (Fausto et al., 2021). As such, the majority of sites are
found at the edges of the ice sheet. In some regions, there
are also additional stations, for example, in the middle (M)

of the lower and upper stations. The sites used in this study
are listed in Table 2. We started the analysis with the year
where all of March to November was available and ended
the analysis with the year 2017 (or the last operational year)
to be consistent with the rest of the work. Further informa-
tion on ground measurements of snow albedo and associated
methodology can be found in Fausto et al. (2021).

2.3 Data assimilation system for the ORCHIDEE LSM

2.3.1 A Bayesian framework

To perform the optimisations, we used ORCHIDAS, the OR-
CHIDEE data assimilation system. ORCHIDAS is a varia-
tional DA system in which all observations within the assim-
ilation time window are included in the optimisation. It uses
a Bayesian statistical formalism (Tarantola, 2005) where er-
rors associated with the parameters, the observations, and the
model outputs are assumed to follow Gaussian distributions.
The optimal parameter set corresponds to the minimum of a
cost function, J (x):

J (x)=
1
2

[
(y−M(x))TR−1(y−M(x))

+ (x− xb)TB−1(x− xb)
]
, (4)

where J (x) measures the mismatch between (i) the observa-
tions y and the corresponding model outputsM(x) (whereM
is the model operator) and (ii) the a priori (xb) and optimised
parameters (x). Each term is weighted by its error covariance
matrices, R and B. As in most studies, we set both matrices
to be diagonal. For the B matrix, we define the prior distri-
bution of each parameter to be 40 % of the prior range. For
the R matrix, we defined the observation error (variance) as
the mean-squared difference between the observations and
the prior model simulation so that this variance reflects not
only the measurement errors but also the model errors. Al-
though not ideal, this approach is common, since it is one
of the only ways we can assess the model structural error,
which is a large contributor to the R matrix. This error was

The Cryosphere, 17, 2705–2724, 2023 https://doi.org/10.5194/tc-17-2705-2023



N. Raoult et al.: Improving modelled albedo over the Greenland ice sheet 2709

Table 2. Metadata for the PROMICE automatic weather station network used in this work. Table adapted from Fausto et al. (2021), where
the latitude, longitude, and elevation are derived from automated GPS measurements in summer 2016 or during the last weeks of operation
if discontinued. The site abbreviations refer to the following regions: KPC, Kronprins Christian Land; THU, Thule; EGP, EastGRIP (East
Greenland Ice-core Project); UPE, Upernavik; SCO, Scoresbysund; KAN, Kangerlussuaq; TAS, Tasiilaq; MIT, Mittivakkat; QAS, Qassimiut;
NUK, Nuuk.

Site name Latitude (◦ N) Longitude (◦W) Elevation (m a.s.l.) Years used

KPC_L 79.9108 24.0828 370 2009–2017
KPC_U 79.8347 25.1662 870 2009–2017
THU_L 76.3998 68.2665 570 2011–2017
THU_U 76.4197 68.1463 760 2011–2017
EGP 75.6247 35.9748 2660 2017
UPE_L 72.8932 54.2955 220 2010–2017
UPE_U 72.8878 53.5783 940 2010–2017
SCO_L 72.223 26.8182 460 2009–2017
SCO_U 72.3933 27.2333 970 2009–2017
KAN_L 67.0955 49.9513 670 2009–2017
KAN_M 67.067 48.8355 1270 2009–2017
KAN_U 67.0003 47.0253 1840 2010–2017
TAS_L 65.6402 38.8987 250 2008–2017
TAS_U 65.6978 38.8668 570 2009–2017
TAS_A 65.779 38.8995 890 2014–2017
MIT 65.6922 37.828 440 2010–2017
QAS_L 61.0308 46.8493 280 2008–2017
QAS_M 61.0998 46.833 630 2017
QAS_U 61.1753 46.8195 900 2009–2017
QAS_A 61.243 46.7328 1000 2013–2014
NUK_L 64.4822 49.5358 530 2008–2017
NUK_U 64.5108 49.2692 1120 2008–2017
NUK_K 64.1623 51.3587 710 2015–2017
NUK_N 64.9452 49.885 920 2011–2014

approximately 0.06 at the edge of the ice sheet and 0.02 in
the middle.

To minimise the cost function, we use a stochastic random-
search method, the genetic algorithm (GA), which belongs
to a larger class of evolutionary algorithms that follow the
principles of genetics and natural selection (Goldberg, 1989;
Haupt and Haupt, 2004). With each gene corresponding to
a different parameter, a vector of parameters is considered
to be a chromosome. At each iteration, p chromosomes are
created (where p is the population selected by the user, here
chosen to be 30). For the first set of chromosomes, the pa-
rameters are randomly perturbed. For subsequent iterations,
the chromosomes are created from the previous iteration by
one of two processes. The first is the “crossover” process.
This is the exchange of the gene sequences of two parent
chromosomes. The second process is “mutation”, where se-
lected genes of one parent are randomly perturbed. The best
p chromosomes are then kept and ranked, based on their cost
function values. More weight is then given to the best parents
for the next random selection. Further description of this al-
gorithm applied to ORCHIDEE can be found in the compar-
ative study of Bastrikov et al. (2018).

