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Facility location, supply inventory and distribution, and evacuation planning are key operational functions in a 
humanitarian relief network, it is critical to integrate these three functions and sched-ule their activities jointly in a 
coordinated manner. Considering uncertain demands and evacuation rates of injured people, we develop a 
distributionally robust model for the multi-period humanitar-ian relief network design with multiple types of relief 
supplies. To solve the problem, we reformulate the proposed model into a mixed integer linear programme, and develop 
an enhanced branch-and-Benders-cut algorithm that incorporates some algorithm enhancements to solve the resulting 
model. Extensive numerical experiments show that: (i) the distributionally robust model provides more reliable and 
flexible solutions that perform the best when faced uncertainty over the deter-ministic and stochastic models; (ii) the 
algorithm enhancements are very effective to enhance the performance of the proposed algorithm, which can reduce the 
CPU time by up to 9.75% ∼ 41.64% on average; (iii) the integrated solution approach is more beneficial to solve the 
problem when compar-ing with a sequential solution approach; and (iv) some model parameters have significant impact 
on the solution structure, which can help decision maker set proper parameters to achieve the desired trade-off among 
the considered metrics.

1. Introduction

In recent years, more and more large-scale disaster
events, nomatter man-made or natural, cause mass casu-
alties and enormous economic losses because of their
great destructiveness and sudden attack. For example, in
2016, the persistent rainstorms in southern China trig-
gered severe landslides andmudslides, leavingmore than
73,000 people homeless and causing economic losses of
10 billion RMB (Zhang et al. 2019). In 2021, a 7.3 mag-
nitude earthquake in Haiti affected about 800,000 peo-
ple, and damaged or destroyed 138,000 houses. Thus,
it is vital to devise an efficient humanitarian relief net-
work to support humanitarian logistics in executing
appropriate rescue operation during disaster (Das and
Hanaoka 2014) so as to decrease the losses of life and
property.

Most of the existing studies on disaster relief mainly
focus on the location of distribution centre and relief
supplies allocation problem considering efficiency and
equity, and gave little thought to the transportation
and allocation of injured people. However, an efficient

emergency response network should be studied in an
integrated way. The inventory and distribution of relief
supplies is closely related to the number of injured peo-
ple at the relief shelter. As mentioned in Li, Zhang, and
Yu (2020), setting up temporary shelters as a point of
connection between supply and demand can effectively
improve relief efficiency, where the allocation of emer-
gency relief distribution centres and allocation of relief
supplies are considered on the supply side, and the allo-
cation of injured people is considered on the demand
side. With this in mind, to achieve optimal performance
in a rescue operation, we integrate the aforementioned
operations on both of the supply and demand sides
and schedule their activities jointly in a coordinated
manner.

However, this task is not easy to accomplish due
to the distinct intrinsic characteristics of different dis-
aster events, and the insufficient historical data. For
example, in sudden disaster events such as earthquake
and tsunamis, the demands of relief supplies in disas-
ter areas are generally uncertain and vary with disaster
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severity, and the minimum thresholds on the number
of injured people that should be transferred to rescue
shelters for timely treatment are also uncertain which
highly depend on the severity of the affected areas. To
deal with the demand uncertainty, we employ the distri-
butionally robust optimisation (DRO) to characterise the
uncertainty of the demands of relief supplies by so-called
distributionally robust ambiguity set which only needs
partial distribution information on uncertain parame-
ters. This approach efficiently combines the advantages
of robust optimisation (RO) and stochastic optimisa-
tion (SO) while avoiding their drawbacks, which can
offer an attractive trade-off between the conservatism
of robust optimisation and poor out-of-sample perfor-
mance of stochastic optimisation (Rahimian, Bayraksan,
and Homem-de 2019).

To sum up, we intend to design a distributionally
robust multi-period humanitarian relief network with
multiple types of relief supplies under uncertain demands
and evacuation rates of injured people, which simulta-
neously determines the location of potential emergency
relief distribution centres and temporarily rescue shel-
ters, the inventory of relief supplies in the emergency
relief distribution centres and rescue shelters, and the
allocation of relief supplies from the emergency relief
distribution centres to the rescue shelters and of the evac-
uation strategy of injured people from the affected areas
to the rescue shelters over a finite planning horizon. The
main contributions of this paper are as follows:

(i) We consider a novel distributionally robust multi-
period humanitarian relief network optimisation
model with multiple types of relief supplies under
uncertain demands and evacuation rates of injured
people with distributionally robust chance con-
straints. Unlike existing study on disaster relief, we
simultaneously address the issues of facility loca-
tion, supply inventory and allocation, and evac-
uation planning, and tackle the demand uncer-
tainty by distributionally robust optimisation. The
ambiguity set with limited distributional informa-
tion about the support, mean, and upper bounds
on the marginal dispersion and cross dispersion
is introduced to characterise the distributions of
demands, which is useful in capturing possible
demand correlations across relief supplies and time
periods. The distributionally robust chance con-
straints ensure that the demand of relief supplies
in each time period is satisfied at a predefined
level by taking their probability distributions within
the ambiguity set into account. To the best of our
knowledge, we are the first to study the integrated
humanitarian relief network design problem of

location-inventory-allocation and evacuation plan-
ning based on the DRO framework.

(ii) We derive an equivalent solvable mixed integer
linear programme of the distributionally robust
model by exploiting the structure of the ambi-
guity set, and develop a tailored exact branch-
and-cut framework based on Benders decompo-
sition (called branch-and-Benders-cut algorithm),
that exploits the underlying problem structure, to
solve the resulting model. We also introduce some
non-trivial enhancements, including in–out Ben-
ders cut generation and initial cut generation, to
enhance the proposed algorithm.

(iii) We perform computational study to discuss the
computational efficiency of the developed algor-
ithm, discuss the benefit of the distributionally
robust model over the deterministic and stochas-
tic models, and the benefit of our integrated solu-
tion approach over a sequential solution approach
(injured people evacuation first, relief supplies allo-
cation second), and observe the effects of chang-
ing specific model parameters to gain management
implications.

The rest of this paper is organised as follows. In Section 2,
we briefly review the related literature. In Section 3,
we formally describe the problem under study, formu-
late the distributionally robust optimisation model, and
reformulate it as a mixed-integer linear programme. In
Section 4, we present an enhanced branch-and-Benders-
cut algorithm to solve the resulting mixed-integer linear
programme. In Section 5, we conduct extensive computa-
tional studies to assess the performance of the developed
algorithm, and highlight the benefit of the distribution-
ally robust model and the benefit of our integrated solu-
tion approach. Section 6 gives some conclusion of this
work.

2. Literature review

The following literature review provides a brief sum-
mary of work that is most related to our study. The
detailed comparison of the main problem characteris-
tics and solution methods of the work are summarised
in Table 1.

2.1. Optimisation problems for humanitarian relief

network design

As one of the hotspots in the field of operations research
management, the design of humanitarian relief network
has attracted increasing attention from the operations
research community. Many studies focus on facility
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Table 1. Overview of humanitarian relief network models.

Reference
Optimisation

criteria
Humanitarian

network
Uncertainty
factors Period

Optimisation
model Solution method

Üster and Dalal
(2017)

Fixed cost, flow cost,
inbound cost

Location, allocation,
capacity level,
evacuation
planning

– Single Multi-objective
mixed integer
programming
model

Benders
decomposition

Dalal and Üster
(2018)

Fixed cost, flow cost Location, allocation,
evacuation
planning

Location, demands Single Hybrid robust and
stochastic model

Benders
decomposition

Liu et al. (2019) Construction costs,
maintenance and
purchase costs,
transportation
cost

Location, number of
ambulances,
demand
assignment

Daily demands,
maximum
number of
concurrent
demands

Single Distributionally
robust model

Outer approx-
imation
algorithm

Li, Zhang, and Yu
(2020)

Fixed cost, storage
cost, transporta-
tion cost, penalty
cost

Location, allocation,
evacuation
planning

Evacuee scales,
travel times

Single Hybrid robust and
stochastic model

Customised
progressive
hedging
algorithm

Zhang et al. (2021) Fixed cost, trans-
portation cost,
penalty cost

Location, allocation,
routing of vehicles

Travel times Single Distributionally
robust model

Search algorithm
with CPLEX

Li, Yu, and Zhang
(2021)

Fixed cost, trans-
portation cost,
penalty cost,
holding cost

Location, allocation,
evacuation
planning

Various scenarios
of disasters

Single Three-stage
stochastic
programming
model

Benders
decomposition

Dalal and Üster
(2021)

Fixed cost, trans-
portation cost,
logistics cost

Location, allocation,
evacuation
planning

Disaster location,
intensity,
disaster duration
time, evacuee
compliance

Single Robust opti-
misation
model

Benders
decomposition

Yang, Liu, and Yang
(2021)

Fixed cost, trans-
portation cost,
holding cost,
penalty cost

Location, allocation,
capacity level

Demands Multiple Distributionally
robust model

CPLEX

Shehadeh and
Tucker (2022)

Fixed cost, trans-
portation
cost

Location, allocation,
commodity
preposition and
delivery

Disasters type,
demands, usable
relief items,
arc capacity,
maximum order
quantity

Single Stochastic and
distributionally
robust model

Decomposition
algorithm

Zhang et al. (2022) Fixed cost, supplies
delivered cost

Location, allocation disaster severity,
road condition
and capacity,
demand

Single Multi-objective
distributionally
robust
optimisation
model

Revised multi-
choice goal
programming
approach

Wang, Yang, and
Yang (2023)

Fixed cost, acqui-
sition cost,
transportation
cost, holding cost,
penalty cost

Location, inventory,
allocation

Supplies, demands,
road link
capacities

Single Two-stage
distributionally
robust
optimisation
model

CPLEX

Yang et al. (2023) Fixed cost, trans-
portation cost,
penalty cost

Location, allocation Demands, travel
times

Multiple Distributionally
robust
optimisation

Benders
decomposition

This paper Fixed cost, storage
cost, supply
transportation
cost, evacuation
cost, penalty cost
of non-evacuees

Location, inventory,
allocation,
evacuation
planning

Demands,
evacuation rates

Multiple Distributionally
robust
optimisation
model

Benders
decomposition

location-allocation (including the location of rescue shel-
ters and material storage facilities and the allocation of
relief supplies) under uncertainty of the facility opening
level (Yang et al. 2023), demands and travel times (Avis-
han et al. 2023 Caunhye et al. 2016; Li and Chung 2019),
state of road network (Hu et al. 2019 Ni, Shu, and Song
2018) or disaster scenarios (Zhang et al. 2019), which

aim to deliver relief supplies to affected areas timely
and minimise total operation cost with the considera-
tion of rescue efficiency and equity (Zhu et al. 2019).
There are also studies that consider evacuation planning
problems under uncertainty of the number of injured
people (Mohammadi et al. 2020), disaster demands (Mete
and Zabinsky 2010; Setiawan, Liu, and French 2019), or
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evacuation rates and times (Caunhye and Nie 2018), and
the goal of such kind of problems is more inclined to save
more injured people or minimise the expected casualties
or total rescue cost (Salmerón and Apte 2010).

Most of the aforementioned studies investigate loca-
tion-allocation and evacuation planning problems sepa-
rately, which may lead to significantly suboptimal solu-
tions. This is mainly because the complexity of the inte-
grated models and the difficulty of designing efficient
algorithms for solving them. To the best of our knowl-
edge, only a few studies consider integration of location-
allocation and evacuation planning. Üster and Dalal
(2017) focus on the strategic emergency preparedness
network design integrating supply and demand sides,
which involve a three-tier system with evacuation zone,
shelter zone, and distribution centres (DCs). The objec-
tive is to determine the DC locations, shelter locations
and capacity levels, and source-to-shelter and DC-to-
shelter assignments and corresponding flows so as to
simultaneously minimise the critical distance and the
system cost. Dalal and Üster (2018) extend the model
studied in Üster and Dalal (2017) by considering uncer-
tain evacuating population and integrating the worst case
and average costs in the objective under all the possi-
ble scenarios of evacuating population. Li, Zhang, and
Yu (2020) explore scenario-based robust programming
approach to model two main types of uncertainties by
including stochastic scenarios for disaster severities and
robust uncertainty sets for evacuee scales and transporta-
tion time. Dalal and Üster (2021) investigate a robust
relief supply network comprising five entities, includ-
ing evacuation sources, urban distribution centres, shel-
ters, distribution centres, and centralised supply locations
considering uncertainties in disaster location, intensity,
duration, and evacuee compliance, where a combination
of event and box uncertainty is used to characterise the
uncertain parameters.

