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I. INTRODUCTION

Rotating and swirling flows of gas mixtures (i.e. variable density flows) are encountered in a wide variety of industrial and geophysical flows. Rotating injectors and hurricanes are two examples illustrating the special case of solid-body rotation [START_REF] Lumley | Engines: An Introduction[END_REF]. Understanding the dynamics of these flows is not only of fundamental interest but is also relevant for the development of control and optimisation strategies.

It is well known that solid body rotation of a homogeneous fluid is a marginally stable configuration of Euler's equations [START_REF]Mathematical and physical papers, IV. Hydrodynamics and General Dynamics[END_REF][START_REF] Landau | [END_REF], while viscosity has only a stabilizing influence. Hence, the so-called inertial waves have been experimentally observed only when the excitation source is sustained [START_REF] Mcewan | Inertial oscillations in a rotating fluid cylinder[END_REF]. Considering three dimensional disturbances of a two-dimensional axisymetric basic configuration, the flow exhibits an instability if the Rayleigh-discriminant Φ = 2V (dV /dr + V /r)/r is negative somewhere in the flow [START_REF] Leibovich | A sufficient condition for the instability of columnar vortices[END_REF] (r being the distance from rotation center and V (r) the azimuthal velocity).

If density variations within the fluid are considered, an equivalent to the Brünt-Vaïssalla frequency G is usually defined by G 2 = -(Ω 2 r/ρ)dρ/dr (ρ being the density and Ω = V /r).

Leibovith [START_REF] Leibovich | Stability of density stratified rotating flows[END_REF] and Howard [START_REF] Howard | On the stability of compressible swirling flow[END_REF] have shown independently that the flow is stable to axisymmetric disturbances if G 2 < Φ, for both incompressible and compressible flows. For rotating flows with axial jet, Leibovitch and Stewartson [START_REF] Leibovich | A sufficient condition for the instability of columnar vortices[END_REF] have been able to theoretically derive the discrete spectrum of the instability near the point where the Doppler frequency kW + mΩω admits an extremum (ω, k, m, W being the pulsation, axial wavenumber, azimuthal wavenumber and axial velocity, respectively). Subsequently, Eckhoff [START_REF] Eckhoff | A note on the instability of columnar vortices[END_REF] derived a sufficient condition for instability using a WKB expansion. Those results have been extended by Leblanc and Le Duc [START_REF] Leblanc | The unstable spectrum of swirling gas flows[END_REF], who established a link between the eigenfrequencies of [START_REF] Eckhoff | A note on the instability of columnar vortices[END_REF] and [START_REF] Leibovich | A sufficient condition for the instability of columnar vortices[END_REF]. Di Pierro and Abid [START_REF] Di Pierro | Instabilities of variable-density swirling flows[END_REF] have proposed an asymptotic expression for the eigenfrequency associated with rotating flow with axial jet, assuming large wavenumbers.

Along with that, Gans [START_REF] Gans | On the stability of shear flow in a rotating gas[END_REF] has shown that the flow is unstable with respect to any non axisymmetric two-dimensional disturbances if G 2 is slightly positive. Additionally, considering an equivalent configuration, Sipp et al. [START_REF] Sipp | Stability of a vortex with a heavy core[END_REF] have shown through numerical experiments that G 2 > 0 is a necessary condition for such an instability. The authors argued that the underlying mechanism was associated with a Rayleigh-Taylor instability.