2.3.2 Sensitivity analysis

With ORCHIDAS, it is also possible to perform a sensitiv-
ity analysis (SA) of the model. An SA tests the sensitivity
of a model output (usually a physical variable). It tests how
the output changes with respect to different inputs – here the
model parameters. This is usually done before optimisation
to ensure the right parameters and ranges of variation are
used in the main experiments. In this study we use the Mor-
ris method (Morris, 1991; Campolongo et al., 2007), which
is effective with relatively few model runs compared to other
methods (e.g. Sobol’; Sobol, 2001). Using an ensemble of
parameter values, the Morris method determines incremen-
tal ratios, known as “elementary effects”, based on changing
parameters one at a time in a sequence for many trajectories
which populate parameter space. The mean (µ) and standard
deviation (σ ) of the differences in model outputs for all the
trajectories are calculated. This global method determines
which parameters have a negligible impact on the model and
which have linear and non-linear effects. The results of this
method are qualitative, ranking the parameters in order of
significance. To assess the results, we look at the normalised
means, dividing through by the µ of the most sensitive pa-
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rameter. As such, the values we consider are between 0 and
1, with 1 representing the most sensitive parameters and 0
parameters with no sensitivity. The Morris method has also
been previously used to test parameters for calibration of an
earlier version of the ORCHIDEE snow model (Wang et al.,
2013; Dantec-Nédélec et al., 2017).

2.3.3 Performance metrics

To assess the optimisation results, we rely on two standard
metrics: the root-mean-square deviation (RMSD) and total
absolute error (TAE).

RMSD=

√∑n
i=1[yi −M(xi)]

2

n
,

TAE=
n∑
i=1
|yi −M(xi)|, (5)

where n is the total number of data points.

2.3.4 Posterior uncertainty

Assuming Gaussian prior errors and linearity of the model
in the vicinity of the solution, the posterior error covariance
matrix of the parameters, A, can be approximated by

A=
[
MTR−1M+B−1

]−1
, (6)

where M is the model sensitivity (Jacobian) at the minimum
of J (x) (Tarantola, 2005).

2.4 Experimental setup

2.4.1 Defining edges

The edges of the ice sheet are of particular interest, since they
correspond to areas of strong ablation and show the great-
est variations in runoff and surface mass balance (SMB). To
identify the edges of the GrIS, we exploited the fact that
the edges are steeper than the middle of the ice sheet. To
calculate the slope of a given pixel, we used the NOAA
(National Oceanic and Atmospheric Administration) Na-
tional Geophysical Data Center (NGDC) ETOPO2 product
(NOAA, 2006), which is based on a 2 arcmin global relief
model of Earth’s surface and integrates land topography and
ocean bathymetry. This product is already integrated into
ORCHIDEE, where it is used to determine the fraction of
runoff that pools in flat areas (Ducharne, 2016; d’Orgeval
et al., 2008). In a default ORCHIDEE simulation, when the
slope is greater than 0.5 %, all precipitation over that pixel
that exceeds the infiltration capacity is run off immediately
(Hortonian runoff); otherwise, it can pond at the soil surface
and infiltrate at the next time step. Remember that each pixel
in our Greenland simulations in this study has a resolution of
20 km, and so the steepness of the slope applies over a large

Figure 1. Spatial distribution of edge points (green) and middle
points (white), selected based on the steepness of the pixel.

region. We found that by using this same threshold of 0.5 %,
we were able to encapsulate the edges of the GrIS (Fig. 1).
As such, we refer to pixels with a slope gradient greater than
0.5 % as “edge” points and the rest as “middle” points. These
edge points account for just over 25 % of all pixels. They
were also the pixels with the largest errors when the standard
ORCHIDEE run is compared to the retrieved MODIS snow
albedo data; these edge pixels represented 78 % of the pixels
with RMSD greater than 0.1.

2.4.2 Experiments

ORCHIDEE was run over the whole GrIS with a spatial res-
olution of 20 km and a half-hourly time step, with a daily
output frequency. The model was driven using meteorolog-
ical data from MAR and confronted with MODIS albedo
retrievals aggregated to the same resolution of 20 km. All
the simulations performed in this study include 2 years of
model spin-up to allow snow to accumulate. In each case, the
2 years preceding the years of study was used in the spin-up
and the model was run normally over this period (i.e. allow-
ing for accumulation and melting) from an initial snow depth
of 0. This 2-year period is not included in calculating the cost
function during the optimisations or during the analysis but
is important in ensuring correct initial states. Furthermore,
since during the winter months there is not enough solar il-
lumination to compute the albedo, the months November to
February are excluded from the optimisations and analyses.

For the main experiment, to capture the inter-annual vari-
ability in snow albedo, we selected 3 random years to per-
form our optimisation: 2000, 2010, and 2012. We optimised
over these 3 years simultaneously. This means that, in this
main experiment, we minimised a cost function comprising
a sum of three cost functions, one for each year considered.
The rest of the 2000–2017 time series was used for valida-
tion. During this main experiment, we optimised over the
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whole of the GrIS but gave an extra weight of 4 to the edge
points (see Sect. 2.4.1). In early tests, we found that since the
number of edge points is dwarfed by the much denser mid-
dle of the ice sheet, improvements were mainly concentrated
over the middle of the ice sheet. This led us to choose to give
extra weight to edge points during the main optimisation.
The edge points account for approximately a quarter of the
points. To ensure the edges and middle both contribute to the
cost function while also giving a bit more focus to the edge
points, we chose to give an extra weight of 4 to the edges
when calculating the cost function in the main optimisation.
This main experiment, referred to as “Both”, was comple-
mented by two more optimisations: one just over the edges
of the ice sheet (“Edges”) and one just over the middle points
(“Middle”), again for the same 3 years. These were done to
help analyse the posterior parameter values in Sect. 3.2.3. Fi-
nally, an additional experiment was performed to gauge the
maximal improvement we could expect at the edges of the
ice sheet. This was done to see whether the weighting used
at the edges was sufficient, full details of which can be found
in Appendix A. For each optimisation, 15 iterations of the ge-
netic algorithm were used, which was enough for the system
to converge.

