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We study the feasibility of sub-shot-noise interferometry with imperfect detectors, starting from
twin-Fock states and two mode squeezed vacuum states. We derive analytical expressions for the
corresponding phase uncertainty. We find that one can achieve phase shift measurements below
the standard quantum limit, as long as the losses are smaller than a given threshold, and that the
measured phase is close enough to an optimal value. We provide our analytical formulae in a Python
package, accessible online.

I. INTRODUCTION

The ability to map many physical quantities onto
a phase shift makes interferometry both a crucial and
generic technique in metrology. It is widely known that
because of entanglement, some non-classical states can
lead to improved phase resolution compared to their
classical counterparts [1–4]. Given an experimental re-
source of N identical bosons, an attractive choice is to
use NOON states 1√

2
(|N, 0〉+ |0, N〉). Indeed NOON

states lead to a “Heisenberg limited” phase uncertainty
∆φ = O(N−1) [5–7], known to be optimal [8, 9]. This is a
much more advantageous scaling than the best phase sen-
sitivity reachable with classical systems (∆φ = 1/

√
N),

provided by a coherent state, and usually called the stan-
dard quantum limit (SQL) or shot noise. Other au-
thors have proposed the use of “twin Fock” (TF) states
|TF〉 = |N/2, N/2〉 and have shown that they also can
achieve 1/N scaling in phase sensitivity [10, 11].

Unfortunately, NOON states are extremely fragile and
behave even worse than classical states when losses are
present [12, 13]. In addition, they are very challenging to
prepare, and their realization with N larger than a few
units has not been achieved [14, 15].

The effect of loss in quantum enhanced interferometers
has been studied more generally, and states minimizing
the phase uncertainty in the presence of loss have been
found [16–18]. These states can be expressed as super-
positions of states of the form:

|N :: m〉± =
1√
2
(|N −m,m〉 ± |m,N −m〉) . (1)

Like NOON states, these states involve superpositions of
strong population imbalances between the two modes (a
NOON state is in fact the special case m = 0). This
imbalance is responsible for the enhanced sensitivity, but
these states can retain their coherence despite a loss of
order m particles, and thus are more robust [19]. In the
presence of losses however, even these states can only sur-
pass the standard quantum limit by a numerical factor,
meaning that ∆φ = O(N−1/2) is the best scaling possi-
ble [17, 20]. Here again, although the optimal states are
conceptually interesting, their experimental realization is
not presently realistic.

On the other hand, it is well known that the mixing on
a beam splitter of the twin-Fock states mentioned above

gives rise to a superposition of |2n :: 2k〉± states [21, 22],
and one might wonder about the robustness of such a
superposition in the presence of loss. A related state
is the two-mode squeezed state (TMS) [23], which is a
superposition of twin Fock states with different particle
numbers. Both of these states are widely used and can be
produced with a large number of particles [24–29]. These
states are different from another type of experimentally
realizable states, the “spin squeezed” states, see fig. 5
of [4].

Here we will analyse the performance of twin Fock and
two-mode squeezed states in the presence of loss. Un-
like for spin squeezed states, the relevant observable is
not simply the population difference and in fact several
choices are a priori possible. We will follow other authors
in using the variance of the population difference as the
interferometric observable [10, 11]. We find that the sen-
sitivity in this case only differs from that of the optimal
state by a numerical factor and that one can surpass the
standard quantum limit if the losses are low enough.

II. OUR MODEL

We will consider the interferometer configuration rep-
resented in fig. 1, and for the sake of clarity we will dis-
tinguish the input state (before the first beam splitter)
that one must prepare, from the probe state (after the
first beam splitter) that exhibits some phase sensitivity.
We assume that the losses are only caused by the de-
tectors, having the same quantum efficiency η, and we
will consider ∆φ = 1/

√
ηN to be the SQL, against which

we should compare our results. Our input state is either
a twin Fock state or a two-mode squeezed state. Note
that without an initial beam splitter, these states pro-
duce interference patterns that are independent of the
phase [21, 22, 30].

