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ABSTRACT
The use ofMachine Learning for anomaly detection in cyber security-
critical applications, such as intrusion detection systems, has been
hindered by the lack of explainability. Without understanding the
reason behind anomaly alerts, it is too expensive or impossible for
human analysts to verify and identify cyber-attacks. Our research
addresses this challenge and focuses on unsupervised network in-
trusion detection, where only benign network traffic is available for
training the detection model. We propose a novel post-hoc expla-
nation method, called AE-pvalues, which is based on the p-values
of the reconstruction errors produced by an Auto-Encoder-based
anomaly detection method. Our work identifies the most infor-
mative network traffic features associated with an anomaly alert,
providing interpretations for the generated alerts. We conduct an
empirical study using a large-scale network intrusion dataset, CI-
CIDS2017, to compare the proposed AE-pvalues method with two
state-of-the-art baselines applied in the unsupervised anomaly de-
tection task. Our experimental results show that the AE-pvalues
method accurately identifies abnormal influential network traffic
features. Furthermore, our study demonstrates that the explanation
outputs can help identify different types of network attacks in the
detected anomalies, enabling human security analysts to under-
stand the root cause of the anomalies and take prompt action to
strengthen security measures.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems; •Com-
puting methodologies→Machine learning.

KEYWORDS
intrusion detection, machine learning, explainable AI (XAI)

1 INTRODUCTION
Recent years have witnessed the flourishing of the deployment of
Machine Learning (ML)-based Network Intrusion Detection Sys-
tems (NIDS) [3]. ML techniques, especially end-to-end deep learn-
ing methods, can conduct automated feature engineering over the
attributes of network traffics, such as application protocol, TCP
flags, or payload size. Furthermore, ML-assisted NIDS can obtain
prompt detection results and offer flexible detection covering vari-
ous attacks, which help security operation teams (SOCs) reach fast
responses to emerging new security incidents during day-to-day
security practices.

Despite its advantages, ML-driven Network Intrusion Detection
Systems (NIDS) are susceptible to producing a high rate of false
positives in their detection output. In light of the increasing volume
of network traffic in IT assets, a high false positive rate can lead
to prohibitively expensive inspection efforts by human security
analysts in Security Operations Centers (SOCs), who are tasked
with reviewing the raised alerts. This can result in overwhelmed
analysts, leading to delayed responses to potential threats, com-
monly known as “alert fatigue” [12]. The root cause of this issue
stems from the black-box nature of ML-based detection methods.
Since these methods lack human-understandable interpretations of
the detection results, it becomes difficult for analysts to verify and
monitor incident alarms triggered by the ML-driven model. There-
fore, improving the transparency of the decision logic underlying
the detection output of ML-driven NIDS is necessary.

Our research echoes the challenge of developing eXplainable
Artificial Intelligence (XAI)-based solutions for Network Intrusion
Detection Systems (NIDS). Specifically, our study focuses on unsu-
pervised anomaly detection, as explored in previous works such
as [10, 16], where no labeled attacks are available for training the
detection model, and only benign traffic data is used to capture
the profiles of normal network activities. The core methodology
of anomaly detection involves identifying traffic with significantly
deviated profiles from normal traffic as abnormal activity. For in-
stance, Leichtnam et al. [16] utilized an Auto-Encoder (AE)-based
deep neural network to reconstruct the network traffic data, with
any traffic that produced a large reconstruction error being con-
sidered an anomaly. Similarly, Ede et al. [10] employed a recurrent
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neural network model to predict the next system logs based on
previously observed logs, using the prediction result to determine
whether the observed log sequence contained abnormal activities.

In recent years, XAI methods, such as LIME [21] and SHAP [18],
have been developed to provide post-hoc explanations of classifica-
tion/detection outputs by identifying the most important features.
As post-hoc methods, they are used on top of existing models and
can be combined with any Machine Learning model architectures,
which offers great flexibility in practices of XAI techniques. How-
ever, these methods face practical challenges when applied to secu-
rity analysis. Firstly, SHAP is computationally expensive and suffers
from inclusion of unrealistic data instances when features are corre-
lated. Secondly, although LIME is computationally efficient, its lin-
ear surrogate model cannot accurately approximate complex model
architectures. Additionally, neither SHAP nor LIME is adapted to
a unsupervised context where only benign data is available for
training. While DeepCase and ROULETTE [4] have been proposed
as alternatives, they have limitations. DeepCase assumes that se-
quential causality exists between logs of normal system behaviors,
which may not hold true in complex and environment-dependent
correlations between network traffic attributes. ROULETTE is a
supervised approach and uses actual classes of data for the learn-
ing task, which is a stronger assumption than our work that only
uses benign traffic for learning. Therefore, in our work, we pro-
pose a novel XAI-based solution to NIDS that is free from such
assumptions and specifically designed for unsupervised anomaly
detection.