The above literature review shows that existing studies
on integrated location-allocation and evacuation plan-
ning mainly focus on single period case and regard
all the relief supplies as the same type. However, the
rescue work after a disaster usually lasts several days,
and multiple types of relief supplies are required for
injured people. Therefore, it is vital to consider an overall
response network design considering both supply (relief)
and demand (evacuation) sides with multiple types of
relief supplies in a multi-period setting. To this end, the
main purpose of this paper is to provide a multi-period
humanitarian relief network design integrating facility
location, supply inventory and allocation, and evacu-
ation planning that consider uncertain demands and
evacuation rates of injured people, where the inventory
in distribution centres and rescue shelters and multiple

types of relief supplies are considered. Moreover, instead
of using stochastic optimisation (SO) and robust opti-
misation (RO) methods, we introduce distributionally
robust ambiguity set to characterise the uncertainty of the
demands of relief supplies, and explore the DROmethod
to deal with the problem.

2.2. DRO for humanitarian relief network design

To cope with the uncertainty in humanitarian relief net-
work design, most of the existing studies adopt SOmeth-
ods (Dyen, Aras, and Gülay 2012; Li, Yu, and Zhang
2021), RO methods (Alizadeh et al. 2019; Ben-Tal et al.
2011) or a combination of SO and RO methods (Dalal
and Üster 2018). However, SO suffers from imperfec-
tion that requires precise knowledge of the underlying
true distributions of the uncertain parameters, which are
generally difficult to obtain due to insufficiency of his-
torical data in practice. RO does not fully utilise the
distributional information on the uncertain parameters
to enhance the solution quality, but the solution obtained
from RO may be over-conservative since the worst-case
realisation may only arise with a very small probability.
Combining the advantages of both stochastic and robust
optimisationwhile avoiding their disadvantage, DROhas
received increasing attention in recent years (Luo et al.
2023; Yin et al. 2023). Several studies have employed
DRO in humanitarian relief network design, where to
our knowledge all the ambiguity sets to characterise the
uncertain parameters are moment-based ambiguity sets
that consist of all the distributionswhosemoments satisfy
certain properties.

In the first-order moment ambiguity set setting,
Yang, Liu, and Yang (2021) investigate multi-period
dynamic distributionally robust pre-positioning of emer-
gency supplies with distributionally robust chance con-
straints, and introduce bounded perturbation sets (box,
box-ball and box-polyhedral) to characterise the uncer-
tainty of demands. They develop a computationally
tractable safe approximation of the chance constraints,
and solve the resulting model directly using CPLEX.
Shehadeh and Tucker (2022) propose a distribution-
ally robust location-inventory-allocation model, where
a mean-support ambiguity set is introduced to charac-
terise the uncertainty of disaster level, affected areas’
locations, and demands of relief supplies. They develop
a simple decomposition algorithm to solve the equiva-
lent reformulation. Zhang et al. (2022) develop a multi-
objectiveDROmodel for a sustainable lastmile relief net-
work problem that simultaneously maximises the equi-
table distribution of relief supplies and minimises the
transportation time and operation cost, where a first-
order moment ambiguity set incorporating the support,
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mean and mean absolute deviations is used to charac-
terise the uncertain parameters including disaster sit-
uation, transportation time, freight, road capacity, and
demand. Wang, Yang, and Yang (2023) put forward
a two-stage distributionally robust location-inventory-
allocation model with multiple types of relief supplies
based on the worst-case mean-conditional value-at-risk
criterion, and introduce two types of first-order moment
ambiguity sets (box and polyhedral) incorporating the
support, mean, and mean absolute deviations to char-
acterise the uncertainty of relief supplies, demands, and
road link capacities. They show that the model under
the two types of ambiguity sets can be reformulated
as mixed integer linear programmes, which are directly
solved using CPLEX. Yang et al. (2023) present a DRO
model for the multi-period location-allocation problem
with multiple resources and capacity levels under the
uncertainty of emergency demands and resource ful-
filment times, where the first-order moment ambiguity
sets incorporating the support, mean, and mean abso-
lute deviations are used to characterise the uncertain
parameters, and developed a branch-and-Benders-cut
algorithm to solve the resulting reformulation. The work
on second-order moment ambiguity set is relatively few.
To the best of our knowledge, only Liu et al. (2019)
and Zhang et al. (2021) follow this line. Specifically, Liu
et al. (2019) study the DRO of an emergency medical
service station location with distributionally robust joint
chance constraints, where an ambiguity set with second-
order moment information is used to characterise the
uncertainty of demands. They reformulate the proposed
model into a parametric second-order cone programme
(SOCP), and develop an outer approximation algorithm
to solve a special case of the proposedmodel. Zhang et al.
(2021) develop a DRO model for the location-allocation
problem with distributionally robust chance constants
under the uncertainty of travel times characterised by a
second-ordermoment ambiguity set, and reformulate the
DRO model into a SOCP.

The above literature review illustrates that most stud-
ies in humanitarian relief network design focus on first-
order moment ambiguity sets incorporating the sup-
port, mean, and mean absolute deviations to charac-
terise uncertain parameters. Our study follows this line.
However, compared with the aforementioned studies,
we integrate the cross-dispersion into the ambiguity set
to capture both the demand correlations across relief
supplies and time periods. Moreover, considering that
the reliability and confidence level of the model should
be considered in the design of humanitarian relief net-
work, as in Yang, Liu, and Yang (2021) and Zhang et al.
(2021), we impose distributionally robust chance con-
straints to ensure that the demand of relief supplies in

each time period is satisfied at a predefined level by taking
their probability distributions within the ambiguity set
into account. Finally, compared with most studies which
directly solve the reformulations using commercial soft-
ware, we develop an enhanced branch-and-Benders-cut
algorithm to deal with the proposed integrated model.
Although a similar solution algorithm has already been
developed in Yang et al. (2023), the contribution of this
paper is to extend this solution algorithm in order to opti-
mally solve the resulting reformulation of the problem for
large-scale instances.

To sum, our study endeavours to employ a DRO
approach to address the integrated location-inventory-
allocation and evacuation planning in the design of
multi-period humanitarian relief network, and evaluate
the benefit of considering distribution robustness and
the benefit of simultaneously optimising facility loca-
tion, supply inventory and allocation, and evacuation
planning.

3. Problem description andmodel formulation

In this section, we briefly describe the humanitarian relief
network model we consider, and formulate the distri-
butionally robust optimisation model, and show how to
transform it into an equivalently deterministic model.
The main notation used in this paper is listed in Table 2.

3.1. Problem description

As shown in Figure 1, we consider amulti-period human-
itarian relief network, consisting of emergency relief
distribution centres, rescue shelters, and affected areas.
When a disaster occurs, humanitarian relief organisa-
tions need to transport relief supplies from emergency
relief distribution centres to rescue shelters timely, while
the injured people should be evacuated from affected
areas to rescue shelters for immediate treatment. In our
humanitarian relief network design, the operation of dis-
aster relief activities is divided into two phases, i.e. pre-
disaster phase and emergency response phase. In pre-
disaster phase, some emergency relief distribution cen-
tres and rescue shelters are chosen from a set of potential
locations to open at a capacity level. On the other hand, in
emergency response phase, injured people are transferred
to the opened rescue shelters for immediate treatment,
and different types of relief supplies (like water, medicine,
food, tent and so on) are transported to these rescue
shelters to meet their demand.

The distributionally robust humanitarian network
design integrating facility location, resource inventory
and allocation, and evacuation planning, denoted as
DRHND-FLRIAEP, considers the setting up a subset of
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Table 2. Notation table.

Sets

M: the set of candidate emergency relief distribution centres with index i.
E: the set of existing rescue shelters with index j.
N: the set of candidate relief stations with index j.
G: the set of affected areas with index k.
R: the set of relief supplies with index r.

Parameters

f dit : the fixed open cost of emergency relief distribution centre i during time
period t.

f rjt : the fixed open cost of new rescue shelter j during time period t.

Qdir : the maximum inventory capacity for relief supply r at emergency relief
distribution centre i.

Qri
j : the maximum inventory capacity for relief supply r at rescue shelter j.

Qrhj : the maximum inventory capacity for injured people at rescue shelter j.

ϑirt : the amount of relief supplies r supplied by the suppliers to emergency
relief distribution centre i during time period t.

csirt : the unit storage cost of relief supplies r at emergency relief distribution
centre i during time period t.

ctijt : the unit transportation cost of relief supplies between emergency relief

distribution centre i and rescue shelter j during time period t.
nkt : the new injured people at affected area k that need to be transferred

during time period t.
Lenjk : the distance between affected area k and rescue shelter j.
Qc
jk
: the capacity of the arc between affected area k and rescue shelter j.

ce
jkt
: the evacuation cost for transferring one person from affected area k to

rescue shelter j during time period t.
̟ : the maximum evacuation distance.
τkt : the unit penalty cost of non-evacuees at affected area k during time
period t.

κ̃rt : the unit demand of injuries for relief supplies r during time period t.
α̃kt : the evacuation rate of injured people at affected area k during time

period t.
μrt : the estimated mean value of unit demand κ̃rt .
σrt : the upper bound on the mean-absolute deviation of unit demand κ̃rt .
ξt : the upper bound on the mean-absolute deviation of the aggregated

random demand
t

∑

l=1

∑

r∈R

κ̃rt .

γrt : the risk level.

Variables

xit : 1 if emergency relief distribution centre i is opened during time period
t, and 0 otherwise.

yjt : 1 if temporary rescue shelter j is opened during time period t, and 0
otherwise.

zjkt : 1 if affected area k is allocated to rescue shelter j during time period t,
and 0 otherwise.

hjkt : the percentage of injured people at affected area k that are allocated
to rescue shelter j during time period t.


kt : the percentage of injured people at affected area k who are not
evacuated during time period t.

qijrt : the amount of relief supplies r delivered from emergency relief
distribution centre i to rescue shelter j during time period t.

δirt : the amount of relief supplies r stored at emergency relief distribution
centre i during time period t with initial inventory of relief supplies
δir0 = Qdir .

potential emergency relief distribution centres and a sub-
set of temporarily rescue shelters, and the designing of
relief supplies delivery scheme from the emergency relief
distribution centres to the rescue shelters and of the evac-
uation strategy of injured people from the affected areas
to the rescue shelters over a finite planning horizon T.

Specifically, DRHND-FLRIAEP is defined on a graph
G = (V ,A), where V = M ∪ N ∪ E ∪ G is the node
set, and A = {(i, j) : i ∈ M, j ∈ N ∪ E} ∪ {(j, k) : j ∈ N ∪

Figure 1. Emergency rescue network.

E, k ∈ G} is the arc set. Here, M is the set of candi-
date emergency relief distribution centres, E is the set of
existing rescue shelters (such as clinics, pharmacies, and
medical services), N is the set of candidate relief stations
(such as temporarily built-in parks, schools, and other
places), and G is the set of affected areas.

Opening emergency relief distribution centre i ∈ M

and rescue shelter j ∈ E during time period t incurs fixed
costs f dit and f

r
jt , respectively. Each emergency relief distri-

bution centre i ∈ M stores a set of different kinds of relief
supplies R, and has a maximum inventory capacity Qd

ir

for relief supply r ∈ R. Each rescue shelter j ∈ N ∪ E has
a maximum inventory capacityQri

j for relief supplies and

a maximum holding capacity Qrh
j for injured people.