Two-mode squeezed states are well known in quantum
optics, as they are spontaneously generated from vacuum
with a quadratic interaction hamiltonian. By denoting
ξ = reiθ the squeezing parameter, whose norm r is pro-
portional to the interaction time, such a state reads

|TMS〉 = 1

cosh(r)

∞∑
n=0

einθ tanhn(r) |n, n〉 (2)
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Figure 1. Generic diagram of an interferometry experiment,
using a two-mode pure state at the input modes (â1, â2) of
the first beam splitter. After the generation of a probe state,
a phase shift is applied, and the detection is performed with a
POVM (positive operator valued measure). The 50:50 beam
splitter, corresponding to the unitary operator Ŝ is applied
twice, and the phase difference between the two arms is φ.
The detectors have a finite quantum efficiency η, assumed to
be equal, and is modelled with additional beam splitters Ŝη

applied to the output modes of the interferometer (b̂1, b̂2).
The operators ĉ1 and ĉ2 represent the modes that are effec-
tively detected.

in the Fock basis relative to the modes â1 and â2 (see
fig. 1).

The action of the interferometer on the input state is
described by the unitary operator Û :

Û = Ŝ

(
eiφ 0
0 1

)
Ŝ = ei

φ
2

 i sin
(

φ
2

)
cos

(
φ
2

)
− cos

(
φ
2

)
−i sin

(
φ
2

) (3)

The losses are modelled by additional beam splitters Ŝη

placed at the output ports:

Ŝη =

[ √
η

√
1− η

−
√
1− η

√
η

]
(4)

With the input and output annihilation operators defined
in fig. 1, we introduce the additional notations for the
number operators:

N̂αi
= α̂†

i α̂i / α ∈ {a, b, c} , i ∈ {1, 2} (5)

and the detected particle number difference at the out-
put, with and without losses:

D̂η =
1

2

(
N̂c2 − N̂c1

)
D̂ =

1

2

(
N̂b2 − N̂b1

)
= D̂η=1

(6)

We also denote N =
〈
N̂a1

+ N̂a2

〉
=

〈
N̂b1 + N̂b2

〉
the

average number of particles in the initial state. In the
case of a twin Fock state |n, n〉, we simply have N = 2n,
whereas for a two-mode squeezed state N = 2 sinh2(r),
i.e. twice the average number of particles per mode. The
mean number of detected particles therefore is ηN .

The operator Û provides the expansion of D̂ in terms
of the input modes:

D̂ =
1

2

[
cos(φ)

(
N̂a1 − N̂a2

)
+ i sin(φ)

(
â†1â2 − â†2â1

)]
(7)

Therefore, whatever the phase φ and the quantum ef-
ficiency η, a twin Fock state placed at the input of the
interferometer yields a vanishing expectation value for D̂.
Due to linearity, the same is true for two-mode squeezed
states. This means that D̂ itself is not a suitable observ-
able to recover information about the phase φ with those
states. However, following previous authors [10, 11], one
can study D̂2 which characterizes the width of these dis-
tributions. Indeed, one can derive [31]:

〈
D̂2

η

〉
tf
= η2

N

4

(
1 +

N

2

)
sin2(φ) + η(1− η)

N

4〈
D̂2

η

〉
tms

= η2
N

2

(
1 +

N

2

)
sin2(φ) + η(1− η)

N

4

(8)

making explicit the phase dependence.

III. RESULTS

The phase uncertainty can be computed analytically
using

∆φ =

√
Var

[
D̂2

η

]
∣∣∣∣ ∂

∂φ

[〈
D̂2

η

〉]∣∣∣∣ . (9)

If the detectors are lossless (η = 1), the phase uncertain-
ties are given by:
∆φtf =

1

cos(φ)
√
N(N + 2)

√
2 +

(
−3 + N

4 + N2

8

)
sin2(φ)

∆φtms =
1

cos(φ)
√
N(N + 2)

√
1 + 2N(N + 2) sin2(φ)

(10)
In the neighbourhood of φ = 0, we find Heisenberg lim-
ited scaling ∆φ = O(N−1).