To conclude the study, we performed a sensitivity analy-
sis using Morris’s method to understand the relative impor-
tance of the different model parameters in simulating albedo.
In this experiment, we also considered additional parameters
controlling the rate of density change and additional model
outputs including SMB and runoff. These were included to
better understand the relationship between different ice sheet
processes and to identify which parameters and model out-
put we might consider in future optimisations. This analysis
compared ORCHIDEE outputs to the MAR model outputs,
testing how each parameter affected the RMSD between both
models.

3 Results

3.1 Prior model

Before using ORCHIDAS to optimise the model parameters,
the ORCHIDEE model was first tuned manually through trial
and error. While not as robust as using a minimisation algo-
rithm, this initial step is common for land surface modellers
and helps in getting a sense of the different parameter sen-
sitivities. The primary focus of this manual tuning was to
better capture the behaviour of the GrIS at its edges. This
was achieved by increasing the overall albedo of fresh snow
(Aaged+Bdec) and the snowfall depth required to reset the
snow age (δc), while also decreasing the albedo of aged snow
and decreasing the rate of snow age decay (τdec). Further-
more, one of the tuning constants for glaciated snow-covered
areas was decreased (ω). The rest of the parameters were kept

as the default ORCHIDEE parameters (see Table B1 for full
results).

This initial tuning helped the model to better simulate the
albedo at the edges of the ice sheet, especially in the west-
ern part (Fig. 2), as well as other snow states such as SMB
and runoff, which were also used to assess the success of the
manual tuning. The tuned model was able to capture slightly
more of the spatial variability in albedo in the middle of the
ice sheet. Figure 2 also shows the albedo from the MAR
product; the MAR product is used to drive ORCHIDEE and
later to evaluate model performance. We can see that MAR
fits MODIS albedo better than the standard ORCHIDEE
model. The overall RMSD value for MAR is lower and the
snow albedo is higher in magnitude, more closely matching
MODIS. However, MAR shows less spatial variability – the
albedo on the ice sheet looks uniform. The tuned version of
ORCHIDEE does better than MAR, in terms of both RMSD
and spatial patterns. However, the north–south albedo gradi-
ent observed in the satellite retrievals was still not simulated,
and overall, the albedo remains underestimated over the ice
sheet. This initially tuned model was used as the prior for the
albedo optimisation.

3.2 Main optimisation

3.2.1 Optimisation and validation

For the main optimisation, the GrIS albedo was optimised
over the years 2000, 2010, and 2012 simultaneously, with a
larger weight given to the edges (see Sect. 2.4.2 for the full
setup description). Although a subset of 3 years was used
in this optimisation, the improvement observed is consistent
over all years (Fig. 4a and Table 3). Indeed, some of the years
with the greatest reductions in RMSD were years not used
in the optimisation e.g. 2003, 2009, and 2016. The troughs
during the summer months are where the improvement is the
most marked. The albedo during the summer months in prior
simulations decreased too much. In the posterior run, these
troughs more closely match the retrieved values.

When considering the errors in the posterior model spa-
tially (Fig. 4b), we noticed a slight underestimation of mod-
elled albedo in the north of the ice sheet and a slight overes-
timation in the south. We also see that the edges are mostly
overestimated. However, the RMSD reductions over the edge
points are similar in magnitude to the reductions found in the
preliminary optimisation where only the edge points were
considered (Tables A1 and 3). This means that the weighting
used between the edge and middle points during the optimi-
sation was sufficient – we have achieved as low RMSD at
the edges as in the edge-only experiment. By including the
middle points in our optimisation, we greatly improve the
fit of the model in the middle of the ice sheet – much more
so than when only focusing on the edges (43.7 % reduction
compared to 8.51 %). Figure 4 further illustrates where the
error is reduced. By decomposing the TAE, we can see that
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Figure 2. Retrieved and simulated mean albedo over Greenland (averaged over March–October for 2000–2017); panel (a) shows the retrieved
MODIS values, panel (b) shows simulated albedo in the standard ORCHIDEE version (before tuning), panel (c) shows the simulated albedo
from the manually tuned model, and panel (d) shows albedo from the MAR model. The bottom left-hand corner of each panel shows the
RMSD between modelled (ORCHIDEE or MAR) and observed (MODIS) albedo.

Figure 3. (a) Time series of the snow albedo (averaged over space). The retrieved values (black); prior simulation (blue); and posterior
simulation (orange), i.e. using the optimal parameter set, are shown. The values in the legend denote the RMSD between each simulation and
the retrieved albedo. (b) Spatial distribution of differences between the model and the retrieved albedo averaged over March–October for the
years 2000–2017 for both the prior (left) and posterior (right) models, with the total RMSD in the bottom right-hand corner.
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Figure 4. Total absolute error between the modelled and the re-
trieved MODIS albedo for the standard ORCHIDEE (i.e. default
parameters values, left), the manually tuned (middle), and the opti-
mised (i.e. using Bayesian framework, right) models. The total ab-
solute error is decomposed in each case, illustrating the contribution
of the edge and middle points to the error for March–October.

Table 3. Percentage reduction in model–data RMSD between the
prior and posterior runs over March–October. The years used in the
optimisation are shown in bold.

Whole area Edges Middle

2000 22.3 11.27 37.62
2001 25.73 11.22 43.36
2002 26.17 12.07 42.13
2003 28.89 12.39 44.65
2004 26.85 11.77 43.79
2005 27.08 9.38 45.36
2006 21.39 8.21 37.92
2007 26.55 6.49 46.06
2008 27.1 10.44 43.98
2009 29.17 11.75 45.61
2010 27.21 8.41 46.15
2011 27.31 6.65 46.46
2012 25.76 7.02 42.3
2013 25.0 6.54 43.61
2014 24.58 6.79 42.46
2015 27.35 10.19 43.09
2016 28.46 8.79 45.31
2017 26.04 11.7 41.9

All 26.37 9.52 43.68

both the edge and the middle points contribute to the error
reduction. Figure 4 also allows us to compare the improve-
ments between the different ORCHIDEE simulations. Note
that the tuned model was used as the prior for the optimisa-
tion. The optimised model has the lowest error overall, for

both the middle and the edges of the ice sheet. Figure 4 high-
lights the power of the ORCHIDAS approach – the total ab-
solute error is reduced more substantially using the frame-
work than when the manual-tuning approach was used.