During the rescue period, suppliers continuously pro-
vide enough relief supplies to the emergency relief dis-
tribution centres, and the amount of relief supplies r

supplied from the suppliers to relief distribution centre
i ∈ M during time period t is ϑirt . In resource allocation
stage, the decision-maker needs to determine the amount
of relief supplies stored in the distribution centres, and
the amount of relief supplies transferred from the dis-
tribution centres to rescue shelters. Denote by csirt and
ctijt the unit storage cost of relief supplies r at emergency
relief distribution centre i, and the unit transportation
cost of relief supplies between emergency relief distribu-
tion centre i and rescue shelter j during time period t,
respectively.

In casualty evacuation stage, the injured people need
to be transferred to rescue shelters for timely treatment.
In each time period t, there are nkt new injured people
at affected area k that need to be transferred to rescue
shelters for treatment. The distance between affected area
k and rescue shelter j is Lenjk, the capacity of the arc
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between affected area k and rescue shelter j isQc
jk, and the

evacuation cost for transferring one person from affected
area k to rescue shelter j during time period t is cejkt . In

order to get timely treatment, we assume that the injured
people at an affected area can only be transferred to res-
cue shelters whose distance from the affected area does
not exceed a threshold ̟ , which also reflects the equity
for transferring the injured people. Due to the limited
rescue capacity, some injured people may not be timely
transferred to rescue shelters during a time period, who
will be transferred in the subsequent time period, and let
τkt be the penalty cost per person at affected area k who
has not been evacuated during time period t.

Due to the complexity of disaster environment, we
could not accurately capture the severity of the injuries.
Therefore, we assume that the demand per person for
relief supply r during time period t, κ̃rt is uncertain,
which usually cannot be accurately estimated. For exam-
ple, it is hard to predict the blood and medications types
required due to individual-level differences. However, we
assume that some partial information on κ̃rt , such as the
lower and upper bounds of demands and the expected
demands, can be obtained through historical data, and
that the distribution is ambiguous and varies within an
ambiguity set that is characterised by the available partial
information on the support, mean, dispersion bounds,
and partial cross moment information of the distribu-
tion of κ̃ = ( κ̃rt)r∈R,t∈{1,2,··· ,T}. Specifically, referring to
Wang, Chen, and Liu (2020), we consider the following
ambiguity set:

Fκ =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

P

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

EP( κ̃rt) = μrt
∀r ∈ R,
t ∈ {1, 2, · · ·T}

EP(|κ̃rt − μrt|) ≤ σrt
∀r ∈ R,
t ∈ {1, 2, · · ·T}

EP

(∣

∣

∣

∣

∣

t
∑

l=1
1′(κ̃ l − µl)

∣

∣

∣

∣

∣

)

≤ ξt
∀t ∈

{1, 2, · · ·T}

P(∈ Q) = 1

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(1)

where the support set Q of κ̃ is given as:

Q = {κ̃ |κ̃rt ∈ [lrt , ert],∀r ∈ R, t ∈ {1, 2, · · · ,T}} (2)

Here, the first constraint set of ambiguity set κ captures
the expected demand per person for relief supply r dur-
ing time period t; the second constraint set represents
the marginal dispersion of κ̃rt around its mean μrt ; the
third constraint set uses the cross-dispersion that pro-
vides the correlation information of the random variables
κ̃ l in time period l by imposing the upper bound ξt on
the mean-absolute deviation of the aggregated random

demand
t

∑

l=1

∑

r∈R
κ̃rt , which can capture both the demand

correlations across relief supplies and time periods; and
the last constraint set defines the support set of κ̃ . The
parametersσrt and ξt can quantify the discrepancy, which
reflects the decisionmakers’ belief regarding the nominal
probability distribution of κ̃ .

Moreover, asmentioned inDalal andÜster (2021), it is
crucial to impose aminimum threshold on the number of
injured people that should be transferred to rescue shel-
ters for timely treatment, which affects the willingness of
the people in disaster areas to be evacuated to a certain
extent. However, this threshold highly depends on the
severity of each affected area, which is usually uncertain.
Referring to Dalal and Üster (2021), we assume that the
evacuation rate of injured people at affected area k dur-
ing time period t, α̃kt lies in a symmetric interval around
their nominal values ᾱkt ∈ [0, 1], i.e.

α̃kt ∈ [ ᾱkt(1 − ǫ1), ᾱkt(1 + ǫ1)] (3)

where ǫ1 ∈ [0, 1] is a predefined parameter.
The objective is to determine the set of emergency

relief distribution centres and temporary rescue shelters
to open, and the strategies of storing relief supplies at
emergency relief distribution centres and delivering relief
supplies from the emergency relief distribution centres
to the rescue shelters and transferring the injured people
from the affected areas to the rescue shelters, so as tomin-
imise the total cost consisting of the fixed cost of opening
the emergency relief distribution centres and temporary
rescue shelters, the storage and transportation costs of
relief supplies, the evacuation cost of injured people, and
the penalty cost of non-evacuees.

3.2. Model formulation

We formulate the distributionally robust model for
the problem under consideration, denoted as DRM, as
follows:

min
T

∑

t=1

∑

i∈M

f dit xit +

T
∑

t=1

∑

j∈N

f rjtyjt

+

T
∑

t=1

∑

i∈M

∑

j∈N∪E

∑

r∈R

ctijtqijrt

+

T
∑

t=1

∑

i∈M

∑

r∈R

csirtδirt

+

T
∑

t=1

∑

k∈G

∑

j∈N∪E

Lenjkc
e
jkthjktnkt +

T
∑

t=1

∑

k∈G

τkt
ktnkt

Subject to

xit ≥ xi,t−1 ∀i ∈ M, t ∈ {2, 3, · · · ,T} (4)

yjt ≥ yj,t−1 ∀j ∈ N, t ∈ {2, 3 · · · ,T} (5)
∑

i∈M

qijrt ≤ yjtQ
ri
j ∀j ∈ N, r ∈ R, t ∈ {1, 2, · · · ,T} (6)

7



∑

i∈M

qijrt ≤ Qri
j ∀j ∈ E, r ∈ R, t ∈ {1, 2, · · · ,T} (7)

δirt ≤ xitQ
d
ir ∀i ∈ M, r ∈ R, t ∈ {1, 2, · · · ,T} (8)

∑

j∈N∪E

qijrt ≤ xitQ
d
ir ∀i ∈ M, r ∈ R, t ∈ {1, 2, · · · ,T}

(9)

δirt = δir,t−1 + ϑirt −
∑

j∈N∪E

qijrt ∀i ∈ M, r ∈ R,

t ∈ {1, 2, · · · ,T} (10)
∑

j∈N∪E

hjkt + 
kt = 1 ∀k ∈ G, t ∈ {1, 2, · · · ,T} (11)

t
∑

s=1

∑

k∈G

hjksnks ≤ yjtQ
rh
j ∀j ∈ N, t ∈ {1, 2, · · · ,T}

(12)

t
∑

s=1

∑

k∈G

hjksnks ≤ Qrh
j ∀j ∈ E, t ∈ {1, 2, · · · ,T} (13)

hjktnkt ≤ zjktQ
c
jk ∀k ∈ G, j ∈ N ∪ E, t ∈ {1, 2, · · · ,T}

(14)
∑

j∈N∪E

hjkt ≥ min{1, α̃kt} ∀k ∈ G, t ∈ {1, 2, · · · ,T},

α̃kt ∈ [ ᾱkt(1 − ǫ1), ᾱkt(1 + ǫ1)] (15)

Lenjkzjkt ≤ ̟ ∀k ∈ G, j ∈ N ∪ E, t ∈ {1, 2, · · · ,T}

(16)

zjkt ≤ yjt ∀k ∈ G, j ∈ N, t ∈ {1, 2, · · · ,T} (17)

inf
∈κ

⎧

⎨

⎩

∑

i∈M

∑

j∈N∪E

qijrt ≥ κ̃rt
∑

j∈N∪E

∑

k∈G

hjktnkt

⎫

⎬

⎭

≥ 1 − γrt ∀r ∈ R, t ∈ {1, 2, · · · ,T} (18)

xit , yjt , zjkt ∈ {0, 1}, qijrt , hjkt , δirt ,
kt ≥ 0, ∀i ∈ M,

j ∈ N ∪ E, r ∈ R, k ∈ G, t ∈ {1, 2, · · · ,T} (19)

The objective function is to minimise the total cost.
Constraints (4) (resp., (5)) guarantee that an opened
emergency relief distribution centre (resp., rescue shel-
ter) in a time period remains open in the subsequent time
periods. Constraints (6) and (7) together state that relief
supplies can only be delivered to the usable rescue shel-
ters, and that the amount of relief supplies delivered to
a rescue shelter should not exceed its maximum inven-
tory capacity. Constraints (8) and (9) indicate that both
the amount of relief supplies stored at an opened emer-
gency relief distribution centre and the amount of relief
supplies delivered from the opened emergency relief dis-
tribution centre in each time period cannot exceed its

maximum inventory capacity, respectively. Constraints
(10) give the distribution and storage balance equation
at each emergency relief distribution centre in each time
period. Constraints (11) give the evacuation flow in each
affected area. Constraints (12) and (13) together ensure
that injured people can only be transferred to the usable
rescue shelters, and that the amount of relief supplies
delivered to a rescue shelter should not exceed its max-
imum galleryful. Constraints (14) guarantee that the
number of injured people transferred from an affected
area to a rescue shelter should not exceed the capacity of
the corresponding arc. Constraints (15) indicate that the
transfer proportion of injured people at each affected area
in each time period should not be less than theminimum
threshold. Constraints (16) ensure that the injured peo-
ple at an affected area can only be transferred to the usable
rescue shelterswhose distance from the affected area does
not exceed a threshold ̟ . Constraints (17) indicate that
the injured people can only be evacuated to the opened
rescue shelters. Constraints (18) give the distributionally
robust chance constraints, which ensure that the amount
of relief supplies delivered to the rescue shelters in each
time period being no less than the realised demand is sat-
isfiedwith a probability of at least 1 − γrt regarding all the
distributions P in the ambiguity set κ . Constraints (19)
define the decision variables.

Remark 3.1: Although we assume that α̃kt ∈ [ ᾱkt(1 −

ǫ1), ᾱkt(1 + ǫ1)], our model and solution method are
easily adapted to the case where the uncertain param-
eters α̃kt are characterised by ambiguity set as that for
κ̃rt . For example, in the DRM we can replace Constraints
(15) with distributionally robust chance constraints as
Constraints (18).

3.3. Tractable reformulation

In this section, we demonstrate how to reformulate the
DRM as a solvable mixed integer linear programme by
transforming the Constraints (15) and (18) into tractable
reformulations.

In regard to Constraints (15), the following result is
valid.

Proposition 3.2: Constraints (15) are equivalent to the

following constraints:
∑

j∈N∪E

hjkt ≥ min{1, ᾱkt(1 + ǫ1)}

∀k ∈ G, t ∈ {1, 2, · · · ,T} (20)

Proof: Since α̃kt is in the right-hand side of constraints
(15), there exist an optimal solution such that α̃kt takes
its maximum value ᾱkt(1 + ǫ1), as required. �
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To transform the distributionally robust chance con-
straints (18) into tractable reformulations. Let us first
introduce the following auxiliary lemma.

Lemma 3.3: (Yang et al. 2023) Constraints
∑

j∈J

ajξj ≥ b, ∀ξj ∈ [ξ
j
, ξ̄j] (21)

are equivalent to the following constraint
∑

j∈J

ajξ
∗
j − ̺j|aj| ≥ b (22)

where ξ∗
j =

ξ
j
+ξ̄j

2 and ̺j =
ξ̄j−ξ

j

2 .

Let κ∗
rt = lrt+ert

2 and ζrt = ert−lrt
2 , κ̃rt ∈ [lrt , ert]. We

have the following result.