When we include losses, the analogous expressions be-
come rather long and we leave them to the supplemental
materials [31]. As an example, in fig. 2 we show that
the phase uncertainty ∆φ can be smaller than the stan-
dard quantum limit. In addition, the phase uncertainty
has a minimum at a non-zero phase φ0 which depends
on the detection efficiency, number of particles and the
input state (see fig. 3). The optimal phase is shifted due
to a divergence at zero phase in eq. (9): ∆φ =

φ=0
O(φ−1).

This type of profile has been observed experimentally
[32]. From the study of the variations of ∆φ as a func-
tion of φ, one can compute the optimal phase φ0 around
which an experiment should operate to perform precision
measurements. This means that during an experiment,
one must be able to tune a phase offset, for instance in
optics by adding a tiltable glass plate.

In fig. 3 we show color maps of the values of φ0 as a
function of the number of particles N and the quantum
efficiency η. Regions where sub-shot-noise measurements
are possible correspond to non-hashed regions. It ap-
pears in these maps that this question is mostly related
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Figure 2. Ratio between the phase uncertainty ∆φ and the
SQL, using respectively twin-Fock state (in blue) and two-
mode squeezed state (in red) as input states of the interferom-
eter. The dashed lines correspond to the situation where the
quantum efficiency of the detectors is assumed to be perfect
(η = 1), whereas the plain lines refer to detectors with finite
quantum efficiency (here η = 0.95). Both types of states have
an average population of 100 particles (50 per mode). We
also give the gain in decibel defined as G = 20 log

(√
ηN ∆φ

)
.

to the quantum efficiency of the detectors: depending
on whether one is dealing with twin Fock or two-mode
squeezed states, a threshold of η ≈ 0.7 or respectively
η ≈ 0.9 must be achieved to surpass the SQL.

We have computed ∆φ0 [31], the phase uncertainty
when the measurement is performed at the optimal phase
φ0. When N is small, ∆φ0 varies similarly to a power law
∆φ0 ≈ 1/Nα with 0.5 < α < 1, depending on the value
of η (an example is plotted in fig. 4). Experimentally,
in this region one obtains significant gains with respect
to the standard quantum limit by increasing the number
of particles. In the asymptotic region, where N goes to
infinity, we recover the ∆φ0 = O(N−1/2) scaling [17, 20].

We also computed

γ(η) = lim
N→∞

√
ηN ∆φ0 (11)

which is the ratio between ∆φ0 and the standard quan-
tum limit, in the asymptotic limit. This quantity tells
what value of η must be reached to go below the SQL. It
has been proven [17] that√

ηN ∆φ ≥
√
1− η (12)

but this bound is tight only when using optimal input
states, as well as an observable which is not explicitly
known. In our case, the function γ is actually a simple
dilation of the lower bound (12) (see fig. 5):

γtf(η) =
√
3
√
1− η

γtms(η) =

(
2

5

)1/4 √
5 + 2

√
10︸ ︷︷ ︸

≈ 2.676

√
1− η

(13)
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Figure 3. Optimal phase φ0 that minimises the phase un-
certainty during a measurement, plotted as a function of the
number of particles in the interferometer N and the quantum
efficiency of the detectors η. The red hatches exhibit the sub-
domain of the (η,N) plane where no measurement below SQL
can be performed. Isolines of φ0 are plotted in black. The
top graph represents φ0 for the TF state, while the bottom
graph refers to the TMS state.

Our simple measurement protocol is therefore similar to
an optimal situation where ideal states are used.

IV. CONCLUSION

The chief conclusion of this work is that when account-
ing for non-unit quantum efficiency, there exist experi-
mentally accessible states which can achieve phase sensi-
tivity close to the theoretical limit. As in other schemes
to surpass the standard quantum limit, the quantum ef-
ficiency of the detectors is critical. With TF states, a
95% quantum efficiency results in a 8 dB improvement
compared to the SQL, which is not very far from the
theoretical bound of 13 dB given by eq. (12). For a TMS
the gain is only 4.4 dB. Still, we expect that such im-
provement factors could be useful in some interferometers
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phase uncertainty ∆φ0 (i.e. ∆φ estimated at the optimal
phase φ0) and the SQL, as a function of the number of parti-
cles, for both TF and TMS states. The quantum efficiency is
set to η = 0.95. Contrary to the lossless detectors case that
provides a 1