More recently, Scase and Hill [START_REF] Scase | Centrifugally forced Rayleigh-Taylor instability[END_REF] investigated both theoretically and numerically the effect of rotation on confined two liquid layers, with different density and viscosity, that form concentric cylinders. Their axis of rotation is confused with central axes of these cylinders. The authors have also discussed the effect of rotation of both miscible and immiscible fluids. For all flow cases, the equilibrium state is associated with the two-layers initially separated by a sharp interface. An Orr-Sommerfeld like equation is derived that successfully reproduces Direct Numerical Simulations as far as the linear approximation is still valid. Especially, they have shown that the system may be unstable when the inner fluid is denser than the outer one driven by the centrifugal force. The instability takes the form of mushroom like perturbations in the nonlinear regime as observed in Rayleigh-Taylor configuration. Scase and Sengupta [START_REF] Scase | Cylindrical rotating Rayleigh-Taylor instability[END_REF] extended these results to a three dimensional configuration. They showed that the disturbances growth is essentially driven by geometrical parameters in the absence of surface tension: domain aspect ratio and initial position of the interface. While the above findings provide a good understanding of the amplification of Rayleigh-Taylor like instability in a centrifugally driven configuration, it does not discuss the case of initial gas mixtures and spatially extended configuration in the radial direction. Finally, an equivalent configuration of a cylindrical biphasic flow with uniform radial acceleration has been studied by Zeng et al. [START_REF] Zeng | Three-dimensional viscous Rayleigh-Taylor instability at the cylindrical interface[END_REF]. They observed both two and three-dimensional disturbances and particularly, they showed that the growth rate of the two-dimensional mode varies as ν 1/3 (ν the kinematic viscosity), while the three dimensional regime is very dependent of the viscosity ratio.

The purpose of this paper is then to investigate certain aspects of Rayleigh-Taylor instability in rotating flows and to extend previously mentionned studies. The studied configuration is a steady, solid-body rotation and incompressible flow in the presence of a radial smooth density gradient. Two results are obtained : i) an analytical dispersion relation without any asymptotic consideration in the inviscid case and ii) a viscous correction in the limit of large Reynolds numbers. The present study allows an extension of some conclusions in [START_REF] Di Pierro | Instabilities of variable-density swirling flows[END_REF], which are limited to a large wavenumber and inviscid analysis. This paper also extends the study of [START_REF] Sipp | Stability of a vortex with a heavy core[END_REF] which numerically deals with the stability of inviscid Gaussian vortex with heavy cores. The present study corresponds to the case of non axial flow W (r) = 0 of [START_REF] Di Pierro | Instabilities of variable-density swirling flows[END_REF] and small density core length b → 0 of [START_REF] Sipp | Stability of a vortex with a heavy core[END_REF]. In particular, it is shown that a sufficient condition for instability is G 2 > 0 somewhere in the flow for any density ratio, and that the viscous correction has a purely stabilizing effect, allowing the determination of the most unstable mode. A very good agreement between the analytical dispersion relation and (linear/nonlinear) numerical simulations is obtained.

The paper is organized as follows. In section II, the problem formulation is stated with mathematical and numerical considerations. Section III establishes the inviscid dispersion relation, and section IV deals with the viscous correction. Both are validated by comparison with computed eigenvalues in these two sections. Finally, those results are compared with direct numerical simulations in section V, and the last section provides some physical discussion and concluding remarks.

II. PROBLEM FORMULATION A. Governing equations

The incompressible, variable-density Navier-Stokes equations are considered, neglecting molecular diffusion [START_REF] Guillén-González | Approximation by an iterative method for regular solutions for incompressible fluids with mass diffusion[END_REF]:

∂u ∂t = -(u • ∇)u - 1 ρ ∇P + µ ρ ∆u, (1) 
∂ρ ∂t = -u • ∇ρ, (2) 
∇ • u = 0, (3) 
with u the vector velocity field, ρ the density and P the pressure. The dynamic viscosity µ is assumed to be constant, which is representative of gazeous or liquid mixtures, and the surface tension is neglected. We investigate a steady solid-body rotation base flow with rotation rate Ω and an axisymmetric density profile, as sketched in figure 1. By introducing R, the density core length, as the length scale and Ω -1 as the time scale, one can define the Reynolds number Re = ρ ∞ ΩR 2 /µ where ρ ∞ is the density far from the rotating center. The velocity, pressure and density fields of the base flow are expressed in polar coordinates (r, θ) as U 0 (r) = Ωre θ , P 0 (r) and ρ 0 (r) , respectively. We consider two-dimensional disturbances of the form :