Proposition 3.4: Given the ambiguity set κ , the evac-

uation planning (hjkt)k∈G,j∈N∪E,t∈{1,2,···T} and the rescue

resource allocation strategy (qijrt)i∈M,j∈N∪E,r∈R,t∈{1,2,···T},

the distributionally robust chance constraints (18) are

equivalent to the following constraint system:

βγrt + μrtηrt + σrt(φ
+
rt + φ−

rt ) + ξt(Ŵ
+
t + Ŵ−

t ) + θ ≤ 0

(23)

κ∗
rt

⎛

⎝ηrt + φ+
rt − φ−

rt + Ŵ+
t − Ŵ−

t −
∑

j∈N∪E

∑

k∈G

hjktnkt

⎞

⎠

− ζrtArt +

t
∑

t′=1

∑

r′∈R,(r′,t′) 
=(r,t)

(κ∗
r′t′(Ŵ

+
t − Ŵ−

t ) − ζr′t′Ct)

− μrt(φ
+
rt − φ−

rt ) +

t
∑

t′=1

∑

r′∈R

μr′t′(Ŵ
+
t − Ŵ−

t ) + θ

≥ −
∑

i∈M

∑

j∈N∪E

qijrt − β (24)

κ∗
rt(ηrt + φ+

rt − φ−
rt + Ŵ+

t − Ŵ−
t ) − ζrtBrt

+

t
∑

t′=1

∑

r′∈R,(r′,t′) 
=(r,t)

(κ∗
r′t′(Ŵ

+
t − Ŵ−

t ) − ζr′t′Ct)

− μrt(φ
+
rt − φ−

rt )

t
∑

t′=1

∑

r′∈R

μr′t′(Ŵ
+
t − Ŵ−

t ) + θ ≥ 0

(25)

ηrt + φ+
rt − φ−

rt + Ŵ+
t − Ŵ−

t −
∑

j∈N∪E

∑

k∈G

hjktnkt ≥ −Art

(26)

ηrt + φ+
rt − φ−

rt + Ŵ+
t − Ŵ−

t −
∑

j∈N∪E

∑

k∈G

hjktnkt ≤ Art

(27)

ηrt + φ+
rt − φ−

rt + Ŵ+
t − Ŵ−

t ≥ −Brt (28)

ηrt + φ+
rt − φ−

rt + Ŵ+
t − Ŵ−

t ≤ Brt (29)

Ŵ+
t − Ŵ−

t ≥ −Ct (30)

Ŵ+
t − Ŵ−

t ≤ Ct (31)

φ+
rt ,φ

−
rt ,Ŵ

+
t ,Ŵ

−
t ,Art ,Brt ,Ct ≥ 0 (32)

Proof: The details of the proof are presented in
Appendix 1. �

Thus, according to the above tractable reformulation,
we have the following result.

Theorem 3.5: Given the ambiguity set κ , the DRM is

equivalent to the following deterministic mixed integer

linear programme, denoted as D-MILP:

min
T

∑

t=1

∑

i∈M

f dit xit +

T
∑

t=1

∑

j∈N

f rjtyjt

+

T
∑

t=1

∑

i∈M

∑

j∈N∪E

∑

r∈R

ctijtqijrt

+

T
∑

t=1

∑

i∈M

∑

r∈R

csirtδirt

+

T
∑

t=1

∑

k∈G

∑

j∈N∪E

Lenjkc
e
jkthjktnkt

+ τ

T
∑

t=1

∑

k∈G


ktnkt

s.t.

Constraints (4)–(14), (16)–(17), (19)–(20), (23)–(32)

4. Solutionmethod

In this section, we develop a branch-and-Benders-cut
algorithm based on Benders decomposition to opti-
mally solve the D-MILP. Benders decomposition is well
suited for humanitarian relief network design prob-
lems (Bayram and Yaman 2018; Caunhye and Nie 2018;
Dalal and Üster 2018; Dalal and Üster 2021; Li, Yu,
and Zhang 2021; Yang et al. 2023), as the problems
can be decomposed into linear subproblems by fixing
the integer variables for the location of relief distribu-
tion centres and rescue shelters. For our study, in Ben-
ders decomposition, the D-MILP is decomposed into a
master problem (MP) and a Benders subproblem (SP).
The MP mainly contains the opening variables of dis-
tribution centres x = (xit)i∈M,t∈{1,2,··· ,T} and new rescue
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shelters y = (yjt)j∈N,t∈{1,2,··· ,T}, the evacuation variables
z = (zjkt)k∈G,j∈N∪E,t∈{1,2,··· ,T}, and an artificial variable
representing a lower bound on the total cost of the sub-
problem. The subproblem contains the remaining con-
tinuous variables. The resulting model is solved by a
Benders decomposition algorithm.

In the following subsections we introduce the Benders
decomposition for our problem, show how to improve
the basic Benders decomposition algorithm, and present
the overall branch-and-Benders-cut algorithm.

4.1. Benders decomposition

4.1.1. Benders reformulation

By fixing the binary variables x = (x̄it)i∈M,t∈{1,2,··· ,T}, ȳ =

(ȳjt)j∈N,t∈{1,2,··· ,T} and z̄ = (z̄jkt)k∈G,j∈N∪E,t∈{1,2,··· ,T}, we
can derive the following Benders subproblem, denoted as
SP (x, ȳ, z̄), in the space of other continuous variables:

min
T

∑

t=1

∑

i∈M

∑

j∈N∪E

∑

r∈R

ctijtqijrt +

T
∑

t=1

∑

i∈M

∑

r∈R

csirtδirt

+

T
∑

t=1

∑

k∈G

∑

j∈N∪E

Lenjkc
e
jkthjktnkt

+

T
∑

t=1

∑

k∈G

τkt
ktnkt

s.t.

Constraints (20), (23) − (32)

∑

j∈N∪E

qijrt ≤ x̄itQ
d
ir ∀i ∈ M, r ∈ R, t ∈ {1, 2, · · · ,T}

(33)
∑

i∈M

qijrt ≤ ȳjtQ
ri
j ∀j ∈ N, r ∈ R, t ∈ {1, 2, · · · ,T}

(34)
∑

i∈M

qijrt ≤ Qri
j ∀j ∈ E, r ∈ R, t ∈ {1, 2, · · · ,T} (35)

δirt ≤ x̄itQ
d
ir ∀i ∈ M, r ∈ R, t ∈ {1, 2, · · · ,T} (36)

∑

j∈N∪E

hjkt + 
kt = 1 ∀k ∈ G, t ∈ {1, 2, · · ·T} (37)

δirt = δir,t−1 + ϑirt −
∑

j∈N∪E

qijrt ∀i ∈ M, r ∈ R,

t ∈ {1, 2, · · · ,T} (38)

t
∑

s=1

∑

k∈G

hjksnks ≤ ȳjtQ
rh
j ∀j ∈ N, t ∈ {1, 2, · · · ,T}

(39)

t
∑

s=1

∑

k∈G

hjksnks ≤ Qrh
j ∀j ∈ E, t ∈ {1, 2, · · · ,T} (40)

hjktnkt ≤ z̄jktQ
c
jk ∀k ∈ G, j ∈ N ∪ E, t ∈ {1, 2, · · · ,T}

(41)

qijrt , δirt ,
kt ,φ
+
rt ,φ

−
rt ,Ŵ

+
t ,Ŵ

−
t ,Art ,Brt ,Ct ≥ 0 (42)

Let p, l+, l−, f , e, g, v+, v−, s, ρ, u+, u−, o+, o−, w+,
w−,�,ϒ+,ϒ− be the dual variables associatedwith con-
straints (33)–(41), (20) and (23)–(31), respectively. Given
κ∗
rt = lrt+ert

2 and ζrt = ert−lrt
2 , by the dual theory, the dual

of SP (x, ȳ, z̄), denoted as DSP (x, ȳ, z̄), is formulated as
follows:

max −

T
∑

t=1

∑

i∈M

∑

r∈R

x̄itQ
d
ir(pirt + firt)

−

T
∑

t=1

∑

j∈N

∑

r∈R

ȳjtQ
ri
j l

+
jrt −

T
∑

t=1

∑

j∈E

∑

r∈R

Qri
j l

−
jrt

+

T
∑

t=1

∑

k∈G

ekt +

T
∑

t=1

∑

i∈M

∑

r∈R

ϑirtgirt

−

T
∑

t=1

∑

j∈N

ȳjtQ
rh
j v

+
jt −

T
∑

t=1

∑

j∈E

Qrh
j v

−
jt

−

T
∑

t=1

∑

j∈N∪E

∑

k∈G

z̄jktQ
c
jksjkt

+

T
∑

t=1

∑

k∈G

min{1, ᾱkt(1 + ǫ1)}ρkt

s.t.

− pirt − l+jrt + girt + u−
rt ≤ ctijt ∀i ∈ M, j ∈ N, r ∈ R,

t ∈ {1, 2, · · · ,T} (43)

− pirt − l−jrt + girt + u−
rt ≤ ctijt ∀i ∈ M, j ∈ E, r ∈ R,

t ∈ {1, 2, · · · ,T} (44)

− firt + girt − gir,t+1 ≤ csirt ∀i ∈ M, r ∈ R,

t ∈ {1, 2, · · · ,T − 1} (45)

− firT + girT ≤ csirT ∀i ∈ M, r ∈ R (46)

ekt −

T
∑

t′=t

v+
jt′nkt′ − sjktnkt + ρkt

−
∑

r∈R

nkt(κ
∗
rtu

−
rt + o−

rt − w+
rt )

≤ Lenjkc
e
jktnkt ∀k ∈ G, j ∈ N, t ∈ {1, 2, · · · ,T}

(47)
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ekt −

T
∑

t′=t

v−
jt′nkt′ − sjktnkt + ρkt

−
∑

r∈R

nkt(κ
∗
rtu

−
rt + o−

rt − w+
rt )

≤ Lenjkc
e
jktnkt ∀k ∈ G, j ∈ E, t ∈ {1, 2, · · · ,T}

(48)

ekt ≤ τktnkt ∀k ∈ G, t ∈ {1, · · · ,T} (49)

u−
rt − γrtu

+
rt = 0 ∀r ∈ R, t ∈ {1, 2, · · · ,T} (50)

κ∗
rt(u

−
rt + o+

rt ) + o−
rt − w+

rt + w−
rt − �rt − μrtu

+
rt = 0

∀r ∈ R, t ∈ {1, 2, · · · ,T} (51)

(κ∗
rt − μrt)(u

−
rt + o+

rt ) + o−
rt − w+

rt + w−
rt − �rt

− σrtu
+
rt ≤ 0 ∀r ∈ R, t ∈ {1, 2, · · · ,T} (52)

− (κ∗
rt − μrt)(u

−
rt + o+

rt ) − o−
rt + w+

rt − w−
rt + �rt

− σ t
ru

+
rt ≤ 0 ∀r ∈ R, t ∈ {1, 2, · · · ,T} (53)

t
∑

t′=1

∑

r′∈R

(κ∗
r′t′ − μr′t′)(u

−
rt + o+

rt ) + o−
rt − w+

rt + w−
rt

− �rt + ϒ+
t − ϒ−

t − ξtu
+
rt ≤ 0 ∀r ∈ R,

t ∈ {1, 2, · · · ,T} (54)

−

t
∑

t′=1

R
∑

r′=1

(κ∗
r′t′ − μr′t′)(u

−
rt + o+

rt ) − o−
rt + w+

rt

− w−
rt + �rt − ϒ+

t + ϒ−
t − ξtu

+
rt ≤ 0

∀r ∈ R, t ∈ {1, 2, · · · ,T} (55)

u−
rt + o+

rt − u+
rt = 0 ∀r ∈ R, t ∈ {1, 2, · · · ,T} (56)

o−
rt + w+

rt − ζrtu
−
rt ≤ 0 ∀r ∈ R, t ∈ {1, 2, · · · ,T}

(57)

w−
rt + �rt − ζrto

+
rt ≤ 0 ∀r ∈ R, t ∈ {1, 2, · · · ,T}

(58)

ϒ+
t + ϒ−

t −
∑

r∈R

(u−
rt + o+

rt )

t
∑

t′=1

∑

r′∈R,(r′,t′) 
=(r,t)

ζr′t′ ≤ 0

∀t ∈ {1, 2, · · · ,T} (59)

pirt , l
+
jrt , l

−
jrt , firt , v

+
jt , v

−
jt , sjkt , u

+
rt , u

−
rt , o

+
rt , o

−
rt ,w

+
rt ,w

−
rt ,�rt ,

ϒ+
t ,ϒ−

t ≥ 0 (60)

From constraints (50) and (56), we can obtain u−
rt =

γrtu
+
rt and u−

rt + o+
rt = u+

rt , and thus o+
rt = (1 − γrt)u

+
rt .