3.2.2 Evaluation over PROMICE in situ sites

To evaluate the success of the optimisation, it is important to
confront the results with data from a different source. Here
we look at how the fit against albedo at in situ sites is im-
proved with the optimisation (Fig. 5). Generally, the albedo
is found to improve. The fit to the observations results in a
lower RMSD compared to when using the prior model. With
the exception of UPE, reductions in RMSD are greater for the
upper sites (between 11 % and 25 %) than for the lower sites
(between−6 % and 8 %, where negative means the fit has de-
graded). For the UPE sites, this is the opposite. Of the 24 sites
tested, the fit to the observations is only degraded in three
cases. These sites are all lower sites – i.e. where the mea-
surement station is near the ice sheet margin and processes
are harder to model. Two sites are found on the eastern edge
of the ice sheet (SCO_L, TAS_L), and the last one is found at
the southern tip of the ice sheet (QAS_L). When comparing
to Fig. 3b, we can see that the eastern edge of the ice sheet
is where the largest errors occur, even after the optimisation.
Furthermore, TAS_L and QAS_L are two locations where
the smallest amplitude and highest winter temperatures oc-
cur (van As et al., 2011, their Fig. 1) due to being exposed
to the relatively warm wintertime atmospheric conditions of
the Atlantic Ocean.

Figure 5 also shows us how ORCHIDEE generally per-
forms at these sites – the magnitude of the RMSD remains
similar for both parameter sets. Since the sites are mainly
found at the edges of the ice sheet, errors are generally high –
between 0.15 and 0.32. The two sites with the lowest RMSD
for both the prior and the posterior models are the ones lo-
cated near the middle of the ice sheet, in the accumulation
area (KAN_U and EGP). There is no obvious link between
latitude and the magnitude of the errors. Instead, elevation
due to the position on the edges of the ice sheet is a more
important factor.

Overall, this evaluation is encouraging – it shows that
the optimisation was successful at improving model albedo
when tested against a different data source. Nevertheless, we
do need to highlight a couple of shortcomings in this compar-
ison. Firstly, we do not have accurate local forcing data at the
sites with which to drive ORCHIDEE. Therefore, the 20 km
MAR data were used, meaning that we are comparing ob-
servations and the model at different resolutions. Secondly,
MODIS has been validated, and some of its biases due to the
solar zenith angle were corrected for, using PROMICE data
(see Sect. 2.2.2). As such, the MODIS data used in the opti-
misation are not completely independent from the PROMICE
data used in this evaluation.
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Figure 5. Evaluation of model–observation fit over PROMICE sites. For each year of available data, the RMSD for the months (March–
October) is calculated. Different colours represent different sets of sites, and the shapes represent the subscript used to identify individual
sites (see Table 2). The mean over these RMSD values is shown in the figure. Points below the 1-to-1 line represent sites where the model–data
fit is improved by the optimisation.

3.2.3 Posterior parameters

In this section, we consider how the parameter values have
changed to fix the model–data disparities. In Fig. 6a, we look
at the posterior parameters from the main experiment (re-
ferred to as Both) and posterior parameters from experiments
solely optimising the edge points (Edges) and solely optimis-
ing the middle points (Middle). Initially, the prior model un-
derestimated the albedo. This underestimation is seen both
temporally (Fig. 6a), where the maximum simulated albedo
is below that of the retrieved values, and spatially (Fig. 2),
where the underestimation is most noticeable over the centre
of the ice sheet. For all three optimisations, Aaged and αICE
increase, contributing to fixing this underestimation. These
two parameters directly impact the albedo – as they increase,
so will the albedo of the GrIS. We also saw that in the prior
model, the albedo decayed too much in summer (Fig. 3a). In
the posterior models, the value of the Bdec parameter is low-
ered, giving less weight to the decay term in Eq. (1). Again,
this decrease occurs for all three optimisations. Similarly,
τdec increases in all cases, which also leads to a smaller decay
term. Finally, we see that ω values increase and β values de-
crease. By doing so, these two parameters increase the value
of gtemp, which appears in the denominator of fage (Eq. 3),
hence slowing down snow ageing.

We also notice some differences between the three sets of
posterior parameters. Since the Both optimisation includes
points from both of the other optimisations, we might ex-
pect the posterior parameters to be in between the Edges and
Middle posterior parameter values, acting as a compromise
between both optimisations. However, this is only true for
two out of the eight parameters. Instead, the Both posterior

parameters often take higher or lower values than parame-
ters from the other two optimisations. This behaviour sug-
gests that parameter space is not smooth but full of local
minima. The clearest example of the Both optimisation per-
forming differently is for the parameters δc and τmax. These
increase and decrease respectively for the Edges and Middle
optimisations. However, for the Both optimisation, the oppo-
site is true. These parameters can be highly anti-correlated
(Fig. 6b). If δc is very small, the snow’s age does not reset
to zero, so the snow ages for longer, necessitating a larger
value of τmax. Therefore, these two parameters, δc and τmax,
compensate for each other. However, this relationship is seen
to not be critical when we consider the variance at the op-
timum. We can see that τmax remains unconstrained by the
optimisation. The reduction parameter uncertainty is small –
the lowest of all the parameters. The other parameters show
high levels of parameter uncertainty reduction, showing they
are highly contained by the optimisation, with Bdec reducing
the most.