Our contribution can be summarised in the following perspec-
tives:

• Wepropose a newXAI approach, namelyAE-pvalues1, which
is designed to not only identify the important features re-
sponsible for unsupervised anomaly detection but also help
categorize the detected anomalies into specific attack types.
We instantiate our study with a state-of-the-art unsupervised
Auto-Encoder-based NIDS method [16].

• We organize a comprehensive experimental study to evalu-
ate quantitatively the usefulness of the explanation results
produced by AE-pvalues and various state-of-the-art XAI
methods on the CICIDS2017 dataset. We demonstrate that
our method can offer significantly more accurate explanation
results to the identified security incidents.

• We organize a use-case study which is divided into two
parts. First, we show that the explanations provided can be
practically used to categorize the detected security incidents
into the corresponding attack types with high precision.
In practice, the explanation results from our method can
facilitate human experts to understand the campaigns of the
detected attack behaviors. Second, we conducted a manual
inspection over the explanation results generated by our
method on the network attack behaviors in CICIDS2017.
We show the explanations are highly consistent with the
behavior of the associated attack type.

The remainder of this paper is organized as follows. Section 2 is a
presentation of Sec2graph which is the detection method we used to
obtain the alerts. The CICIDS2017 intrusion detection dataset is also
1We provide an implementation here https://gitlab.inria.fr/mlanvin/ae-pvalues

Figure 1: Example of security object graph in Sec2graph

presented. Section 3 presents related work on XAI approaches used
in the context of intrusion detection. Section 4 presents the new
XAI technique we propose, and Section 5 contains a benchmark to
compare its performance to other XAI techniques. Finally, Section 6
shows how the explanations we produce can be used in practice on
alerts generated from the CICIDS2017 intrusion detection dataset.
Section 7 concludes the paper.

2 BACKGROUND
For this work, we used Sec2graph as the network intrusion detection
system to explain. The first subsection presents this approach. We
then present the CICIDS2017 dataset we use in our experiments.

2.1 Sec2graph
Sec2graph [16] is one of many unsupervised approaches [6, 19]
relying on the reconstruction error of an Auto-Encoder to detect
anomalies. This approach can be decomposed into three steps: the
graph building, its encoding, and finally, how the detection is per-
formed.

2.1.1 Building a graph of security objects. The raw network cap-
tures (.pcap files) are analyzed using Zeek to extract logs regarding
different network protocols. Then a “security objects graph” is built
from these logs to reveal the structure in the data and connect
elements of different kinds. The Figure 1 shows an example of a
security objects graph constructed from network logs. In this ex-
ample, a client requested the IP address of the domain google.com
via the DNS protocol, then contacted the google.com server with
an HTTP request to obtain an SSL certificate before initiating an
HTTPS connection with the same server. Since the graph is con-
structed from logs of these various protocols, the graph’s nodes
correspond to the network information in this scenario (client, DNS
server, HTTPS server, network ports, network connections, SSL
certificate, etc.). These nodes are directly linked when the infor-
mation they represent appears in the same network event. Due to
the diversity of nodes and edges, the graph is heterogeneous. The
whole security objects graph model is available in the appendix A.

2.1.2 Encoding a graph of security objects. The second step of the
approach is to encode a graph in the form of vectors usable by the
Auto-Encoder. In this encoding, each edge of the graph is processed
independently and is vectorized. This vector encodes the triplet
(source node, edge type, destination node). The encoding of the edge
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type, the source, and destination nodes attributes are concatenated
to create the vector of each triplet. Remark that there is only one
Auto-Encoder but several types of nodes and edges. For this reason,
the vectors are sparse: every dimension of the vector related to a
type not present in an edge is set to zero.