Further by constraints (51), we have (κ∗
rt − μrt)(u

−
rt

+ o+
rt ) + o−

rt − w+
rt + w−

rt − �rt = μrtu
+
rt − μrt(u

−
rt +

o+
rt ) = 0, implying that constraints (52) and (53) are
redundant. Based on the above analysis, the DSP (x, ȳ, z̄)

can be reformulated as follows.

max −

T
∑

t=1

∑

i∈M

∑

r∈R

x̄itQ
d
ir(pirt + firt)

−

T
∑

t=1

∑

j∈N

∑

r∈R

ȳjtQ
ri
j l

+
jrt −

T
∑

t=1

∑

j∈E

∑

r∈R

Qri
j l

−
jrt

+

T
∑

t=1

∑

k∈G

ekt +

T
∑

t=1

∑

i∈M

∑

r∈R

ϑirtgirt

−

T
∑

t=1

∑

j∈N

ȳjtQ
rh
j v

+
jt −

T
∑

t=1

∑

j∈E

Qrh
j v

−
jt

−

T
∑

t=1

∑

j∈N∪E

∑

k∈G

z̄jktQ
c
jksjkt

+

T
∑

t=1

∑

k∈G

min{1, ᾱkt(1 + ǫ1)}ρkt

s.t. constraints (45), (46), (49), (54), (55) , (59),

− pirt − l+jrt + girt + γrtu
+
rt ≤ ctijt

∀i ∈ M, j ∈ N, r ∈ R, t ∈ {1, 2, · · · ,T} (61)

− pirt − l−jrt + girt + γrtu
+
rt ≤ ctijt

∀i ∈ M, j ∈ E, r ∈ R, t ∈ {1, 2, · · · ,T} (62)

ekt −

T
∑

t′=t

v+
jt′nkt′ − sjktnkt + ρkt

−
∑

r∈R

nkt(κ
∗
rtγrtu

+
rt + o−

rt − w+
rt )

≤ Lenjkc
e
jktnkt ∀k ∈ G, j ∈ N, t ∈ {1, 2, · · · ,T}

(63)

ekt −

T
∑

t′=t

v−
jt′nkt′ − sjktnkt + ρkt

−
∑

r∈R

nkt(κ
∗
rtγrtu

+
rt + o−

rt − w+
rt )

≤ Lenjkc
e
jktnkt ∀k ∈ G, j ∈ E, t ∈ {1, 2, · · · ,T}

(64)

(κ∗
rt − μrt)u

+
rt + o−

rt − w+
rt + w−

rt − �rt = 0 ∀r ∈ R,

t ∈ {1, 2, · · · ,T} (65)

o−
rt + w+

rt − ζrtγrtu
+
rt ≤ 0 ∀r ∈ R, t ∈ {1, 2, · · · ,T}

(66)

w−
rt + �rt − ζrt(1 − γrt)u

+
rt ≤ 0

∀r ∈ R, t ∈ {1, 2, · · · ,T} (67)
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pirt , l
+
jrt , l

−
jrt , firt , v

+
jt , v

−
jt , sjkt , u

+
rt , u

−
rt , o

+
rt , o

−
rt ,w

+
rt ,w

−
rt ,�rt ,

ϒ+
t ,ϒ−

t ≥ 0 (68)

Let EP and ER be the sets of extreme points and
extreme rays of the feasible set of DSP (x, ȳ, z̄), respec-
tively, both of which do not depend on x, ȳ, and z̄. The
MP can be equivalently reformulated as follows:

min
T

∑

t=1

∑

i∈M

f dit xit +

T
∑

t=1

∑

j∈N

f rjtyjt + D

Subject to Constraints (4), (5), (16), (17)

D ≥ −

T
∑

t=1

∑

i∈M

∑

r∈R

xitQ
d
ir(pirt + firt)

−

T
∑

t=1

∑

j∈N

∑

r∈R

yjtQ
ri
j l

+
jrt−

T
∑

t=1

∑

j∈E

∑

r∈R

Qri
j l

−
jrt +

T
∑

t=1

∑

k∈G

ekt +

T
∑

t=1

∑

i∈M

∑

r∈R

ϑirtgirt

−

T
∑

t=1

∑

(j∈N)

yjtQ
rh
j hv

+
jt

T
∑

t=1

T
∑

(j∈E)

Qrh
j hv

−
jt

−

T
∑

t=1

∑

(j∈N∪E)

∑

(k∈G)

ZjktQ
c
jksjkt

+

T
∑

t=1

∑

k∈G

min{ 1, ᾱkt(1 + ∈1)}ρkt ,

∀(p, l+, l−, f , e, g, v+, v−, s, ρ, u+, o+,

w+,w−,ϒ+,ϒ−) ∈ EP (69)

0 ≥ −

T
∑

t=1

∑

i∈M

∑

r∈R

xitQ
d
ir(pirt + firt)

−

T
∑

t=1

∑

j∈N

∑

r∈R

yjtQ
ri
j l

+
jrt −

T
∑

t=1

∑

j∈E

∑

r∈R

Qri
j l

−
jrt

+

T
∑

t=1

∑

k∈G

ekt +

T
∑

t=1

∑

i∈M

∑

r∈R

ϑirtgirt

−

T
∑

t=1

∑

j∈N

yjtQ
rh
j v

+
jt −

T
∑

t=1

∑

j∈E

Qrh
j v

−
jt

−

T
∑

t=1

∑

(j∈N∈E)

∑

(k∈G)

zjktQjk
csjkt

+

T
∑

(t=1)

∑

(k∈G)

min{1,αkt(1 + ∈1)ρkt , (70)

∀(p, l+, l−, f , e, g, v+, v−, s, ρ, u+, o+, w+,w−,ϒ+,

ϒ−) ∈ ER (70)

xit , yjt , zjkt ∈ {0, 1},D ≥ 0 (71)

4.1.2. Basic benders decomposition algorithm

Let UB and LB be the current upper and lower bounds
on the optimal solution value. Let l the current itera-
tion number, and zlDS the optimal value of the dual sub-
problem at iteration l. We refer to the MP with EP and
ER being replaced with their subsets as the relaxed MP.
The MP is initially relaxed with EP = ER = ∅. In each
iteration, we first obtain the optimal solution (x, ȳ, z̄, D̄)
of the relaxed MP, and then solve the resulting dual
subproblem DS (x, ȳ, z̄) to obtain the optimal solution
(p, l+, l−, f , e, g, v+, v−, s, ρ, u+, o+,w+,w−,ϒ+,ϒ−)

with optimal value zDS. If the dual subproblemDS (x, ȳ, z̄)
is unbounded, we add the following Benders feasibil-
ity cut

0 ≥ −

T
∑

t=1

∑

i∈M

∑

r∈R

xitQ
d
ir(pirt + firt)

−

T
∑

t=1

∑

j∈N

∑

r∈R

yjtQ
ri
j l

+
jrt −

T
∑

t=1

∑

j∈E

∑

r∈R

Qri
j l

−
jrt

+

T
∑

t=1

∑

k∈G

ekt +

T
∑

t=1

∑

i∈M

∑

r∈R

ϑirtgirt

−

T
∑

t=1

∑

j∈N

yjtQ
rh
j v

+
jt −

T
∑

t=1

∑

j∈E

Qrh
j v

−
jt

−

T
∑

t=1

∑

j∈N∪E

∑

k∈G

zjktQ
c
jksjkt

+

T
∑

t=1

∑

k∈G

min{1, ᾱkt(1 + ǫ1)}ρkt

to the relaxedMP. Otherwise, if the dual subproblem DS

(x, ȳ, z̄) is bounded, but zDS < D̄, we add the following
Benders optimality cut

D ≥ −

T
∑

t=1

∑

i∈M

∑

r∈R

xitQ
d
ir(pirt + firt)

−

T
∑

t=1

∑

j∈N

∑

r∈R

yjtQ
ri
j l

+
jrt −

T
∑

t=1

∑

j∈E

∑

r∈R

Qri
j l

−
jrt

+

T
∑

t=1

∑

k∈G

ekt +

T
∑

t=1

∑

i∈M

∑

r∈R

ϑirtgirt
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−

T
∑

t=1

∑

j∈N

yjtQ
rh
j v

+
jt −

T
∑

t=1

∑

j∈E

Qrh
j v

−
jt

−

T
∑

t=1

∑

j∈N∪E

∑

k∈G

zjktQ
c
jksjkt

+

T
∑

t=1

∑

k∈G

min{1, ᾱkt(1 + ǫ1)}ρkt

to the relaxed MP. An upper bound can be computed
from the feasible subproblem and a lower bound is
obtained if the master problem is solved to optimality.
The process continues until the lower and upper bounds
are sufficiently close. The framework of the basic Ben-
ders decomposition algorithm is given in Algorithm 1 in
Appendix 2.

4.2. Algorithm enhancements

The computational efficiency of the Benders decompo-
sition algorithm strongly depends on the quality of the
generated Benders cuts. Generally, the better the quality
of the Benders cuts, the fewer iterations are required to
solve the MP. However, there may be multiple optimal
solutions when the dual subproblem is solved, each of
which may yield a Benders cut. In order to generate bet-
ter Benders cuts, we employ the following two algorithm
enhancements: (i) In–out Benders cut generation; and (ii)
Initial cut generation.

4.2.1. In–out benders cut generation strategy

The in–out Benders cut generation strategy, which was
first developed by Ben-Ameur and Neto (2007), can gen-
erate more effective cuts, which has been proven to an
effective strategy to speed up the convergence of Benders
decomposition algorithm (Fischetti, Ljubic, and Sinnl
2016; Yang et al. 2023).

The idea of in–out column generation strategy is
as follows. In each iteration, we get two points: one
is the optimal solution of the relaxed MP, denoted as
(xout , yout , zout), and the other is the feasible solution
of the MP, denoted as (xin, yin, zin). When solving
the dual subproblem to generate Benders cuts, instead
of (xout , yout , zout), we employ an intermediate point
(separation point), descripted as (xsep, ysep, zsep) =

ϕ(xin, yin, zin) + (1 − ϕ)(xout , yout , zout), to find Ben-
ders cuts, where ϕ ∈ {0, 1} is a real valued scalar.

If valid Benders cuts are found, which are also
violated by (xout , yout , zout) due to the definition of
(xsep, ysep, zsep), we add them to the relaxed MP. By
solving the resulting relaxed MP, we yield a new point
(xout , yout , zout) and keep (xin, yin, zin) unchanged. If

no Benders cuts are found, we update (xin, yin, zin) as
(xsep, ysep, zsep) and keep (xout , yout , zout) unchanged.
This process continues until the optimality gap is equal
to or lower than lower than a given precision. In our
implementation, we only apply this in–out Benders cut
generation strategy at the root node.