3.3 Impact of the different parameter sets on modelling
the surface mass balance of the Greenland ice sheet

3.3.1 Comparison between ORCHIDEE and MAR
model outputs

In Figs. 7 and 8, we consider how the different parameter sets
discussed in this study impact the modelled snow states. To
assess the performance of the different ORCHIDEE param-
eter sets, we compare the model outputs to that of the MAR
model. Although MAR is a model with its own biases and
errors, it has been shown to have good estimations of the dif-
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Figure 6. (a) Posterior parameter values found for three different optimisations: “Both” where the middle and edge points are weighted
with a ratio of 1 : 4, “Edges” where only the edge points were used in the optimisation, and “Middle” where only the middle points were
used. Each box’s range represents the variation used for each parameter during the optimisation. The vertical black line represents the prior
parameter value. (b) Correlations between the posterior parameters calculated at the optimum of the Both optimisation. Percentages on the
diagonal indicate the reduction in parameter uncertainty also calculated at the optimum (see Sect. 2.3.4).

ferent snow states (Fettweis et al., 2017, 2020) and so is a
good product against which to compare.

In particular, we are interested in better modelling the sur-
face mass balance (SMB) and its components (sublimation
and runoff). SMB measures the difference between mass
gains and ablation processes, hence dominating the rates of
mass change over the GrIS. The manually tuned version of
ORCHIDEE simulates SMB the closest to MAR’s SMB.
This can be seen both spatially and temporally. Spatially, the
differences between MAR and the ORCHIDEE simulations
are observed at the edges – especially in the north and west of
the GrIS. The most noticeable difference in the ORCHIDEE
runs can be seen at the west of the ice sheet, where the tuned
model simulates SMB the best when compared to MAR, fol-
lowed by the optimised model. In both the manually tuned
and optimised runs, the SMB is reduced at the west of the ice
sheet compared to the default ORCHIDEE run. This is mir-
rored by an increase in runoff at the western edge of the ice
sheet. Indeed, for simulated runoff, changes are mainly found
at the western edge of the ice sheet, with the tuned model
performing the best and the optimised model second best
when compared to MAR. Both parameter sets (optimised and

tuned) improve the fit compared to the default ORCHIDEE
simulations. However, neither is able to capture the magni-
tude of the runoff in summer, with the tuned model still only
simulating half the expected magnitude of runoff.

When we consider modelled sublimation, the differences
between each ORCHIDEE simulation are most marked. By
increasing the albedo over the ice sheet, we decrease la-
tent heat over the area and hence sublimation. When con-
sidering the time series, we see that the optimised model
gets the correct magnitude of sublimation during the summer
months. All of the ORCHIDEE simulations have a delayed
peak compared to MAR, and no sublimation is simulated by
ORCHIDEE outside the summer months. Indeed in winter,
we even get negative values, i.e. condensation. This is likely
due to the fact that surface temperatures are generally lower
than those from MAR, leading to lower water saturation pres-
sures that can drop below the dew point and thus produce
solid condensation. When averaged over time, we see that
MAR has high sublimation rates at the eastern edge of the
GrIS. However, none of the ORCHIDEE simulations capture
this. Instead, the sublimation over the centre of the ice sheet
is what changes with the different parameter sets – with the
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Figure 7. Impact of different parameter sets on ORCHIDEE simulations: “Standard” uses default parameter values, “Tuned” uses parameter
values from the manual tuning, and “Optimised” uses parameter values from the ORCHIDAS optimisation. Shown are spatial maps averaged
over time (March–October) for MAR (left) and the difference between ORCHIDEE and MAR. Each row features a different variable of
interest (top: SMB, middle: runoff, bottom: sublimation).

Figure 8. Same as Fig. 7 but showing monthly means averaged over space. This time the columns feature the different variables of interest.

optimised model lowering the rates the most. The strong im-
pact that changing albedo has on simulated sublimation over
the whole of the GrIS shows how coupled albedo and subli-
mation are in the model.

Overall, with the optimised model, we do better than the
standard ORCHIDEE model but not as well as the tuned
model. During the manual tuning of the albedo parame-
ters, the performance of the new parameters was assessed
against several model outputs, including SMB, sublimation,
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and runoff at each step of the trial-and-error procedure. We
can think of this manual tuning as a multi-objective calibra-
tion. When performing the optimisation, we get the best fit
to the albedo. However, we overfitted to albedo with no other
data, degrading the fit to other model outputs. As seen with
the posterior parameters, parameter space is not smooth but
has many local minima. As such, it is possible that a differ-
ent solution exists, reducing the albedo to a similar extent
whilst also improving the fit to other modelled outputs. To
achieve this, we need to include more data in the optimisa-
tion to perform a multi-objective optimisation. If we cannot
find such a parameter set, this would point to structural prob-
lems in the model, i.e. missing processes. The fact that MAR
has a more complex snow model that works better at captur-
ing the different processes over Greenland leads us to believe
that structural changes are needed in ORCHIDEE for it to be
able to better simulate SMB and its components. Through the
optimisation, we have improved the representation of albedo
but not of SMB and its components. This is because albedo
is not the only important parameter in the modelling of the
snowpack evolution. Other processes like melting depend on
the snow’s temperature profile, compaction, and refreezing
and therefore on the thermal and mechanical properties of the
snowpack. These processes must be well represented in the
model and may require further calibration in future works.