N
Heisenberg limited scaling, the ratios converge

towards a finite limit (dotted line), meaning that the SQL is
surpassed only by a constant factor. We also give the gain in
decibel defined as G = 20 log

(√
ηN ∆φ0

)
.
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Figure 5. Ratio between the phase uncertainty ∆φ0 and the
SQL, in the asymptotic regime, as a function of the quantum
efficiency (cf. eq. (11)). We find that both TF and TMS
states give a profile which is proportional to the one obtained
with an optimized input state (green dashed line, cf. eq. (12)).
We also see in this graph the minimal values of η leading to
sub-shot-noise measurements (these values correspond to the
limit N → ∞ of the red lines in fig. 3).

where increasing the number of particles to reduce the
shot noise is not practical. Whether twin Fock or two-
mode squeezed states constitute a real advantage com-
pared to spin squeezing will require more work in the
future using comparisons in realistic experimental situa-
tions [4]. The fact that these relatively accessible states
are not far from the optimized ones is an encouraging
sign.

Our analytical formulae are provided in the supple-
mentary materials and are implemented in a Python
package, accessible online at https://github.com/
quentinmarolleau/qsipy.
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FOREWORD ON THE PYTHON PACKAGE: QSIPY

We provide a Python package that implements all the formulae that we present in the main article and this
supplemental material. The source code is distributed under the MIT licence and can be accessed on GitHub:
https://github.com/quentinmarolleau/qsipy.

The package itself is also built and published in the official Python Package Index (PyPI), under the name qsipy.
The interested reader may install it on its own Python environment by simply using the pip package manager:

pip install qsipy

Figures of the article are generated using the version v1.0.0 of qsipy, the source code generating those is also
available online.

I. PARAMETRIZATION OF THE PROBLEM

I.1. Operator definitions

|𝑛, 𝑛⟩
or

|TMS⟩
�̂�

𝑒𝑖𝜙
�̂�

�̂�𝜂

�̂�𝜂

m
easurem

ent

�̂�1 �̂�1 �̂�1

�̂�1

�̂�2 �̂�2 �̂�2

�̂�2

Figure S1. Scheme of the interferometer that we study. â1 and â2 are the input modes, 50:50 beam splitters, corresponding
to the unitary operator Ŝ are applied twice, and the phase difference between the two arms is φ. The detectors placed at the
output ports have a finite quantum efficiency η, assumed to be equal, and that is modelled with additional beam splitters Ŝη

applied to the output modes of the interferometer (b̂1, b̂2). The operators ĉ1 and ĉ2 represent the modes that are effectively
detected. The modes v̂1 and v̂2 represent the vacuum channels.

Following the notation of fig. S1, we denote N the average value of the total number of atoms in the interferometer:

N ,
〈
N̂a1

+ N̂a2

〉
=

〈
N̂b1 + N̂b2

〉
(1)

We have

Ŝ =
1√
2

(
1 1
−1 1

)
(2)

corresponding to the special case of the beam splitter that does not apply any phase shift. Without loss of generality
we chose the beam splitters to be real matrix because the observable that we consider are only sensitive to the actual
phase difference between the two arms of the interferometer.

Φ̂ =

(
eiφ 0
0 1

)
(3)

Û = ŜΦ̂Ŝ = ei
φ
2

 i sin
(

φ
2

)
cos

(
φ
2

)
− cos

(
φ
2

)
−i sin

(
φ
2

) (4)

(
b̂1
b̂2

)
= Û

(
â1
â2

)
(5)

https://opensource.org/license/mit/
https://github.com/quentinmarolleau/qsipy
https://github.com/quentinmarolleau/qsipy
https://pypi.org/project/qsipy/
https://github.com/quentinmarolleau/qsipy/tree/main/images
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We also have the beam splitters modelling the losses:

Ŝη =

( √
η

√
1− η

−
√
1− η

√
η

)
(6)

such that

ĉi =
√
η b̂i +

√
1− η v̂i / i ∈ {1, 2} (7)

We finally introduce notations for the number operators:

N̂αi
= α̂†

i α̂i / α ∈ {a, b, c} , i ∈ {1, 2} (8)

input spin operators: 
Ĵx = 1

2

(
â†1â2 + â†2â1

)
Ĵy = 1

2i

(
â†1â2 − â†2â1

)
Ĵz = 1

2

(
N̂a1

− N̂a2

) (9)

and the observables of interest: 
D̂η =

1

2

(
N̂c2 − N̂c1

)
D̂ =

1

2

(
N̂b2 − N̂b1

)
= D̂η=1

(10)

I.2. Two-mode squeezed vacuum state and preliminary results

We remind the definition of a two-mode squeezed vacuum (TMS) state, with average total population N :

|TMS〉 ,
√

2

2 +N

∞∑
n=0

(
N

2 +N

)n
2

|n, n〉 (11)

in order to keep compact notations during the calculations, we will often use the thermal weight:

Pth(n) =
2

2 +N

(
N

2 +N

)n

(12)

corresponding to the probability to measure n particles in a given mode of the TMS state.
We also highlight the fact that

Ĵz |n, n〉 = Ĵz |TMS〉 = 0 (13)

and finally: 〈
Ĵx

〉
=

〈
Ĵy

〉
= 0 (14)

for both twin Fock and two-mode squeezed vacuum states.

II. EXPANSION OF D̂, D̂2, D̂η AND D̂2
η

D̂ = cos(φ)Ĵz − sin(φ)Ĵy (15)

D̂2 = cos2(φ)Ĵ2
z + sin2(φ)Ĵ2

y − 2 sin(φ) cos(φ)ĴyĴz + i sin(φ) cos(φ)Ĵx (16)
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Since there is no particle in the vacuum channels for the input state, we always have v̂i |ψ〉input = 0. For a sake
of simplicity, we reduce the writing of D̂η and D̂2

η to the terms giving a non zero contribution. This means that (for
either D̂η and D̂2

η) we drop all the terms containing v̂i∈{1,2} annihilation operators on their rightmost side:

D̂η = ηD̂ +
1

2

√
η(1− η)

(
v̂†2 b̂2 − v̂†1 b̂1

)
(17)

D̂2
η = η2D̂2 +

η(1− η)

4

[
(v̂†1)

2 b̂21 + (v̂†2)
2 b̂22 + N̂b1 + N̂b2 − 2 b̂1b̂2 v̂

†
1v̂

†
2

]
+
η
√
η(1− η)

2

[
2D̂ b̂2v̂

†
2 +

1

2
b̂2v̂

†
2 − 2D̂ b̂1v̂

†
1 +

1

2
b̂1v̂

†
1

]
+
(1− η)

√
η(1− η)

4

[(
2N̂v2 − 1

)
b̂2v̂

†
2 +

(
2N̂v1 − 1

)
b̂1v̂

†
1

] (18)

III. EXPECTATION VALUES OF D̂2 AND D̂2
η

III.1. Lossless case

With twin Fock states

Ĵ2
y =

1

4

[
N̂a1

(
1+ N̂a2

)
+ N̂a2

(
1+ N̂a1

)
− (â†1)

2 â22 − (â†2)
2 â21

]
(19)

thus with (13) (14) and (16), 〈
D̂2

〉
tf
=

〈
Ĵ2
y

〉
tf
sin2(φ) =

N

4

(
1 +

N

2

)
sin2(φ) (20)

With two-mode squeezed vacuum states

We can check that

m 6= n⇒
〈
n, n

∣∣∣D̂2
∣∣∣m,m〉

= 0 (21)

therefore assuring the simple relation: 〈
D̂2

〉
tms

=

∞∑
n=0

Pth(n)
〈
D̂2

〉
tf

(22)

leading to 〈
D̂2

〉
tms

=
N

2

(
1 +

N

2

)
sin2(φ) = 2

〈
D̂2

〉
tf

(23)

III.2. Lossy case (i.e. eq. (8) in the main paper)

With twin Fock states

Using eq. (18), and writing the non-vanishing terms only, we have:〈
D̂2

η

〉
tf
= η2

〈
D̂2

〉
tf
+
η(1− η)