(u r (x, t), u θ (x, t), ρ(x, t), P (x, t)) T = (u(r), v(r), ρ(r), p(r)) T exp(i(mθ -ωt)), (4) 
with m the azimuthal wavenumber and ω the unknown complex pulsation. Linearization of equations (1, 2, 3) leads to the following eigensystem :

i mΩ -ω + i L Reρ 0 u -2 Ω - im Reρ 0 r 2 v + 1 ρ 0 dP dr - Ω 2 r ρ 0 ρ = 0, 2 Ω - im Reρ 0 r 2 u + i mΩ -ω + i L Reρ 0 v + im rρ 0 P = 0, i (mΩ -ω) ρ + u dρ 0 dr = 0, 1 r dru dr + im r v = 0, (5) 
with

L = d 2 dr 2 + 1 r d dr - m 2 + 1 r 2 .

B. Numerical resolution

The eigenvalues and eigenfunctions (u, v, ρ, p) are computed with spectral accuracy by using Chebyshev polynomial expansions. The infinite domain r

∈ [-∞, ∞] is mapped to the interval γ ∈ [-1, 1] containing the Gauss-Lobato points (γ i = cos(iπ/(N -1)), i = 0..N -1)
using the transformation r = tan(πγ/2). This transformation avoid the expression of a boundary condition at r = 0, which depend on the disturbance symmetry. The number of modes N is even such that the singular point r = 0 is avoided. In the following , the radial derivative operators of order n will be denoted by D n r [START_REF] Peyret | Spectral methods for incompressible viscous flow[END_REF]. Since the equation associated with the pressure is independant of ω, the system 5 is numerically ill-conditioned. This leads to the computation of non physical oscillating modes [START_REF] Peyret | Spectral methods for incompressible viscous flow[END_REF].

To avoid the occurence of these spurious modes when solving the eigensystem, the pressure is eliminated from ( 5) by taking the divergence of the momentum equations and using the inverse of an elliptic operator:

D = m 2 r 2 ρ 0 -D r + 1 r 1 ρ 0 D r -1 . (6) 
Now, the eigenvalue problem can be recast as:

A      u v ρ      = iω      u v ρ      , (7) 
with

A =      imΩ -1 Reρ 0 L + 1 ρ 0 D r DC u -2 Ω -im Reρ 0 r 2 + 1 ρ 0 D r DC v -Ω 2 r ρ 0 + 1 ρ 0 D r DC ρ 2 Ω -im Reρ 0 r 2 + im ρ 0 r DC u imΩ -1 Reρ 0 L + im ρ 0 r DC v im ρ 0 r DC ρ dρ 0 dr 0 imΩ      ,          C u = D r + 1 r imΩ -1 Reρ 0 L + 2 im r Ω -im r 2 Reρ 0 C v = -2 D r + 1 r Ω -im r 2 Reρ 0 + im r imΩ -1 Reρ 0 L C ρ = -D r + 1 r Ω 2 r ρ 0 and L = D 2 r + (1/r)D r -(m 2 + 1)/r 2 .
In addition to eliminating spurious modes, elimination of the pressure improves operator conditionning and accelerates the computation of eigenvalues. The last eigensystem (7) is solved using LAPACK routines.

For numerical validation, the following basic density profile is used :

ρ 0 (r) = 1 + s -1 2 1 -tanh r -1 e , (8) 
which mimics heavy (or light) vortex core with smooth density variations; e being the variation length of density profile and s being the density ratio between the rotating center and the far field.