3.3.2 Sensitivity analysis of ORCHIDEE parameters

In any parameter estimation study, performing a preliminary
sensitivity analysis to select the parameters for the optimisa-
tion is standard practice. Since the albedo parameterisation
had a manageable number of parameters, we proceeded di-
rectly to the optimisation. However, since the different pro-
cesses of the snow model are interlinked, we decided to per-
form a sensitivity analysis to conclude this study. In addi-
tion to understanding the different sensitivities, this was done
to help in understanding how other simulated quantities are
also affected by the albedo parameters, notably SMB and
its components, and to highlight which further parameteri-
sations to consider in future experiments. This would be es-
pecially important if we were to optimise the snow model
against other types of observations either individually or si-
multaneously with the albedo retrievals. We add parameters
from two other parameterisations controlling snow viscosity
and settling, freshly fallen snow (described in Sect. B2) to
better understand the relative importance of the different pa-
rameters.

Parameters from the albedo parameterisation significantly
affect all simulated outputs tested in this sensitivity analy-
sis. For the simulated albedo, the most sensitive parameter is
Bdec for both the middle and the edge of the ice sheet (Fig. 9).
This is consistent with the reduction in parameter uncertainty
found in Fig. 6b, which was the highest of all the parameters
optimised. We also see that the heat fluxes, surface tempera-
ture, and sublimation in the middle of the ice sheet are sensi-

Figure 9. Heat map showing the relative sensitivity of each parame-
ter for different simulated model outputs; albedo, sensible heat flux
(H ), latent heat flux (LE), sublimation, surface temperature (Tsurf),
runoff, and surface mass balance (SMB). In each case, the sensitiv-
ity of the parameters is shown for simulated quantities at the edge
of the ice sheet (shown by the filling at the edge of each box) and
in the middle of the ice sheet (shown by the filling in the middle of
each box). Morris scores (see Sect. 2.3.2 for a discussion of Mor-
ris scores) are normalised by the highest-ranking parameter in each
case. Dark squares represent the most sensitive parameters for each
output, and light squares represent parameters with little to no sen-
sitivity.

tive to Bdec. In addition, the parameter controlling the snow
decay rate (τdec) is the most sensitive parameter for simulat-
ing sublimation and the latent heat flux over the whole ice
sheet (Fig. 9), as well as one of the most sensitive for sensi-
ble heat flux. Since both Bdec and τdec control the impact of
snow decay, they directly impact the albedo of the snow and,
therefore, the surface temperature. The surface temperature
directly affects runoff and the sensible heat flux (calculated
as a function of the difference between the surface tempera-
ture and the temperature of the atmosphere). The latent heat
flux depends directly on the snow, ice, and bare-soil frac-
tions. The higher the amount of runoff, the more likely it is
to have areas where all the snow melts (or grid points where
the snow fraction decreases). Therefore the latent heat flux
on the snow decreases and so does the sublimation.

The model outputs are only marginally sensitive to τmax.
Since we normalise the Morris score by the highest-ranking
parameter, this shows that compared to the most sensitive
parameter, τmax is the least important albedo model param-
eter in explaining the possible range of responses for each
modelled output tested. This is again consistent with the op-
timisation results in Sect. 3.2.3, which found τmax to be the
least constrained by the optimisation. Although seen to be
correlated to δc at the optimum of the cost function (Fig. 6b),
changes in δc have more impact on the model outputs than
τmax, especially at the centre of the ice sheet. Since δc ap-
pears in the exponential term of Eq. (3), small variations in
its value will have a larger impact than small variations in
τmax on the snow age τsnow. Furthermore, high uncertainty
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remaining around the τmax parameter at the optimum implies
that this relationship is not critical in the snow model.

The last two parameters of the albedo parameterisation,
ω and β, can be seen to impact temperature and the sensi-
ble heat flux at the centre of the ice sheet. These parameters
are present in the part of the parameterisation controlling the
effect of low temperature on metamorphism (Eq. 3). By in-
fluencing snow ageing, these parameters impact surface tem-
perature (through changes in albedo) and thus the sensible
heat flux.

The sensible heat flux is especially sensitive to the param-
eter determining the ice albedo (αICE) at the edges of the ice
sheet. We expect the snow to melt faster at the edges, expos-
ing the bare ice below and hence increasing the importance
of ice albedo. The ice albedo will therefore impact the sur-
face temperature at these exposed edge points and thus the
sensible heat flux.

Modelled albedo is not very sensitive to parameters from
the viscosity and fresh-snow-settling parameterisations – es-
pecially not at the centre of the ice sheet. However, these
parameters are important for other modelled quantities. The
runoff, surface mass balance, and sublimation are sensitive to
the viscosity parameters (Eq. B2). The parameter controlling
the impact of snow density in this parameterisation (v2) is
the most sensitive. When viscosity decreases, snow density
increases and liquid-water-holding capacity decreases. This
leads to an increase in runoff and a decrease in SMB. If the
increase in runoff at the edges leads to a significant decrease
in snow cover, this will also impact sublimation (which de-
pends on the snow fraction and temperature).

The ice sheet temperature at the surface is sensitive to
fresh-snow-settling parameters (Eq. B3), especially to ρd,
which is a parameter impacting snow density (ρsnow). When
considering the rate of density change equation (Eq. B1),
we can see it comprises two terms: a term representing the
compaction due to snow load and a term parameterising the
effect of metamorphism, which is significant for fresh set-
tling snow. With newly fallen snow, ρsnow is generally low
(50–200 kgm−1), especially in cold environments with little
wind and, therefore, very little drifting of snow. Depending
on the value of ρd, the density term in Eq. (B3) will become
zero more or less quickly, maximising the value of ψsnow.
This, in turn, increases the density of snow (ρsnow) in the
model. As the density of snow increases, the snow becomes
less insulating, and the thermal conductivity inside the snow-
pack increases. In other words, the temperature inside and at
the snowpack’s surface depends directly on the snow density.
This sensitivity to the fresh-snow-settling parameters may be
more important at the edges of the ice sheet because there
is more precipitation than in the centre, where the climate is
colder and, therefore, drier.