4.2.2. Initial cut generation strategy

Magnanti and Wong (1981) propose a new strong cuts
strategy, denoted asMWmethod, to generate the Pareto-
optimal cuts by solving an auxiliary dual subproblem.
Papadakos (2008) points out that the MW method is
shown to exhibit difficulties due to its dependence on
the subproblem, and an independent version is therefore
introduced, called enhanced MW method, and denoted
as EMW. However, both MW and EMW methods need
to solve the dual subproblem and an auxiliary subprob-
lem, which consumes a lot of CPU time. As mentioned
in Bayram and Yaman (2018), for both algorithms, the
number of iterations and the total number of resulting
optimality cuts are generally reduced over the Benders
decomposition algorithm. However, CPU time deterio-
rates due to solving the dual subproblem and the MW
auxiliary problem in each iteration. It is worth noting that
the EMW problem is independent of the subproblem, so
we can take advantage of adding initial cuts to the MP

before we begin solving it. We denote this strategy as the
initial cut generation strategy.

Specifically, we find the Magnanti-Wong points (x0,
y0, z0), and solve the independent Magnanti-Wong
problems DSP(x0, y0, z0) to obtain (p0, l

+
0 , l

−
0 , f 0, e0,

g0, p0, v
+
0 , v

−
0 , e0, e0, s0, ρ0, u

+
0 , o

+
0 ,w

+
0 ,w

−
0 , γ

+
0 , γ

−
0 ). We

generate some initial Benders cuts with one iteration only
based the solutiTon to theDSP(x0, y0, z0), and then con-
tinue the basic Benders decomposition algorithm. In this
paper, we first explore the heuristic by fixing some binary
variables x̄it , ȳjt , and z̄jkt as 1 to obtain some feasible first-
stage solutions (x0, y0, z0) of the D-MILP, and then use
these first-stage solutions as theMagnanti-Wong point to
generate the initial set of cuts.

4.3. Branch-and benders-cut algorithm

In branch-and-Benders-cut algorithm, the Benders deco-
mposition procedure is implemented in the framework of
the branch and cut, where the Benders subproblems are
solved at each node in the search tree via callback func-
tionality of CPLEX. Specifically, we first develop a simple
greedy heuristic, where distribution centres and rescue
shelters are opened one by one in each period to satisfy
the demand of injured people, to find a feasible first-
stage solution (xin, yin, zin) to theMP with correspond-
ing upper bound UB. During the iterative phase of the

13



algorithm, before solving the relaxed MP, we deal with
an independently dual subproblem only once to gener-
ate an initial set of valid cuts, and add these cuts to the
relaxed MP. Then, if the stopping criterion is not meet,
based on the feasible solution (xin, yin, zin), the optimal
solution search process is carried out at the root node
with no branch requirement, we solve the relaxed MP

and execute the in–out Benders cut generation. Thus, we
can obtain violated Benders cuts by solving dual subprob-
lemwith separation point (xsep, ysep, zsep), and add these
cuts to the relaxed MP. The addition of these lazy cuts
is implemented within a LazyConstraintCallback routine
that takes the form of CPXcutcall-Backadd in CPLEX.

5. Numerical results

We construct extensive numerical experiment to test our
model and solution algorithm from the following aspects:
(i) prove the superiority of the DRM over the determin-
istic model (DM) and stochastic model (SM); (ii) ver-
ify the effectiveness of the algorithm enhancements and
the computational efficiency of the proposed algorithm;
(iii) demonstrate the benefit of our integrated solution
approach over a sequential solution approach (injured
people evacuation first, relief supplies allocation second);
(iv) ascertain the impacts of some model parameters on
the solution structure.

All algorithms are coded in Java and the linear pro-
gramming model is solved by CPLEX 12.8. All runs were
performed on a computer with a 64-bit 2.4GHz Intel
Core processor and 8GB of RAM.

5.1. Instance generation

For all we know, no standard test datasets can be directly
obtained for the disaster relief model we consider. Thus,
according to some existing works about disaster relief
(Dalal and Üster 2018; Bayram and Yaman 2018; Üster
andDalal 2017, Liu et al., 2019), we generate our problem
instances with some reasonable modifications.

For extensive analysis, we conduct experiments with
instances with different sizes. Specifically, we consider
|I| ∈ {40, 50, 60}, |Jn| ∈ {40, 50, 60}, |Je| = 0.4|Jn|, |G| ∈

{60, 80, 100, 120}, |T| ∈ {1, 3}, and, |R| = 4. We set the
main parameters as follows.

(i) Referring to Üster and Dalal (2017), the total num-
ber of injured people at affected area k during
time period t, nkt follows a uniform distribution
U[250, 600].

(ii) According to Dalal and Üster (2018), to meet
the needs of all casualties as much as possi-
ble in each time period, the maximum inventory

capacity of relief supplies r at emergency relief

distribution centre i, Qd
ir is set to max

t

(

max
l

(κ̃ l
rt)

∑

k∈G nkt×U[0.75,0.95]
ω×|I|

)

depending on the total num-

ber of injured people and the maximum demand,
where∝ is set to 0.2. Similarly, themaximum inven-
tory capacity Qri

j for relief supplies and the maxi-

mumholding capacityQrh
j for injured people of res-

cue shelter j are set tomax
t

(

max
r

(

∑

i∈I Q
d
ir×U[2,4]
|J|

))

and max
t

(∑

k∈G nkt×U[2,4]
|J|

)

, respectively, and the

capacity of the arc between affected area k and res-

cue shelter j, Qc
jk is set to max

t

(∑

k∈G nkt×U[4,6]
|G|×|J|

)

.

The amount of relief supplies r supplied by the sup-
pliers to distribution centre i, ϑirt is set to Qd

ir ×

U[0.75, 0.95].
(iii) Referring to Dalal and Üster (2018), in each time

period t ∈ {1, 2, . . . ,T}, the unit transportation cost
from distribution centre i to rescue shelter j, ctijt
follows a uniform distributionU[0.1, 0.2], the evac-
uation cost per distance cejkt follows a uniform dis-

tributionU[0.01, 0.05], and the unit storage cost csirt
follows a uniformdistributionU[2, 4], and the fixed
open costs of distribution centre i and rescue shelter
j, f dit and f

r
jt , follow uniform distributions U[30, 60]

and U[50, 100], respectively.
(iv) The unit penalty cost of non-evacuees τkt should

not be higher than the maximum transporta-
tion cost and not less than the minimum trans-
portation cost, which follows a uniform distri-
bution U[∂c−, ∂c+], where c− = mink,j,t Lenjkc

e
jkt

and c+ = maxk,j,t Lenjkc
e
jkt denote the minimum

transportation cost and maximum transporta-
tion cost, respectively, and ∂ ∈ {0, 1} is pre-set
to 0.6. The maximum evacuation distance ̟ is
set to max

k,j
Lenjk × U[0.6, 0.8]. Here, the distance

between two nodes in rescue network design, say
Lenjk and Lenij, is measured by Euclidean distance.

(v) On the basis of the available supplies and will-
ingness to evacuate, the nominal value of evacuee
fraction at affected area k, ᾱkt follows a uniform dis-
tribution U[0.7, 0.8], and the uncertainty measure
ǫ1 ∈ [0, 1] is set to 0.05.

As for the definition of distributional ambiguity sets, we
assume the uncertain parameter κ̃ satisfies the following
assumptions.

(i) We pack the relief supplies into a bundle, convert
it into volume units, and set the unit demand of
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injuries for relief supplies r ∈ R during time period
t, κ̃rt follows a uniform distribution U[3, 6].

(ii) We randomly generate 1000 training samples
{κ̃ l}1000l=1 , to form the sample distribution. Thus,

the parameters µ, σ , and ξt are set to
1

1000

1000
∑

l=1
κ̃ l,

1
1000g

1000
∑

l=1
|κ̃ l − µ|, and 1

1000g

1000
∑

l=1

∣

∣

∣

∣

∣

t
∑

l=1
1′(κ̃ l − µl)

∣

∣

∣

∣

∣

,

where g is a positive parameter set to 2.
(iii) The lower and upper bounds of κ̃ are set to

min
l

{κ̃ l}1000l=1 and max
l

{κ̃ l}1000l=1 , respectively, and

γrt = γ is set to 0.01.

For each instance size (|I|, |Jn|, |G|), we randomly gen-
erate 20 instances. Thus, we have 720 instances in total.

5.2. Benefit of considering uncertainty and

distributional robustness

In this section, we evaluate the performance of the DRM
by comparing with the DM and SM through out-of-
sample analysis. The DM use nominal demands µ with
no uncertainty, and SM is constructed by sample aver-
age approximation (SAA) method, which approximates
the expected demands by the average demands under the
sample distribution. The detailed description of the SM is
shown in Appendix 3. To get efficient comparison results
in reasonable CPU time, we focus on the instances with
|I| = 60, |Jn| = 60, |G| = 60 and |T| = 1, and randomly
choose 500 samples from the 1000 training samples to
construct the DRM and SM. For out-of-sample analy-
sis, we randomly generate 10,000 samples in a similar
manner to Section 5.1.1 and evaluate the performance of
the first-stage solutions (x, y, z) obtained from the DRM,
DM, and SM. Specifically, for each feasible first-stage
solution (x, y, z), we calculate the sum of the storage and
transportation costs of relief supplies, evacuation cost of
injured people, and penalty cost of non-evacuees for each
scenario under the first stage solution (x, y, z) and then
summarise various statistics of the resulting values above
to analyse the effectiveness and robustness of the given
solution.

The detailed results are summarised in Table 4. Here,
we report the average total cost (ATC) of each compari-
son model, the average out-of-sample total cost (AOTC)
with corresponding standard deviation (OSD) for feasi-
ble samples under the first-stage solution, and the prob-
ability of distributionally robust chance constraint vio-
lation (Risk) which measures the relative frequency of
infeasible samples over 10,000 out-of-sample under the
first-stage solution. Figure 2 describes the out-of-sample

Figure 2. Histograms of OTC of the DRM, SM and DM for the
feasible out-of-samples.

Table 3. Comparison results of the DRM, SM and DM.

Model ATC AOTC OSD Risk (%)

DRM 1060257.307 1817134.1 7845.2 0.0
SM 1053470.102 1823221.2 7876.3 2.9
DM 1051393.753 1828379.4 7938.6 46.8

total cost (OTC) histograms of the comparison models
for the feasible out-of-samples.

From the first two columns of Table 3, we can see
that the DRM leads to more conservative solutions than
the DM and SM, which yields the largest ATC, followed
by the SM. These observations are consistent with our
expectation, since the DRM aims at minimising the total
cost under more compact distributionally robust chance
constraints, and the SM minimises the total cost under
the constraints that the amount of emergency supplies
delivered to rescue shelters in each time period is no
less than the demand under all the 500 training samples.
However, the DRM is not too conservative, which only
increases ATC by 0.64% over SM.

However, Figure 2 and the third to fifth columns
of Table 3 demonstrate that the DRM performs best
in all metrics related to out-of-sample test. Indeed, the
DRM yields the least average out-of-sample total cost
1817134.1 with least standard deviation 7845.2, while
the average out-of-sample total costs obtained from the
SM and DM are 1823221.2 and 1828379.4 with standard
deviations 7876.3 and 7938.6, respectively. These obser-
vations show that ignoring uncertainty during the design
phase could lead to significant cost increase when they do
happen, and that considering distributionally robustness
yields the lest cost when encountering uncertainty. More
importantly, the Risk achieved by the DRM is 0.00%,
indicating that all 10,000 samples out of the first-stage
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solution obtained from the DRM are feasible. In con-
trast, the Risks obtained from the SM and DM are 2.9%
and 46.7%, respectively. These observations show that
the DRM can effectively reduce the risk of system being
‘unreliable’.

In sum, the above results obviously highlight the
robustness and superiority of the DRM, which provides
more reliable and flexible solutions that perform the best
when faced uncertainty, followed by the SM.