In the limit of an infinite Reynolds number, the system (5) can be rewritten as a single equation of the variable φ = ru, as:

d 2 φ dr 2 + 1 ρ 0 r dρ 0 r dr dφ dr - 2mΩ rρ 0 Σ dρ 0 dr + m 2 r 2 1 + G 2 Σ 2 φ = 0, (9) 
with:

G 2 = - Ω 2 r ρ 0 dρ 0 dr , Σ = mΩ -ω. (10) 
Introducing ψ = √ rρ 0 φ, equation ( 9) becomes:

d 2 ψ dr 2 + ζ - 2mΩ rρ 0 Σ dρ 0 dr - m 2 r 2 1 + G 2 Σ 2 ψ = 0, (11) 
with:

ζ = 1 2ρ 0 r dρ 0 r dr 2 - 1 2ρ 0 r d 2 ρ 0 r dr 2 . (12) 
From ( 11), we assume that the unstable dynamics occurs at the location r * , such that G 2 (r * ) is a local extremum. Introducing, r = rr * and ψ(r) = ψ(r), a second order Taylor expansion of [START_REF] Lang | Polynomial root finding[END_REF] gives:

d 2 ψ dr 2 + Θ(r) ψ = 0 (13) 
with:

Θ(r) = ζ(r * ) - χ(r * ) r * 2 + dζ dr (r * ) + 2χ(r * ) r * 3 r + d 2 ζ dr 2 (r * ) - 1 r * 2 d 2 χ dr 2 (r * ) - 6χ(r * ) r * 4 r2 2 , χ(r) = 2m G 2 ΩΣ + m 2 1 + G 2 Σ 2 . (14) 
Equation ( 13) is a parabolic cylinder equation. Assuming that ψ vanishes far from r * , equation ( 13) admits solutions in the form of Weber-Hermite polynomials ψ(r) = H n (αr+β)

with:

α = √ 2 3 χ(r * ) r * 4 + 1 2r * 2 d 2 χ dr 2 (r * ) - 1 2 d 2 ζ dr 2 (r * ) 1/4 , β = 2 α 3 dζ dr (r * ) + 2χ(r * ) r * 3 , (15) 
if and only if: where n is an integer. This inviscid dispersion relation corresponds to the case studied numerically in [START_REF] Sipp | Stability of a vortex with a heavy core[END_REF] for small density distribution widths (defined as "b" in their paper).

- 1 α 2    χ(r * ) r * 2 -ζ(r * ) + dζ dr (r * ) + 2χ(r * ) r * 3 2 2 d 2 ζ dr 2 (r * ) -2 1 r * 2 d 2 χ dr 2 (r * ) -12χ(r * ) r * 3    = n + 1 2 , (16) 
Note that it is not based on the assumption of a weakly varying base flow [START_REF] Di Pierro | Instabilities of variable-density swirling flows[END_REF] or large wavenumbers. In the limit of large azimuthal wavenumbers, the following growth rate is obtained by expansion of ( 16) with respect to m:

ω n = mΩ + G 2 mΩ + i G 2 (r * ) + n + 1 2 m - r * 2 2 d 2 G 2 dr 2 (r * ) . (17) 
Here, the expression ( 17) is identical to the one obtained in [START_REF] Di Pierro | Instabilities of variable-density swirling flows[END_REF], except for the correction G 2 /mΩ to the real part. Equation ( 16) has no explicit solution, and is numerically solved using the Muller's root finding algorithm [START_REF] Lang | Polynomial root finding[END_REF].

Figure 2 compares the dispersion relation obtained using the full system [START_REF] Guillén-González | Approximation by an iterative method for regular solutions for incompressible fluids with mass diffusion[END_REF] to the solution of ( 16) and the asymptotic expression [START_REF] Peyret | Spectral methods for incompressible viscous flow[END_REF]. A very good agreement is found: the solutions of system [START_REF] Guillén-González | Approximation by an iterative method for regular solutions for incompressible fluids with mass diffusion[END_REF] and equation ( 16) are almost undistinguishable, and the relative error is less than 10% if m ≥ 6 when comparing the solution of ( 7) and [START_REF] Peyret | Spectral methods for incompressible viscous flow[END_REF].