When comparing different ORCHIDEE runs to MAR
(Sect. 3.3.1), we saw that sublimation was the output most
impacted by the different parameter sets. This was espe-
cially notable at the centre of the ice sheet. This sensitiv-

ity analysis highlights that sublimation at the centre of the
ice sheet is most sensitive to the Bdec and τdec parameters,
which are changed in the optimisation to lower the decay
term and therefore increase albedo. In contrast, for runoff
and SMB, both of which show no spatial variability over
the middle of the ice sheet in Fig. 7, the v2 parameter from
the viscosity parameterisation is more important. However,
this parameter was not optimised in this study. Also not op-
timised were other parameters from the viscosity parameter-
isations, to which sublimation, runoff, and SMB are sensi-
tive, especially at the edges. Although we do get some vari-
ation in runoff and SMB in the different ORCHIDEE runs
(Sect. 3.3.1), since these are concentrated at the edges, it
is possible that by optimising these viscosity parameters we
would better fit MAR outputs.

Overall, although modelled albedo is not very sensitive to
parameters from the snow viscosity and settling of freshly
fallen snow functions, parameters from these latter two
parameterisations greatly impact the other model outputs
tested, especially the parameters from the viscosity param-
eterisation. Therefore, for future experiments, this sensitivity
analysis suggests that to optimise the energy budget, runoff,
and sublimation simultaneously, we would need to consider
including the parameters from the albedo and viscosity pa-
rameterisations.

4 Discussion and conclusions

We have shown that by giving extra weight to the edge points
during the optimisation, we can find a set of parameters that
improves the model–data fit for all the GrIS. The reduction
in RMSD at the edges was similar to the reduction found
when focusing only on the edge points during the optimi-
sation. However, by including the middle points in the op-
timisation, the whole ice sheet greatly improved its fit to
retrieved albedo. The model was optimised against 3 sepa-
rate years simultaneously and validated against the rest of the
time series. Improvements were consistent over all the years
considered. We also evaluated the optimisation using in situ
albedo with the PROMICE network with promising results
– the RMSD at 21 out of 24 sites improved compared to the
prior model. Further work will include testing the application
of this model and parameters on other polar and non-polar re-
gions, starting with other ice sheets such as the Antarctic ice
sheet.

Parameter optimisation is a valuable tool for model devel-
opment. Not only can it be used to find the best set of parame-
ters for a given parameterisation, but also, more importantly,
it can help in identifying structural issues in the model. When
we cannot further improve the model against the observa-
tions, this can point to structural deficiencies in the model.
For example, we cannot capture the different albedos in the
north and south of the ice sheet with the current processes
represented. More structural changes may help capture this
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variability. For example, we could look at further improv-
ing the snow/ice transfer processes by better discretising the
snowpack vertically (Charbit et al., 2023). Processes linked
to the darkening on the ice sheet (e.g. deposition of aerosols,
algae, and dust) also need to be considered in future devel-
opments of the model. Since we are running the ORCHIDEE
offline – i.e. prescribing the meteorological forcing – it would
also be beneficial to run the model with different forcings to
separate model structural errors from the errors in the forc-
ing. This is important since MAR is a modelled estimate and,
therefore, will be subject to its own biases and errors. We
would want to ensure that we are correcting errors in the land
surface model and not correcting atmospheric biases in the
forcing data.

We must also remember that there are errors linked to the
retrievals of the albedo from the observed quantity. Indeed,
the large uncertainties in the winter months led us to omit
them for this study. For the other months, we set the obser-
vation errors to be the mean-squared difference between the
observations and the prior model simulation to also account
for the structural model errors. However, in practice, the true
errors may be very different. For example, although steps to
correct the solar zenith angle bias in the product have been
undertaken, it is possible that the strength of the north–south
albedo gradient observed in the data is an artefact of the prod-
uct. Without clear and robust uncertainty quantification, we
cannot disentangle natural GrIS processes from biases in the
retrievals. There is an urgent need for data producers to pro-
vide this uncertainty, ideally at each time step (Merchant et
al., 2017).

In our optimisations, we placed great importance on the
edge points. However, these are also the points where we are
most likely to find bare soil and vegetation instead of ice.
These points could be represented by some of the other plant
functional types in the model, which have different parame-
ter values for Aaged and Bdec. To identify and separate these
pixels from the ice-covered pixels used in this study, future
experiments could exploit the ESA CCI (European Space
Agency Climate Change Initiative) land cover product (ESA,
2017), allowing us to optimise these parameters for each of
the plant functional types present. For the optimisations, we
also selected 3 random years instead of the full time series.
However, it is possible that a different subset of years would
give different results. Nevertheless, given the consistent im-
provement found over the whole period, we do not think that
the results would be too different.

We have also shown that while significantly improving
the model’s fit to retrieved albedo measurements, changing
the parameters also influences the other model outputs. This
was first done by considering the influence of the optimised
parameters on other model outputs by comparing simulated
snow states to the MAR model. The optimised model was
found to perform more consistently with MAR outputs than
the original ORCHIDEE model but not as well as the tuned
model for simulating SMB and runoff. For sublimation, the

optimised model simulated the most accurate magnitude in
summer; however, it still showed a bias when considered spa-
tially. We also performed a Morris sensitivity analysis using
a wider set of parameters. Morris was chosen, since it only
required a small number of model runs. However, its main
limitation is that the sensitivity measure is only qualitative –
the parameters are only ranked in order of significance, and
we do not quantify their absolute contribution. Furthermore,
with this method, it is not possible to distinguish the non-
linear effect individual parameters have on the model output
from the effect of their interactions with other parameters. It
is also very dependent on the range of variations assigned to
the parameters. Nevertheless, the Morris approach can still
help in giving a broad overview of the most influential pa-
rameters and the model outputs they impact.