Sec2graph uses one-hot encoding, a classical technique to en-
code categorical variables. For each categorical variable, it creates
a vector whose size is the number of categories. Each feature of
this vector contains a 0, except the feature associated with the
variable category that receives a 1. Discrete and categorical at-
tributes are processed differently. For discrete attributes (such as
port numbers or IP addresses), the number of possible categories is
limited by keeping the most frequent categories and merging the
rare categories into a single one. One can observe an example of
the categorical encoding on the Figure 3 where the vectors repre-
sent the protocol encoding. For continuous attributes (such as flow
duration or the number of packets exchanged), a clustering for each
attribute is performed with a Gaussian Mixture Model (GMM). The
resulting cluster membership labels are used as the categories in the
one-hot representation. In the end, both categorical and continuous
attributes are treated as categorical attributes.

2.1.3 Anomaly detection. In the theoretical study of machine learn-
ing, anomaly detection can be formulated as a problem of one-class
learning, where only the benign data are labeled. Any testing sam-
ples deviating significantly from the benign training samples are
considered as anomalies [9]. One-class learning is a branch of the
family of semi-supervised learning techniques, which try to recover
the classification boundary despite the lack of fully tagged train-
ing data. In our work, we follow the spirit of one-class learning
methods. We train the AE-based detection model using only benign
traffic. The model is supposed to cover the profile of benign traffics
as much as possible. On the contrary, we do not use any attack data
tagged by human experts or signature-based IDS for training. From
the perspective of security practices, this is an unsupervised learn-
ing scenario, as no supervision information regarding the attack
events (labeled attack events) is provided. We hence attribute our
method to unsupervised detection hereafter.

For this one-class classification problem, Sec2graph uses an Auto-
Encoder to learn how to accurately reconstruct the normal network
traffic. Then, during the detection phase, the Auto-Encoder pro-
duces a reconstruction error of an input network traffic record.
The reconstruction error is the binary cross-entropy between the
input and the output of the Auto-Encoder. A lower (resp. higher)
reconstruction error indicates that the corresponding input is less
(resp. more) likely to represent an anomaly.

In the detection phase, the reconstruction error for each edge of
the security objects graph is computed. The average reconstruction
error for all the edges relative to a single network connection is
then compared to a predefined threshold. Any network connection
with an anomaly score above the threshold is considered as an
anomaly.

2.2 CICIDS2017 dataset
CICIDS2017 [23] is a popular dataset for evaluating network intru-
sion detection systems. This dataset includes the network traffic
of an IT infrastructure of a dozen of machines. The traffic was

recorded over five days, including one day, the first one, without
attack and four days with attacks. The first day is typically used
for learning by one-class detection models, which only use the
benign class to learn the normal behavior. Although this dataset is
generally considered to have a good quality, recently, some stud-
ies [15, 17] found several mistakes, including labelling issue, in the
dataset. Thus, we use the fixed version of the labels proposed by
these articles. Different types of network attacks and the number
of network connections belonging to each attack type are shown
in the Table 1.

Attack types Counts Attack types Counts
benign 1614317 heartbleed 1
botnet 736 infiltration 7
ddos 95146 infiltration - portscan 60867

dos goldeneye 7650 portscan 159043
dos hulk 162113 ssh-patator 2960

dos slowhttptest 1780 web - brute force 73
dos slowloris 2232 web - sql injection 13
ftp-patator 3972 web - xss 18

Table 1: Number of network connections per attack type and
for the benign traffic in the CICIDS2017 dataset.

3 RELATEDWORK
According to the taxonomy presented in [1], we can categorize XAI
approaches into several main branches.
Intrinsically explainable models.

These types of XAI methods encompass simple and interpretable
ML models such as linear or logistic regressions, decision trees,
naive Bayes, and K-Nearest Neighbours. These models possess
straightforward structures that can identify important features that
trigger the decision of a given input. For instance, decision trees can
rank feature importance by assessing the information gain obtained
by selecting a specific feature in the decision chain. Linear and logis-
tic regression models can evaluate the impact of different features
on the decision output by utilizing sparsity-inducing constraints
such as L1 regularization in Lasso/Elastic net regression methods
and using the magnitudes of the coefficients. However, these mod-
els may underfit complex associations in the training data, leading
to a loss of utility due to their simple model architecture. In our
case, we propose producing post-hoc explanations directly from the
output of the AE model. By doing so, the AE-based detection model
can capture the underlying nonlinear relations between input at-
tributes, which maintains utility for anomaly detection. Moreover,
we demonstrate that the output from the AE-based reconstruction
provides sufficient information to produce indicative explanations
of the contribution of each network traffic attribute in the detection
task.
Model-agnostic explanation methods. These methods provide
post-hoc explanations regardless of the architecture of the target
ML models. Global and local surrogate function based techniques
[21] learn to approximate the global classification boundary of
the target ML model or local classification boundary around the
testing input. The surrogate function is intrinsically explainable,
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e.g., a linear or decision tree-like classifier. By fitting the surrogate
function to the true classification boundary, we can estimate the
features’ contribution to the classification output. A widely applied
method in this branch is LIME [21], which can be categorized as
a local surrogate function based method. Using a linear model,
it approximates the target model locally around a given testing
input. The magnitudes of the linear coefficients are considered as
the base for the explanation. Similarly, SHAP [18] leverages the
Shapley values to compute each input feature’s contribution and
then provide explanations.