IV. ASYMPTOTIC VISCOUS INSTABILITY

The viscous case is considered here in the limit of large Reynolds numbers as well as large wave numbers, such that 1 ≪ m 2 ≪ Re. Hence, m 2 Re -1 is treated as a small parameter. In this limit, the viscous operator behaves to leading order as

1 Re L ≈ -m 2 r 2 Re . (18) 
The differential system (5) can then be rewritten as a second order differential equation:

d 2 φ dr 2 + 1 ρ 0 r dρ 0 r dr + 1 Σ + iN dN dr dφ dr - 2m(Ω -iM) rρ 0 (Σ + iN ) dρ 0 dr + m 2 r 2 1 + G 2 Σ(Σ + iN ) - 2im r 1 Σ + iN dM dr φ = 0, (19) 
with:

N = -m 2 r 2 Re , M = m r 2 Re . (20) 
Proceeding in the same way as in previous section, one gets to leading order in m and m 2 /Re:

d 2 ψ dr 2 - 2mG 2 r 2 Ω(Σ + iN ) + m 2 r 2 1 + G 2 Σ(Σ + iN ) ψ = 0, ( 21 
)
with ψ = ρ 0 r(Σ + iN )φ. Here again, a parabolic cylinder equation is found, whose solutions are Weber-Hermite polynomials associated with the following dispersion relation:

ω n = mΩ + G 2 (r * ) Ωm + i G 2 (r * ) - n + 1/2 m - r * 2 2 d 2 G 2 dr 2 (r * ) - m 2 2Reρ 0 (r * )r * 2 . (22)
Figure 3 shows the imaginary part of the eigenfrequencies obtained numerically in comparison with the asymptotic solution (the real parts being undistinguishable). It appears that equation ( 22) is a good approximation when 12 ≤ m ≤ 50 (the error is less than 2.5%); i.e.

in the limit of large m and m 2 Re -1 O(1). Moreover, one can see that the maximum of the dispersion curve (see figure 3) is correctly represented by this last approximation. This allows the identification of the most unstable mode as well as the corresponding azimuthal wavenumber:

ω n,max = mΩ + G 2 (r * ) Ωm + i √ G 2 - 3i 2 n + 1 2 -r * 2 2 d 2 G 2 dr 2 (r * ) 2 3 
(r * 2 ρ 0 (r * )Re)

1 3 , (23) 
m max = n + 1 2 Reρ 0 (r * )r * 2 1 3 - r * 2 2 d 2 G 2 (r * ) dr 2 1 6 . (24) 
A comparison between these approximations and numerical solutions is shown in figure 4.

Very good agreement is found for the most amplified mode ω n,max as well as for the selected azimuthal mode m n,max .

V. NONLINEAR INSTABILITY

To analyse the instability dynamics towards the non linear stage, the variable density Navier-Stokes equations (1, 2, 3) are solved numerically using the method presented in [START_REF] Di Pierro | A projection method for the spectral solution of nonhomogeneous and incompressible Navier-Stokes equations[END_REF]. Here is a brief review. The spatial discretisation is based on a two-dimensional Fourier expansion, with periodic boundary conditions. Time integration is performed using a second order Runge-Kutta scheme, while the pressure is computed using a fixed point method to ensure the incompressiblity constraint. The time step is choosen as 10 -2 in order to satisfy stability criterion, and the computational domain is a square of size 6π × 6π discretized with 512 × 512 grid points. The initial density profile ( 8) is used. The velocity initial condition is a Lamb-Oseen like vortex: ∆(U θ e θ ) = -∇ × (Ω LO (r)e z ), with Ω LO (r) = Ω exp(-r 2 /a 2 ) the vorticity and a = 5. The latter velocity field is then compatible with periodic boundary conditions [START_REF] Di Pierro | Rayleigh-Taylor instability in variable density swirling flows[END_REF]. A plot of the initial distribution is shown in figure 5 (top left). Note that the dynamics within the vortex core (r 0.3a) is close to a solid body rotation. In the case of constant density, the Lamb-Oseen vortex does not satisfy the instability conditions of Leibovich & Stewarson [START_REF] Leibovich | A sufficient condition for the instability of columnar vortices[END_REF]. Its linear stability has been proven numerically by [START_REF] Fabre | Kelvin waves and the singular modes of the lamb-oseen vortex[END_REF]. Finally, the flow is initially disturbed with a random of amplitude O(10 -3 ).