4
N (24)

therefore 〈
D̂2

η

〉
tf
= η2

N

4

(
1 +

N

2

)
sin2(φ) +

η(1− η)

4
N (25)
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With two-mode squeezed vacuum states

Again we can check on eq. (18) that

m 6= n⇒
〈
n, n

∣∣∣D̂2
η

∣∣∣m,m〉
= 0 (26)

thus we still have 〈
D̂2

η

〉
tms

=

∞∑
n=0

Pth(n)
〈
D̂2

η

〉
tf

(27)

and finally: 〈
D̂2

η

〉
tms

= η2
N

2

(
1 +

N

2

)
sin2(φ) +

η(1− η)

4
N (28)

IV. EXPECTATION VALUES OF D̂4 AND D̂4
η

IV.1. Lossless case

With twin Fock states

We compute
〈
D̂4

〉
tf
=

∥∥∥D̂2
∣∣N
2 ,

N
2

〉∥∥∥2. The only non-vanishing term of D̂2 |n, n〉 are:
Ĵ2
y |n, n〉 =

1

4

(
2n (1 + n) |n, n〉 −

√
(n− 1)n (n+ 1) (n+ 2)

[
|n+ 2, n− 2〉+ |n− 2, n+ 2〉

])
Ĵx |n, n〉 =

1

2

√
n(n+ 1)

(
|n+ 1, n− 1〉+ |n− 1, n+ 1〉

) (29)

all these vectors are mutually orthogonal, then:∥∥∥∥D̂2

∣∣∣∣N2 , N2
〉∥∥∥∥2 =

N

4

(
1 +

N

2

)
sin2(φ)

[
1 +

3

2

(
−1 +

N

4
+
N2

8

)
sin2(φ)

]
(30)

With two-mode squeezed vacuum states

Looking at eq. (29), we can convince ourselves that the decomposition in the two-mode Fock basis of Ĵ2
y |n, n〉 and

Ĵx |n, n〉 with n ∈ N generate vectors that are all mutually orthogonal.
Therefore ∥∥∥D̂2 |TMS〉

∥∥∥2 =

∞∑
n=0

Pth(n)
∥∥∥D̂2 |n, n〉

∥∥∥2 (31)

and thus, ∥∥∥D̂2 |TMS〉
∥∥∥2 =

N

2

(
1 +

N

2

)
sin2(φ)

[
1 +

9N

2

(
1 +

N

2

)
sin2(φ)

]
(32)

IV.2. Lossy case

We follow the same procedure as before, but here the number of non-vanishing terms is much larger. We will only
write the final results.



6

With twin Fock states

With
P tf
0 (N, η) = 64− 320 η + 256 ηN + 384 η2 − 384 η2N + 96 η2N2 − 144 η3 + 156 η3N − 60 η3N2 + 9 η3N3

P tf
1 (N, η) = −4 (N + 2) η

(
16 + 24 (N − 2) η + 3

(
8− 6N +N2

)
η2
)

P tf
2 (N, η) = 3

(
−16− 4N + 4N2 +N3

)
η3

(33)

we have: ∥∥∥∥D̂2
η

∣∣∣∣N2 , N2
〉∥∥∥∥2 =

ηN

1024

[
P tf
0 (N, η) + P tf

1 (N, η) cos(2φ) + P tf
2 (N, η) cos(4φ)

]
(34)

With two-mode squeezed vacuum states

With 
P tms
0 (N, η) = 8 + 24 η + 64 ηN + 48 η2N + 72 η2N2 + 12 η3N + 36 η3N2 + 27 η3N3

P tms
1 (N, η) = −4 (N + 2) η

(
4 + 18 ηN + 9 η2N2

)
P tms
2 (N, η) = 9N (N + 2)

2
η3

(35)

we have: ∥∥∥D̂2
η |TMS〉2

∥∥∥ =
ηN

128

[
P tms
0 (N, η) + P tms

1 (N, η) cos(2φ) + P tms
2 (N, η) cos(4φ)

]
(36)

V. PHASE UNCERTAINTY ∆φ

Phase uncertainties are computing using

∆φ =

√
Var

[
D̂2

η

]
∣∣∣∣ ∂∂φ [〈

D̂2
η

〉]∣∣∣∣ . (37)