There are also other XAI methods beyond the two major cate-
gories. For example, counterfactual analysis [11] and the influence
function-based method [14] are developed to find influential data
points close to the classification boundary of the target ML model.
These influential data points are used to understand the importance
of different features in triggering a classification output. However,
most of the off-the-shelf XAI methods [8] are adopted for super-
vised learning tasks. They require fully labeled training data to
approximate the true classification boundary and measure the use-
fulness of different feature dimensions. For this reason, they are not
compatible with the scenario of unsupervised anomaly detection
in our work, where only benign training samples are provided.

It is worth noting that there are a few XAI methods coping
with the anomaly detection task [2, 4, 13, 19, 24]. [4] proposed
ROULETTE to reformulate anomaly detection as a binary classi-
fication problem differentiating benign and outlier data. Then it
adopts a self-attention module in the classification model to provide
explanations. [13, 19] used the gradient of an Auto-Encoder-based
anomaly detection model to deliver axiomatic feature importance
evaluation. However, these methods consider continuous attributes
as inputs to the detection model. In our study, the network traffic
attributes are mostly categorical features, such as the user agent
string or TCP flags. It is thus infeasible to use gradients as the
indicator to feature-wise contribution to the detection output. In
contrast, our proposed explanation methods is developed to adapt
to unsupervised anomaly detection and handle both categorical
and numerical inputs.

4 THE ALGORITHM DESIGN OF AE-PVALUES
4.1 Notations
Let 𝑏 denote one categorical network traffic feature in our study.
To facilitate the training of the model, we transform 𝑏 into a one-
hot encoded vector. The categorical feature 𝑏 is unfolded into a
k-dimensional binary vector {𝑏 𝑗 } ( 𝑗 = 1, 2, 3, ..., 𝑘), where 𝑏 has
𝑘 possible category values. For example, the feature protocol has
three possible category values tcp, udp, and icmp. Therefore the
protocol feature is encoded into a 3-bit binary vector, one bit per
category value. The bit is valued as 1 if the protocol feature carries
the corresponding category value. In the end, the one-hot encoded
vectors of each network traffic feature are concatenated into a
high-dimensional feature vector 𝑥 as input to the Sec2Graph-based
detection model. Each 𝑥𝑖 denotes the binary status of one category
value of a network traffic feature. The corresponding reconstruction
output from the Sec2Graph model is denoted correspondingly as 𝑥 .

4.2 Explanation Algorithm Design
Following the design of Sec2Graph, we can derive the dimension-
wise reconstruction error regarding each feature dimension 𝑥𝑖 . As
we observe, the empirical distributions of the reconstruction er-
rors per feature dimension 𝑥𝑖 vary significantly. There exist feature
dimensions that exhibit significantly higher variance of reconstruc-
tion errors, even in benign network traffic. Such feature dimensions
are inherently more challenging to distinguish from truly abnormal
feature values based solely on the absolute values of dimension-wise
reconstruction errors. Specifically, in cases where feature dimen-
sions exhibit large variances of reconstruction error, the magnitude
of the dimension-wise reconstruction error may not necessarily
imply the presence of abnormal activities.