The disturbance amplitudes A m of each mode m are extracted from the Fourier expansion ρm (r, t) of the density field ρ(r, θ, t) interpolated from the Cartesian grid (x, y), and are defined as:

A m (t) = R 0 |ρ m (r, t)| 2 rdr. (25) 
Figure 5 shows a contour plot of the density field at times t ≈ 3.7, 5.5 and 7.4 for Re = 1000 and s = 2. At the earliest times, many azimutal modes are growing (figure 5 top right), while the azimutal mode m ≈ 17 emerges a little later on (figure 5 bottom left). This last mode is the most unstable, that is predicted by the asymptotic expression m max (24). 

ρ 0 (r) = 1 + (s -1) exp(-r 2 ) ( 26 
)
The comparison between direct numerical simulation and prediction of ( 23) is shown on figure [START_REF] Guillén-González | Approximation by an iterative method for regular solutions for incompressible fluids with mass diffusion[END_REF]. Once again, a very good agreement is found. 

VI. DISCUSSION AND CONCLUSION

The paper presents a linear temporal stability analysis of an axisymmetric, variabledensity, uniformly rotating flow evolving under the incompressibility constraint. The problem solutions are validated by comparison to spectrally accurate numerical methods. In the inviscid case, which is considered first, the problem is governed by a second order differential equation. It is shown that the instability dynamics is characterized by an analog to the Brünt-Vaïssalla frequency G(r) (with G 2 (r) = (-Ω 2 r/ρ 0 )dρ 0 /dr ). It is also shown that disturbances reach a maximum near the location where G 2 (r) admits an extremum. A non trivial dispersion relation is obtained. However, in the limit of large azimuthal wavenumbers, an approximation of eigenfrequency can be analytically obtained. It can be seen that an instability can occur if and only if G 2 > 0 (i.e. if dρ 0 /dr < 0). In that sense, it completes results given by Scase and Hill [START_REF] Scase | Centrifugally forced Rayleigh-Taylor instability[END_REF] restricted to the sharp initial density profile case and confined within a given radial distance from the rotating center. One deduces that the instability is triggered when the local centrifugal acceleration (a c = Ω 2 re r ) and the reduced density gradient ( ∇ρ = (∇ρ 0 )/ρ 0 ) are in opposite directions. This shows that the resulting instability is a cylindrical Rayleigh-Taylor one, the disturbance growth rate being proportional to the maximum of -a c • ∇ρ. This is very similar to the classical planar Rayleigh-Taylor growth rate √ gkA t (g, k and A t being the gravitational acceleration, the wavenumber and the Atwood number respectively). When comparing the expression of the eigenfrequencies at large m for solid-body rotation to the asymptotic result of [START_REF] Di Pierro | Instabilities of variable-density swirling flows[END_REF] obtained assuming weakly-varying velocity profiles, it appears that the instability growth rates are the sames up to order 1/m. The only difference being that a change is observed in the the real frequency of order 1/m. In the inviscid case, all modes are unstable and the instability growth rate is an increasing function of the azimuthal wavenumber approaching the asymptotic value √ G 2 for large m. Hence, no mode selection is observed. To correctly represent the mode selection, viscous effects have been studied in the limit of large Reynolds numbers as well as large m. The resulting dynamics equation is very similar to the inviscid one and viscosity appears as a purely stabilizing effect. Indeed, the real frequency is not affected by the viscous drag while the growth rate varies as -m 2 /(ρ 0 Re). Once again, this is remarkably similar to the planar Rayleigh-Taylor viscous correction proportional to -k 2 /(ρ m Re) (ρ m being an average density). Thus, the resulting instability exhibits competitive mechanisms between the inviscid Rayleigh-Taylor instability and to viscous damping. The most unstable mode has a rate varying as Re -1/3 while the corresponding azimuthal wavenumber grows as Re 1/3 . The latter scaling is very similar to the planar Rayleigh-Taylor instability for which the growth rate varies as Re -1/3 , while the corresponding longitudinal wavenumber grows as Re 2/3 .