V.1. Lossless case (i.e. eq. (10) in the main paper)

With twin Fock states

Injecting (20) and (30) into eq. (37), we get:

∆φtf =
1

cos(φ)
√
N(N + 2)

√
2 +

(
−3 +

N

4
+
N2

8

)
sin2(φ) (38)

With two-mode squeezed vacuum states

Injecting (23) and (32) into eq. (37), we get:

∆φtms =
1

cos(φ)
√
N(N + 2)

√
1 + 2N(N + 2) sin2(φ) (39)
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V.2. Lossy case

With twin Fock states

Injecting (24) and (34) into eq. (37), we get:


Qtf

0 (N, η) = −144η3 + 384η2 − 320η + 3η3N3 − 52η3N2 + 64η2N2 + 132η3N − 320η2N + 192ηN + 64

Qtf
1 (N, η) = −4η (N + 2)

(
η2

(
N2 − 14N + 24

)
+ 16η (N − 3) + 16

)
Qtf

2 (N, η) = η3
(
N3 + 4N2 − 20N − 48

) (40)

∆φtf =
1

4N(N + 2) η2 |sin(2φ)|

√
η N

[
Qtf

0 (N, η) +Qtf
1 (N, η) cos(2φ) +Qtf

2 (N, η) cos(4φ)
]

(41)

With two-mode squeezed vacuum states

Injecting (28) and (36) into eq. (37), we get:
Qtms

0 (N, η) = 3η + 3η3N3 + 4η3N2 + 8η2N2 + η3N + 6η2N + 7ηN + 1

Qtms
1 (N, η) = −2η (N + 2)

(
2η2N2 + 4ηN + 1

)
Qtms

2 (N, η) = η3N(N + 2)2
(42)

∆φtms =
1

N(N + 2) η2 |sin(2φ)|

√
η N [Qtms

0 (N, η) +Qtms
1 (N, η) cos(2φ) +Qtms

2 (N, η) cos(4φ)] (43)

VI. OPTIMAL PHASE φ0

When considering non-unit quantum efficiency, the phase uncertainty exhibits a minimum in φ0 > 0. In that case,
the study of the derivative of ∆φ as a function of φ gives the analytic expression of φ0.

With twin Fock states

with n = N
2 :

A = (1− η)
(
4η2

(
10n2 − 19n+ 6

)
− 2η5n

(
2n3 − 15n2 + 24n− 9

)
− 2η4n

(
−2n3 + 31n2 − 72n+ 45

)
−η3

(
−33n3 + 134n2 − 135n+ 18

)
− η(9− 12n) + 1

)
we have

φ0 = arccsc

√√
A+ η3(4n− 6) + η2(12− 8n) + η(4n− 7) + 1

(1− η) (1 + η(4n− 6)(1− η))

 (44)

With two-mode squeezed vacuum states

with ν = N
2 :

B = (1− η)
(
− 20η5ν2

(
32ν2 + 32ν + 5

)
− η4

(
340ν2 − 640ν4

)
+ 4η3ν

(
176ν2 + 81ν − 15

)
+4η2ν(61ν + 26) + 7η(4ν + 1) + 1

)
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we have

φ0 = arccsc

√√
B + 10η3ν − 20η2ν + η(10ν − 1) + 1

(1− η) (−10η2ν + 10ην + 1)

 (45)

Brief comment about the phase uncertainty ∆φ0

By definition of φ0, the minimal phase uncertainty ∆φ0 is given by ∆φ
∣∣∣
φ=φ0

. We will not give its full expression
here, because it is rather long. It is simply obtained by injecting (44) and (45) into eq. (41) and eq. (43) respectively.
However we have implemented it in our Python package qsipy.

In order to find the asymptotic limit of ∆φ0 (i.e. eq. (11) and (13) of the main article), one must study the
asymptotic expansion of the different terms of ∆φ0. In particular, one finds that the expression of ∆φ0 involves
cos[2 arcsec(•)] and cos[4 arcsec(•)] terms, that must be expanded up to the second order to find the asymptotic limit.