As an echo, we consider using the p-value of the empirical distri-
bution of the dimension-wise reconstruction error to flag abnormal
feature values. Let 𝐻0 and 𝐻1 be the null and alternative hypothe-
ses. 𝐻0 and 𝐻1 assume the reconstruction error of 𝑥𝑖 is within the
normal range or not respectively. We use 𝑟𝑖 to denote the recon-
struction error variable corresponding to 𝑥𝑖 in theory. 𝑒𝑖 denotes the
empirically observed reconstruction error for 𝑥𝑖 given an input 𝑥 to
Sec2Graph. 𝑒𝑖 is given by the difference between the reconstructed
variable 𝑥𝑖 and 𝑥𝑖 its input value. The p-value is then defined as
the probability 𝑝𝑖 = P(𝑟𝑖 > 𝑒𝑖 ). In our study, we take the empirical
distribution P̂ of the reconstruction error of 𝑥𝑖 as the reference dis-
tribution in 𝐻0. We then compare the observed 𝑒𝑖 to P̂ to compute
the p-value of 𝑒𝑖 with respect to P̂. A smaller p-value means that
the 𝐻0 hypothesis is more likely to be rejected, i.e. 𝑥𝑖 has a large
reconstruction error with respect to P̂ and vice versa. Given the
feature dimension-wise p-value, we can rank the dimensions based
on their probability of respecting the null hypothesis and obtain
the explanation list.

Using the p-value to flag abnormal feature values alleviates the
bottleneck of the L1-distance-based criterion for tagging anomalies.
Computing p-values takes the variance of the per-dimension empir-
ical reconstruction error P̂ into consideration. Therefore, whether
or not the variance of P̂ is large does not change the derived p-value.
In practice, the dimension-wise P̂ is a discrete empirical distribution,
as the values of reconstruction error observations are discrete. As
a result, we adopt the following computation in Eq 1 to obtain the
p-value and produce the explanation results, which gives:

𝑝𝑖 =
#{𝑟𝑖 ≥ 𝑒𝑖 }
#{𝑟𝑖 }

(1)

Improving the sensitivity of explanation. For the feature di-
mensions contributing extremely large reconstruction error, the
derived p-value can become arbitrarily small, approaching to 0.
In that case, the p-value is not differentiable enough to compare
the usefulness of the features, i.e., these feature dimensions have
equally small vanishing p-values. To increase the sensitivity of our
explanation, we complement the proposed AE-pvalues method in
this extreme situation by inspecting the difference between the em-
pirical quantiles of the dimension-wise reconstruction error, which
gives as below:

𝛼𝑖 =
𝑒𝑖 −𝑚𝑖

𝑝99
𝑖

− 𝑝1
𝑖

(2)

where𝑚𝑖 is the median value (the 50-th percentile) of the empirical
reconstruction error. 𝑝99

𝑖
and 𝑝1

𝑖
are the 99-th and 1-st percentiles
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Figure 2: The reconstruction error distributions of two fea-
ture dimensions.

of the empirical reconstruction error. According to Eq 2, we take
the difference between the 1-st and 99-th percentiles of the empiri-
cal reconstruction error of 𝑥𝑖 . This difference is considered as the
estimate of the variance range of the reconstruction error. After
that, we perform the normalization of 𝑒𝑖 by centering it with𝑚𝑖

and scaling the error by dividing the difference between percentiles
to further remove the influence of the variance. The derived nor-
malized reconstruction error value, noted as 𝛼𝑖 , is particularly used
to evaluate the anomaly level of the corresponding feature 𝑥𝑖 in the
case when 𝑒𝑖 is extremely large, and 𝑝𝑖 is equal to 0. More generally,
the 𝛼𝑖 are useful for ranking the feature dimensions when several
share the same p-values score.

We raise a toy example in Figure 2 to demonstrate the benefit of
using p-value instead of L1 distance. We create two toy variables
following Gaussian distributions. The mean values and variances
of the two Gaussian distributions are −0.1 and 0.1, and 0.2 and 0.15
respectively. These two variables correspond to the distributions of
reconstruction error of the two toy features (feature dimensions 1
and 2, respectively, in the figure). The variance of the reconstruction
error of feature dimension 1 is less dispersed than that of feature
dimension 2. The two vertical lines denote the p-value-determined
threshold to trigger anomaly alerts for the two features. Without
loss of generality, we set 𝑝 = 0.25 in this example. The p-values
are represented by the green and the blue areas in the Figure 2. As
seen, no unique L1 distance-based threshold value can be applied
to both features 1 and 2. For example, the threshold used for feature
dimension 1 may produce a high false positive rate for feature
dimension 2, represented by the grey area on the Figure 2. Instead,
we can use a fixed p-value in this example to adaptively set the
threshold to detect anomalies for both features, regardless of the
reconstruction error variance.