Therefore, in addition to considering further structural
changes, it will be necessary to further optimise the model’s
internal parameters against a range of datasets. With the ever-
growing quantity of satellite datasets available, we could
consider many different avenues. For example, we could use
GRACE (Gravity Recovery and Climate Experiment) satel-
lite mission data to constrain SMB (Sasgen et al., 2020).
To constrain ice velocity, we could use products based on
Sentinel-1 retrievals (Mouginot et al., 2017; Andersen et al.,
2020), and data from the ESA CCI land surface temperature
project (Karagali et al., 2022) could be used to constrain sur-
face temperatures. Combining these datasets with MODIS
albedo would result in a rich data source to optimise the
model’s internal parameters and learn about different pro-
cesses governing the ice sheet.

Appendix A: Weighting the edge of the ice sheet

To see what the maximal improvement in the model–data
fit we can expect over these edges is, we performed a pre-
liminary experiment optimising only these points for the
months March–October (Table A1). We were able to reduce
the RMSD at these edge points by approximately 10 %. This
optimisation was also able overall to improve the simulated
albedo in the middle of the ice sheet in summer. This im-
plies there is some consistency between the edge and middle
points for the 2000–2017 period. However, this optimisation
did not improve the middle points consistently – for example,
we observe a degradation in fit for the year 2000.

Table A1. Results of a preliminary experiment optimising only the
edge points of the GrIS for March–October 2000. The optimisa-
tion was performed using the GA. The percentage reduction in
model–data RMSD is shown. Negative numbers show an increase
in RMSD, i.e. a degradation in fit.

Year Edge points Middle points All points

2000 11.86 −6.01 3.14
2000–2017 10.11 8.51 9.21
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Appendix B: Parameter information

B1 Parameter values

In Table B1, we list the different parameter values used and
found in this study.

B2 Additional parameters

To get a better overview of the model output sensitivities, we
consider additional parameters used to calculate the local rate
of density change in the ith layer of the snowpack:

1
ρsnow(i)

δρsnow(i)

δt
=
g ·M(i)

η(i)
+ψ(i). (B1)

The first term represents the compaction due to snow load.
This depends on the pressure of the overlying snow, calcu-
lated using the gravitational constant (g; ms−2) and the cu-
mulative snow mass (M; kgm−2) and snow viscosity (η).
The second term describes the effect of metamorphism (ψ),
which can also be thought of as determining the settling of
freshly fallen snow, since this effect is most significant for
newly fallen snow. Both the snow viscosity (η) and the set-
tling of freshly fallen snow (ψ) are solved in ORCHIDEE
using the following empirical exponential functions of snow
density (ρsnow) and temperature (Tsnow):

η(i)= v0 exp(v1(Tf− Tsnow(i))+ v2ρsnow(i)), (B2)
ψ(i)= s0 exp[−a1(Tf− Tsnow(i))

− s2(max(0,ρsnow(i)− ρd))], (B3)

where Tf is the triple-point temperature for water. The rest
are parameters whose values and ranges of variation used in
the sensitivity analysis are outlined in Table B2.

Table B1. Parameters of the snow albedo model. Default values refer to parameters used in a standard ORCHIDEE simulation, tuned
parameters refer to values found after the manual-tuning experiments, and the optimised parameters refer to parameters values found after
using ORCHIDAS.

Parameter Description Default Manually tuned Optimised

Aaged Sum for the albedo of fresh snow
0.62 0.525 0.553

Bdec 0.169 0.349 0.320
δc Snowfall depth required to reset the snow age (m) 0.2 1 0.783
τdec Snow age decay rate (d) 10 2 6.911
ω

Tuning constants for glaciated snow-covered areas
7 2.5 3.037

β 4 4 3.974
τmax Maximum snow age 50 50 56.183
αICE Ice albedo 0.4 0.4 0.476
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Table B2. Parameters used to calculate the local rate of density change. The default value refers to the value used in a standard ORCHIDEE
simulation; min and max refer to the ranges over which the parameters are allowed to vary during our experiments.

Equation Parameter Units Default Min Max

η (Eq. B2) v0 Pas 3.7× 10−7 1.5× 10−7 4× 10−7

v1 K−1 0.081 0.08 0.35
v2 m3 kg−1 0.018 0.009 0.02

ψ (Eq. B3) s0 s−1 2.8× 10−6 1.5× 10−6 3.5× 10−6

s1 K−1 0.04 0.01 0.1
s2 m3 kg−1 460 320 600
ρd kmm−3 150 100 200

Code availability. The source code for the ORCHIDEE version
used in this model is freely available online via the follow-
ing address: https://doi.org/10.14768/e59644bf-2ab2-4826-8409-
7ec83f9c56e3 (IPSL Data Catalogue, 2023), distributed under the
CeCILL licence (http://www.cecill.info/index.en.html, last access:
3 July 2023, CeCILL, 2020). The ORCHIDEE model code is
written in Fortran 90 and is maintained and developed under a
Subversion (SVN) version control system at the Institute Pierre-
Simon Laplace (IPSL) in France. The ORCHIDAS data assimila-
tion scheme (in Python) is available through a dedicated website
(https://orchidas.lsce.ipsl.fr, last access: 3 July 2023; ORCHIDAS,
2023).

Data availability. The MAR v3.11.4 code and outputs used in this
study are available at ftp://climato.be/fettweis/MARv3.11 (MAR
Team, 2023). The processed MODIS data used are available at
https://doi.org/10.22008/FK2/6JAQPK (Box, 2022). Finally, the
PROMICE automatic weather stations product has the follow-
ing DOI: https://doi.org/10.22008/promice/data/aws (Fausto et al.,
2022).
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