5.3. Algorithm performance

In this section, we evaluate the effectiveness of the
algorithm enhancements and the efficiency of the pro-
posed algorithm. It mainly includes the comparison of
the following versions: (i) solving the D-MILP using
CPLEX without any brand and benders cut (CPLEX);
(ii) The basic Branch-and-Benders-cut algorithm with-
out any algorithm enhancement (BBC-B); (iii) the basic
Branch-and-Benders-cut algorithm with in–out Benders
cut generation strategy (BBC-IO); (iv) the basic Branch-
and-Benders-cut algorithm with initial cut generation
strategy (BBC-IC); and (v) the Branch-and-Benders-cut
algorithm we develop (BBC-All). The time limit for each
run of these algorithms is set to 5400 s.

The detailed comparison results are shown in Table 4.
For each instance size, column ‘NU’ counts the num-
ber of 20 instances solved to optimality within the time
limit, column ‘ATimes’ indicates the average CPU time
spent in solving the instances that can be solved to opti-
mality within the time limit; column ‘ANodes’ repre-
sents the average number of branch nodes explored; and
column ‘Gap (%)’ indicates the average optimality gap
among the unsolved instances, which can be calculated
as (UB − LB)/UB, where UB and LB are the best upper
and lower bounds obtained up to time limit. We also
report the average value or total number of each metric
(‘Ave/Toa’), and use the symbol ‘-’ to denote the case that
all instances run out of memory.

Moreover, when the in–out Benders cut generation
strategy is implemented, we set ϕ = 0.9, which is the best
choice comparing with other alternative values through
preliminary experiment. The detailed analysis results are
given in Appendix 4.

The effectiveness of the algorithm enhancements. The
results in Table 4 clearly demonstrate that the algorithm
enhancements are very effective to enhance the perfor-
mance of the proposed algorithm. Specifically, we can
draw the following conclusions: (i) with more instances
solved to optimality and less CPU time, the algorithm
enhancements are all valid and complement each other;
(ii) considering the marginal contribution to algorithmic
performance, the in–out Benders cut generation strategy

seems to be better than the initial cut generation strat-
egy; and (iii) comparing with single strategy, using both
strategies together results in the largest enhancement in
algorithm performance. Indeed, from the column ‘NU’,
we can see that BBC-B can only solve 683, the BBC-IO
and BBC-IC are capable of solving 688 and 686, respec-
tively, whereas our BBC-All can solve 703 out of the
720 instances to optimality within the time limit. More-
over, for the unsolved instances, the average optimality
gaps obtained from the BBC-IO and BBC-IC are smaller
than that obtained from the BBC-B. Regard to the CPU
time, taking the instances with |I| = 50 as example, using
only in–out column generation strategy, only initial cut
generation strategy, and both strategies reduce the aver-
age CPU time by up to 29.62%, 23.83%, and 41.99% on
average, respectively, over the baseline. The possible rea-
son behind this observation is that adding the algorithm
enhancements can tight the lower bound, and thus reduc-
ing the number of search nodes explored which can be
verified from the column ‘ANodes’.

Comparison with CPLEX. The results in Table 4 allow
us to conclude with the following observations: (i) the
average quality of solutions found by CPLEX is quite
good for small-scale instances, while the performance of
CPLEX deteriorates as the problem size increases; (ii)
BBC-All yields stable results for all the test instances,
and outperforms CPLEX when increasing the problem
size. Although CPLEX is capable of optimality solving all
the 240 instances with |I| = 40 and takes less CPU time
compared to BBC-All, BBC-All is superior to CPLEX
when |I| = 60, or |I| = 50 and |Jn| ≥ 50, which solves
more instances than CPLEX and takes much less CPU
time when compared to the same instances. Most impor-
tantly, CPLEX cannot solve any instance due to out of
memory, when |I| = 60, |Jn| ≥ 50, and |G| = 120. These
results clearly highlight the superiority of our proposed
algorithm, and reveals the limitations of using a general-
purpose solver to solve our problem.

5.4. Benefit of integrated solution approach

In this section, we show the cost savings that can
be attained by solving the DRHND-FLRIAEP in an
integrated fashion compared with a sequential solu-
tion approach. In the sequential solution approach,
we first solve the evacuation planning problem, which
contains only the opening variables of new rescue
shelters y = (yjt)j∈N,t∈{1,2,··· ,T}, the evacuation variables
z = (zjkt)k∈G,j∈N∪E,t∈{1,2,··· ,T}, the evacuation percent-
age variables h = (hjkt)k∈G,j∈N∪E,t∈{1,2,··· ,T} and the un-
evacuated percentage variables � = (
kt)k∈G,t∈{1,2,··· ,T},
and the constraint sets (4b), and (4h)–(4n). Given the
optimal solution to the evacuation planning problem, we
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Table 5. Comparison results between integrated and sequential
approaches.

Instance Integrated Sequential

|I| |Jn| |G| ATC AEFC ARSFC ATC AEFC ARSFC CI (%)

50 40 60 1.29 0.82 0.47 1.45 0.79 0.66 13.06
80 1.79 1.05 0.74 1.97 1.03 0.94 9.80
100 2.59 1.44 1.15 2.66 1.41 1.25 2.92
120 3.14 1.70 1.43 3.40 1.74 1.66 8.29

50 60 1.57 0.87 0.70 1.73 0.84 0.89 10.35
80 2.10 1.26 0.84 2.40 1.27 1.13 14.29
100 2.87 1.64 1.23 3.14 1.58 1.56 9.42
120 3.95 2.19 1.77 4.14 2.10 2.04 4.75

60 60 1.99 1.17 0.82 2.25 1.20 1.06 13.27
80 2.77 1.59 1.17 3.00 1.53 1.47 8.38
100 3.57 2.04 1.53 3.72 2.03 1.69 4.13
120 4.67 2.64 2.03 4.85 2.59 2.25 3.74

Ave 2.69 1.53 1.16 2.89 1.51 1.38 8.53

Note: The cost data needs to be multiplied by 107 . Ave denotes the average
value of each metric for all instances.

then solve theDRM with the resulting values of variables
yjt , zjkt , hjkt , and 
kt being fixed.

We use the instances with |I| = 50, |Jn| ∈ {40, 50, 60},
and |G| ∈ {60, 80, 100, 120} to perform the compar-
ison experiments. For the solution obtained from
each solution approach, we report the average total
cost (ATC), average evacuation flow cost (AEFC),
average relief supplies flow cost (ARSFC), and the
total cost increase in percentage (CI (%)), which
is calculated as (ATC(Sequential) − ATC(Integrated)) ×

100/ATC(Integrated). The comparation results are depi-
cted in Table 5.

From Table 5, as expected, we can observe that our
integrated fashion can yield significant total cost savings
over the sequential solution approach. This is because
the integrated solution approach aims at finding the
global optimal solution, whereas the sequential solu-
tion approach gives priority to the evacuation planning
problem to minimise the evacuation flow cost. Indeed,
when comparing the solutions obtained from the sequen-
tial solution approach with those from the integrated
solution approach, the evacuation flow cost decreases
by 1.31% on average, whereas the relief supplies flow
cost increases by 18.97% on average, leading to a total
cost increase of 8.53% on average. This result clearly
demonstrates that it is beneficial to employ the integrated
solution approach to solve the DRHND-FLRIAEP.

5.5. Sensitivity analysis

In this section, we discuss the impacts of some model
parameters on the solution structure using the instances
with |I| = 60, |Jn| = 60, |G| = 60 and |T| = 2.

In order to measure the impacts on the solution struc-
ture caused by changing parameters, we use the follow-
ing metrics: (i) the average total cost (ATC); (ii) the

average proportion of the number of un-evacuated peo-
ple (APUEP), measuring the rescue efficiency; (iii) the
average total relief supplies stored in distribution cen-
tres (ATRS); and (iv) the average total relief supplies
transported to rescue shelters (ATRT).

5.5.1. Impacts of uncertainty set parametersG and ǫ1
We first analyse the influence of uncertainty set param-
eters G and ǫ1 in the distributionally ambiguity set �κ .
Figures 3 and 4 depict how ATC, APUEP, ATRS and
ATRT change with the variations of g ∈ {0.5, 1.0, 1.5, 2.0,
2.5} and ǫ1 ∈ {0.05, 0.10, 0.15, 0.20, 0.25}, respectively.

From Figure 3(a), we can find that ATC decreases
with g, but APUEP increases when increasing g. To be
precise, the rate of increase in APUEP becomes sharp
with the increase of g, implying that a larger g has a
stronger impact on the number of un-evacuated people.
This is expected since with the increase of g, the uncer-
tainty of supply demands represented by the ambiguity
set decreases, which results in the decrease of the aver-
age total cost and makes the resulting first-stage solution
less robust and flexible, so more injured people fail to
evacuate in out-of-sample test. Figure 3(b) depicts that
both ATRS and ATRT decrease with g increases. This
is because when the uncertainty decreases, the decision
maker can obtain more information, so there is no need
to transport and store too much relief supplies to yield
more conservative solutions.

Figure 4(a) shows that when increasing ǫ1 related to
the evacuation rate of injured people, ATC increases but
APUEP decreases, both of which vary in an almost linear
way. That is because when ǫ1 increases, ATRT and ATRS
increase, resulting in an increase in the average total res-
cue cost and a corresponding decrease in the number of
people un-evacuated. As can be seen from Figure 4(b),
both ATRT and ATRS increase as the increase of ǫ1. The
reason behind these observations is that increasing ǫ1
will increase the number of injured people that should
be evacuated, which results in the decrease of the num-
ber of people un-evacuated, and increase the storage and
transporting costs of relief supplies.

5.5.2. Impacts of parameter γ rt

We now let γrt = γ and discuss the impact of γ by
varying the value of γ ∈ {0.1, 0.2, 0.3, . . . , 0.8, 0.9}.

From Figure 5(a,b), we can easily find that there
is a threshold (γ = 0.5), before which ATC, APUEP,
ATRS and ATRT all slightly change. When γ exceeds
the threshold 0.5, ATC, ATRS and ATRT significantly
decrease, whereasAPUEP sharply increaseswith increas-
ing γ . The possible reason is that the total amount
of relief supplies can only meet part of the realised
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Figure 3. Impacts of uncertainty parameter G .

Figure 4. Impacts of uncertainty parameter ǫ1.

demands for the injured people under the current set-
ting. It follows that there is a threshold (γ = 0.5) for the
risk level γ , below which the number of injured people
whose demands can be met relatively stable, implying
that varying γ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} will not dramati-
cally affect the optimal solution. On the other hand, with
high risk level (γ > 0.5), the relief supplies can poten-
tially meet the demands for more injured people. In this
case, it is more beneficial to transfer more injured peo-
ple from affected areas to rescue shelters as the increase
of γ , so the proportion of the number of un-evacuated
people dramatically decreases. Moreover, the solution
space becomes larger with a larger γ , which increases
the chance to find a better solution, so the total cost
decreases.

5.5.3. Impacts of parametersω and ∂

In this subsection, we analyse the impact of the inven-
tory capacity Qir of relief supplies and unit penalty
cost of non-evacuees τ by varying the parameters ω ∈

{0.1, 0.2, 0.3, 0.4, 0.5} and ∂ ∈ {0.3, 0.4, 0.5, 0.6, 0.7}.

We first discuss the impact of the inventory capac-
ity of relief supplies on ATC, APUEP, ATRS and ATRS.
As shown in Figure 6, with the increasing of param-
eter ω, ATC, APUEP and ATRS all increase, whereas
ATRT decreases. Specifically, the increasing trends of
ATC, APUEP and ATRS withω are analogous, the rate of
increase in each metric firstly increase sharply, and even-
tually even moved beyond a threshold (ω = 0.3). On the
other hand, the rate of decrease in ATRT firstly decreases
sharply up to a certain threshold 0.3, and then remains
constant. The possible reason behind these observations
may be that when increasing ω, the inventory capacity of
relief supplies at each emergency relief distribution cen-
tre decreases, resulting in the decrease of the total supply
amount of relief supplies. This further leads to a dramatic
increase in the number of people un-evacuated, and an
increase of initial stock level.