Besides, we involve two explanation baselines to organize the
comparative study. The first method noted as AE-abs, is a variant of
the proposed AE-pvalues. It ranks feature dimensions 𝑥𝑖 by the L1
distance-based reconstruction error per 𝑥𝑖 , namely by the |𝑥𝑖 − 𝑥𝑖 |
scores. We introduce AE-abs to show the benefit of using p-values

instead of the magnitude of the reconstruction error, given the
varying variance of the per-dimension reconstruction error.

The second method adopts SHAP for Auto-Encoders [5], noted
as SHAP_AE. The core idea of SHAP_AE is to use Shapley values to
measure the contribution of each input dimension 𝑥𝑖 to the highest
dimension-wise L2 distance-based reconstruction errors among
Sec2Graph’s output. We then rank the Shapley values of each 𝑥𝑖
to prioritize the feature dimensions contributing the most to the
reconstruction error.

5 EXPERIMENTAL EVALUATIONS
Wefirst explain the empirical protocol used to set up the comparison
between different explanation techniques in Section 5.1. Then, we
present the results of the comparative evaluation on the CICIDS2017
intrusion detection dataset in Section 5.2.

5.1 Experimental protocol
5.1.1 Problem statement. The aim of the explaining methods is
to identify correctly where the anomaly is located in the vectors.
Each vector represents an edge in the graph as reminded in the
Subsection 2.1.2. The vector is a representation of all the network
traffic features of the nodes that are associated with the edge.
These network traffic features are, for instance, the protocol, the
HTTP method, and the browser. A comprehensive list of them is
available in the appendix A which is the Sec2graph model descrip-
tion. Each of these network traffic features has several category
values. For example, (icmp, udp and tcp) are the category values
for the network feature protocol, (GET, POST, PUT, DELETE, other)
would be those of HTTPmethod. In the rest of the article, we named
feature dimensions the whole list of the category values.

5.1.2 Protocol. Evaluating the accuracy of the explanation
results:

Our approach involves evaluating different explanation meth-
ods by measuring their accuracy in identifying both the network
traffic feature and the perturbed category values responsible for
producing anomalies. We evaluate the identification at two levels,
and our evaluation methodology is based on the widely used one-
factor-at-a-time sensitivity analysis method [7]. To ensure that no
anomalies are present, we use vectors from days without attacks.
For each network traffic feature such as protocol, conn_state or file-
transfer_depth and the others , we select 100 feature vectors without
attacks and introduce artificial perturbations to the chosen feature
of each vector. In each of the 100 vectors we create a perturbation in
the chosen network feature by changing the position of the selected
feature dimension as shown in Figure 3. To perturb categorical net-
work attributes, such as the public/private status of an IP address,
we replace the original category value with a randomly selected
value. For binary features, we simply flip the original values. Next,
we evaluate whether the explaining methods can identify the per-
turbed category values in each feature vector where artificial noise
is injected. Each explanation method ranks the feature dimensions
corresponding to all category values according to their anomaly
scores and identifies the top-𝐾 feature dimensions as the most likely
to present abnormal values. We refer to this list as the top-𝐾 list.

As explained in Section 2.1.1, different kind of vectors exists in
the graph because of the heterogeneous nature of the edges in the
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Figure 3: Example of noise insertion in a network feature
(protocol). This network feature has three category values
(tcp, udp, icmp), thus encoded to a 3-dimensional one-hot
encoded representation. The one-hot dimension containing
originally a 1 is named "noise-free feature", and the dimen-
sion containing, in the end, the 1 is called "perturbed fea-
ture"

Sec2graph representation. The use of certain features may vary
depending on the type of vectors that are selected. To guarantee the
effectiveness of the evaluation, we decided to only inject noise into
vectors for which the feature-to-perturb was already used. This
prevents the introduction of artificial embeddings that do not exist
in the data because all the network traffic features are not used
for all of the edge types. These kinds of anomalies are too easy to
detect and unrealistic. The explanations are edge-specific. Indeed,
each vector corresponds to an edge in the graph and has a type.
We only keep the explanations that are meaningful with the edge
type. For instance, when assessing the explanations regarding a
vector that corresponds to an edge that is linking an HTTP object
and a NetworkConnection object, we do not take into account the
feature dimensions that are associated with DNS, SSH, or any other
non-related objects. Thus all the dimensions non-related to the two
objects of the edge are discarded.