Considering three dimensional disturbances for the same base flow ( i.e. a columnar vortex), one notes that the dynamics equation remains the same when considering the modified wave number l 2 = m 2 + k 2 r 2 , where k the axial wave number. In particular, in the limit of large wavenumbers l → ∞ and large Reynolds numbers, equation [START_REF] Scase | Cylindrical rotating Rayleigh-Taylor instability[END_REF] remains invariant by substituting m with l. Hence, the same instability characteristics are obtained. Such three-dimensional disturbances are helical Rayleigh-Taylor instabilities. Such disturbances has been observed by Zeng et al. [START_REF] Zeng | Three-dimensional viscous Rayleigh-Taylor instability at the cylindrical interface[END_REF] for biphasic radially accelerated flows. Finally, these results have been validated using nonlinear direct numerical simulations where the instability is triggered by superimposing random noise of small amplitude onto the base flow. The most unstable mode observed in these simulations is in very good agreement with asymptotic theory. In the later times of the simulation, while nonlinearities appear, a strong modal interaction leads to the formation of mushroom-shaped disturbances, which are characteristics of a Rayleigh-Taylor instability. The resulting flow pattern is very similar to the one observed by Scase and Hill [START_REF] Scase | Centrifugally forced Rayleigh-Taylor instability[END_REF] in confined configuration.
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 1 FIG. 1. Sketch of the basic flow.
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 2 FIG. 2. Inviscid dispersion relation Im(ω)versus azimuthal wavenumber m for density ratio s = 2 and mass thickness e = 0.2 (Dotted: eigenvalue of system[START_REF] Guillén-González | Approximation by an iterative method for regular solutions for incompressible fluids with mass diffusion[END_REF], line: root of dispersion relation[START_REF] Mcewan | Inertial oscillations in a rotating fluid cylinder[END_REF], dashed: Asymptotical solution (17)).
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 3 FIG. 3. Growth rate Im(ω) versus azimuthal wavenumber m for s = 10, e = 0.2 and Re = 1000 (Dotted: eigenvalue of system (7), line: Asymptotical solution (22)).
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 4 FIG. 4. Numerical and asymptotical growth rate Im(ω n,max ) versus m max for the most unstable mode for e = Left: Re = 10 4 and s = 2, 3, 4, 5, 6, 7, 8, 9, 10. Right: s = 8 and Re = 10 2 , 10 3 , 10 4 , 10 5 , 10 6 (Dotted: eigenvalue of system (7), line: Asymptotical solution (23-24)).

Figure 6

 6 Figure 6 shows the amplitude of the m = 17 mode versus time and the asymptotic prediction exp(-iω n,max t)(see equations 23, 24); Im(ω n,max ) ≈ 1.04 with the considered parameters for this mode. After a transient time, one can see that the exponential growth is well represented by the asymptotic theory. For t ≈ 7, figure 5 (bottom right) shows that the instability reaches a non-linear stage where modal interactions can no longer be neglected. The study of these nonlinear interactions is left for future work. A last simulation where e/R = O(1) has been performed, with the basic flow:

FIG. 5 . 5 (

 55 FIG. 5. Direct numerical simulation of the variable density rotating flow with s = 2 and Re = 1000. Initial radial distribution (top left), Iso-contours of density field at time t ≈ 3.7 (top right),t ≈ 5.5 (bottom left) and t ≈ 7.4 (bottom right). x and y are here the Cartesian coordinates.

FIG. 6 .

 6 FIG. 6. Amplitude of the azimutal mode m = 17 versus time, for Re = 1000 and s = 2 and the asymptotic prediction (23,24).

FIG. 7 .

 7 FIG. 7. Left: dispersion relation of base flow (26). Right: Amplitude of the azimutal mode m = 10 versus time, for Re = 1000 and s = 2 and the asymptotic prediction (23, 24), for base flow (26).
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