Figure 7 illustrates how the unit penalty parameter ∂

affects ATC, APUEP, ATRS and ATRT. Because increas-
ing ∂ will increase the penalty cost per un-evacuated per-
son in each time period, the results in Figure 7(a,b) show
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Figure 5. Impacts of parameter γ .

Figure 6. Impacts of parameterω.

Figure 7. Impacts of parameter ∂ .

that, as expected, both ATC and ATRT increase, whereas
APUEP decreases and ATRS remains unchanged when
increasing ∂ . What is more, we also find that the increas-
ing trend of ATC and ATRT and the decreasing trend of
APUEP tapers off, which indicate that the influence of ∂
on ATC, ATRT and APUEP gradually decreases.

Overall, the above observations show that all the
considered parameters have significant impact on the
considered metrics, which informs the decision maker
how to set proper parameters so as to achieve
the desired trade-off among the considered
metrics.
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6. Conclusion

In this paper, we develop a distributionally robust model
for the integrated facility location, supply inventory and
allocation, and evacuation planning problem with multi-
ple types of relief supplies under uncertain demands with
only limited distributional information being available
and uncertain evacuation rates of injured people. Con-
sidering the intractability of the distributionally robust
model, we employ the strong duality theory to transform
it into a tractable mixed integer linear programme, and
adapt the branch-and-Benders-cut algorithm to solve the
resulting model into optimality. To improve the perfor-
mance of the developed algorithm, we introduce two
algorithm enhancements, i.e. in–out Benders cut genera-
tion and initial cut generation. The experimental results
show that the introduced algorithm enhancements can
greatly reduce the CPU time, and that the distribution-
ally robust model can provide more robust and flexible
solutions in uncertain environments compared with the
SM and DM. The results also show that using a sequen-
tial solution approach yields a total cost increase of 8.53%
on average instead of our integrated solution approach
for the instances with |I| = 50, which highlights the ben-
efit of using an integrated solution approach to solve
the DRHND-FLRIAEP. Moreover, our analysis of the
impacts of the key model parameters further informs the
decisionmakers of how to respond to situational changes
on the spot by properly changing the parameter settings.

In the future, researchers can continue to explore from
the following perspectives. First, the model involves the
allocation of relief supplies, but does not consider the
transportation time, which is one of the major factors
that affect rescue efficiency. Thus, it is interesting to
integrate routing decisions of delivery vehicles alone or
delivery vehicles and drones in a collaborative way into
the model. Second, we assume that all the injured peo-
ple are in the same status that require identical relief
supplies. However, in real disaster relief, the affected
people may be partitioned several types, such as lightly
injured persons, severely injured persons, etc., accord-
ing to the extent of the injury. It is worth consider-
ing affected people with different kinds of injuries and
investigating corresponding solution structures. Third,
we only employ first-order moment information to con-
struct ambiguity set. Another interesting future direction
is to use second-order moment information or statistical
distance-based ambiguity sets or scenario-based ambigu-
ity sets to measure the uncertainty of demands. Fourth,
we only consider the allocation and evacuation opera-
tions in the designed humanitarian relief network. To
achieve an efficient rescue, it is of interest to consider sub-
contracting strategy (Dolgui and Proth 2011; Dolgui and

Proth 2013), where part of relief supplies demands can
be met by the distribution centres on the outside of the
network, or some injured people can be transferred to
the rescue shelters on the outside of the network. Finally,
we assume that the uncertain demands and evacuation
rates of injured people are independent, but they may be
correlated in some real practice. Thus, it is interesting
to consider different ambiguity sets with some correla-
tions between uncertain demands and evacuation rates of
injured people, and analyse their corresponding solution
structures.
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1. The proof of proposition 3.4

Given any r ∈ R, t ∈ {1, 2, · · · ,T}, define the worst-case condi-
tional value-at-risk (CVaR) at level 1 − γrt of random variable
κ̃rt under distribution P ∈ Fκ as the random variable governed
by P as follows:
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By Theorem 2.2 in Zymler, Kuhn, and Rustem (2013), the
distributionally robust chance constraint
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can be reformulated as the following optimisation

problem:
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s.t.
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Let ηrt ,φ
+
rt ,φ

−
rt ,Ŵ

+
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t and θ be the Lagrange multipliers
associated with the constraints (36)–(41), respectively. By the
strong duality theory, we can obtain the dual result of above
optimisation problem as follows:
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Lemma 3.3, constraints (43) and (44) can be equivalently refor-
mulated as follows:
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j∈N∪E

∑

k∈G

hjktnkt ≥ −Art

(A16)

ηrt + φ+
rt − φ−

rt + Ŵ+
t − Ŵ−

t −
∑

j∈N∪E

∑

k∈G

hjktnkt ≤ Art

(A17)

ηrt + φ+
rt − φ−

rt + Ŵ+
t − Ŵ−

t ≥ −Brt (A18)

ηrt + φ+
rt − φ−

rt + Ŵ+
t − Ŵ−

t ≤ Brt (A19)

Ŵ+
t − Ŵ−

t ≥ −Ct (A20)

Ŵ+
t − Ŵ−

t ≤ Ct (A21)

Art ,Brt ,Ct ≥ 0 (A22)

Substituting the model consisting of the objective function
(A10), constraints (A13) and (A14)–(A22) into constraints
(A2), the result follows.
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2. The pseudo-code of the basic benders
decomposition algorithm

3. Stochastic model by SAAmethod

Based on the selected training samples κ̃ l, l ∈ L, we formulate
the SM as follows:

min
T

∑

t=1

∑

i∈M

f dit xit +

T
∑

t=1

∑

j∈N

f rjtyjt

+
1

|L|

∑

l∈L

T
∑

t=1

∑

i∈M

∑

j∈N∪E

∑

r∈R

ctijtq
l
ijrt +

T
∑

t=1

∑

i∈M

∑

r∈R

csirtδirt

+

T
∑

t=1

∑

k∈G

∑

j∈N∪E

Lenjkc
e
jkthjktnkt +

T
∑

t=1

∑

k∈G

τkt
ktnkt

Subject to
Constraint (4)–(5), (8), (11)–(17), (19)
∑

i∈M

qlijrt ≤ yjtQ
ri
j ∀j ∈ N, r ∈ R, t ∈ {1, 2, · · ·T}, l ∈ L

(A23)
∑

i∈M

qlijrt ≤ Qri
j ∀j ∈ E, r ∈ R, t ∈ {1, 2, · · ·T}, l ∈ L (A24)

∑

j∈N∪E

qlijrt ≤ xitQ
d
ir ∀i ∈ M, r ∈ R, t ∈ {1, 2, · · ·T}, l ∈ L

(A25)

δirt = δir,t−1 + ϑirt −
∑

j∈N∪E

qlijrt ∀i ∈ M, r ∈ R,

t ∈ {1, 2, · · ·T}, l ∈ L (A26)

κ̃ l
rt

∑

j∈N∪E

∑

k∈G

hjktnkt −
∑

i∈M

∑

j∈N∪E

qlijrt ≤ Mbiga
l
rt

∀r ∈ R, t ∈ {1, 2, · · ·T}, l ∈ L (A27)
∑

l∈L

(1 − alrt) ≤ |L|(1 − γrt) ∀r ∈ R, t ∈ {1, 2, · · ·T} (A28)

alrt ∈ {0, 1}, dlijrt ≥ 0, ∀i ∈ M, j ∈ N ∪ E, r ∈ R, k ∈ G,

t ∈ T, l ∈ L (A29)

Here qlijrt denotes the amount of relief supplies r transported
from emergency relief distribution centre i to rescue shelter
j during period t in scenario l, and alrt is a binary variable
equal to 1 if and only if the amount of relief supplies r is sat-
isfied with the demand of injured people in scenario l, and
Mbig is a big constant. Constraints (A23) and (A24) together
state that relief supplies can only be delivered to the usable res-
cue shelters, and that the amount of relief supplies delivered
to a rescue shelter should not exceed its maximum inventory
capacity in scenario l; Constraint sets means that the amount
of relief supplies delivered from the opened emergency relief
distribution centre in each time period cannot exceed its maxi-
mum inventory capacity in scenario l; Constraints (A26) give
the distribution and storage balance equation at each emer-
gency relief distribution centre in each timeperiod in scenario l;
Constraints (A27) and (A28) are the linearisation of the distri-
butionally robust chance constraints; Constraints (A27) deter-
mine alrt ; Constraints (A28) ensure the probability tolerance;
and Constraints (A29) define the decision variables.

4. The performance of different ϕ

By varying the parameter ϕ ∈ {0.3, 0.5, 0.7, 0.9, 0.99, 1}„ we can
derive the different performance of the proposed branch-and-
Benders-cut algorithm. Table A1 shows how average CPU time
varies by varying the parameter ϕ ∈ {0.3, 0.5, 0.7, 0.9, 0.99, 1}.
The results clearly demonstrate that ϕ = 0.9 is superior to the
other ϕ values in most cases. Thus, we set ϕ = 0.9 in the
subsequent experiments.
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Table A1. Performance of different ϕ .

Average CPU time

Instances (|I|, |Jn|, |G|) ϕ = 0.3 ϕ = 0.5 ϕ = 0.7 ϕ = 0.9 ϕ = 0.99 ϕ = 1

40 40 60 695.3 892.1 822.5 322.4 331.6 387.2
80 1380.3 1336.0 1126.5 572.6 613.0 696.5
100 2170.3 1951.2 1976.4 603.3 743.1 817.8
120 2908.6 2558.5 2266.4 1034.2 1146.3 1262.6

50 60 995.3 978.2 1004.3 447.4 437.2 501.8
80 1415.7 1373.2 1404.1 601.5 865.6 1238.2
100 2892.2 2931.9 2606.7 1125.3 1577.5 1826.6
120 3743.4 3795.7 3503.7 1440.5 2049.4 2890.8

60 60 1893.5 1228.2 1525.7 847.6 887.4 986.1
80 2208.9 1840.1 1890.0 1495.8 1497.1 1614.4
100 2559.4 2801.5 3191.2 2116.9 2255.3 2496.2
120 5045.8 5344.3 4744.2 3058.8 3119.6 3433.7

50 40 60 961.8 920.1 872.0 430.1 513.6 543.9
80 1433.0 1411.2 1496.2 604.7 665.0 758.8
100 2239.3 2300.6 2373.0 722.3 841.2 898.6
120 3544.3 3070.5 2915.2 1246.4 1326.7 1472.1

50 60 1438.8 1459.7 1499.4 726.4 790.0 856.8
80 2084.6 2036.7 2138.0 1282.1 1333.1 1446.9
100 3579.5 3440.6 3297.2 1516.1 2247.7 2381.0
120 4579.1 4445.5 4296.7 2517.7 3157.4 2975.5

60 60 2178.9 2231.2 2003.4 1147.0 1188.1 1232.2
80 3691.0 3621.4 3553.6 2966.3 2990.4 3091.5
100 3766.6 3720.5 3688.5 3387.7 3454.7 3585.8
120 3855.0 4055.2 3791.9 3684.7 3748.2 3943.7

60 40 60 1286.8 1092.1 1182.6 1179.1 669.0 777.5
80 2175.4 2196.6 1803.8 1107.4 1192.1 1511.6
100 2745.3 2698.6 2825.0 917.7 1167.0 1326.4
120 4129.4 4033.1 3928.8 1384.1 1586.3 1878.8

50 60 1740.3 1862.2 1983.9 809.4 997.5 1075.8
80 3301.1 3443.5 3196.8 1441.7 2216.3 2371.4
100 4712.5 4936.3 5285.9 2018.1 2398.1 2599.0
120 5349.6 4901.8 4870.7 2935.5 3291.5 3373.4

60 60 2633.8 2827.6 2798.0 1510.9 1599.5 1649.3
80 3735.5 4066.5 4255.0 3245.8 3308.2 3661.2
100 4408.6 4661.4 4771.9 3956.5 3983.3 4179.1
120 5581.9 5601.7 5374.3 4254.1 4359.3 4348.2

Note: Bold value indicates the minimum CPU time.
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