In the comparative study, we involve AE-pvalues and AE-Abs
explaining methods. A Random strategy is also compared with the
other methods and consists in ranking the feature dimensions ran-
domly. In addition to these methods, we also include SHAP_AE [5]
in the comparative study. SHAP_AE uses the model-agnostic ap-
proximation of SHAP values, a.k.a. Kernel SHAP [21]. It needs a
background set to approximate the model locally with another lin-
ear model. This background set is made up with 200 vectors from
the training set of the Auto-Encoder used in Sec2graph. Similarly,
AE-pvalues also needs a background set to estimate the normal dis-
tributions of the reconstruction errors for each feature dimension.
We provided the whole train set of the Auto-Encoder to have as
much diversity as possible.

To set up the ground truth to measure the accuracy of the ex-
planation results, we include the feature dimensions manually per-
turbed in the ground truth of the explanation evaluation. Beyond
that, we also include the other feature dimensions statistically sig-
nificantly correlated to the manually perturbed ones (with a signif-
icance level of less than 0.05). For example, if the perturbation is
injected into the http_code_200 category value and the first returned
explanation is the category value associated with the http_msg_OK
attribute, which is confirmed to have the same physical significance
with http_code_200. Therefore, if the feature dimension manually
perturbed or any other feature dimensions highly correlated with
the perturbed ones exist in the top-𝐾 list, the explanation results are
considered to be effective. In the rest of the paper, when the "_corr"
suffix is added to any method name, it denotes that we match not

only the perturbed dimensions but also the significantly correlated
ones to the top-𝐾 features ranked by the explanation output. We
define two metrics by finding the matches feature dimensions in
the top-𝐾 list.
The mean rank (noted as Rank): we first compute the ranking
index of the matched features in the top-𝐾 list produced by each ex-
planation method. We then compute the mean rank of the matched
features among all the vectors selected in the test. A lower value
of the rank denotes a more accurate identification of the features
containing anomalies.
The top-𝐾 accuracy (Accuracy − 𝐾): we compute the fraction of
the matched features in the top-𝐾 list. The higher the accuracy
score is obtained, the more accurate the explanation method is in
identifying features containing anomalies.

5.2 Experimental results
Results of the mean rank. In Figure 4, we present the average
rank of both the noise-free feature and the perturbed feature, along
with the rank of the network feature itself. In the example of the
Figure 3, icmp is the noise-free feature, tcp is the perturbed feature,
and protocol is the network feature. The Table 2 lists the mean
ranks provided by different explaining methods. All the involved
explanation methods are evaluated with and without taking into
account the correlated network traffic features. As shown, AE-
pvalues provides consistently lower mean rank values compared
to the other methods, no matter whether the correlated features
are taken into consideration. The results indicate that AE-pvalues
can better prioritise the features that contain anomalies in the
explanation results than the other opponents.

Figure 4: Mean rank comparison between the different ex-
plaining methods.

Results of top-𝐾 accuracy. Figure 5 illustrates the top-𝐾 accu-
racy obtained by different explanation methods. We conduct the
analysis in two steps. We first compare the explanation methods
by taking into account the correlations. Then we revisit the com-
parison between different methods without taking into account
the correlations. In the first case, where correlations are taken into
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explaining method
Mean rank of the

noise-free feature dimension
Mean rank of the

perturbed feature dimension
Mean rank of the
network feature

AE-pvalues_corr 1.96 0.63 0.02
AE-abs_corr 2.89 0.61 0.07

SHAP_AE_corr 3.71 3.44 0.26
AE-pvalues 3.61 2.07 0.39

AE-abs 4.78 3.78 0.49
Random_corr 4.68 15.3 0.85
SHAP_AE 17.96 6.18 1.15
Random 25.93 26.13 6.8

Table 2: Table of mean ranks of the noise-free feature, the perturbed feature, and the network feature where the noise is
inserted. See Figure 3 for more precise column name definitions.

account, we can find that AE-pvalues obtains the highest accuracy.
In contrast to the other two methods, SHAP_AE (evaluated with
or without considering the correlations) is always less accurate
than the others except for 𝐾 = 1. Even increasing the number of
explanations, SHAP_AE still have more difficulties to identify the
relevant feature than the other approaches. When comparing the
different methods without taking into account the correlations, we
can observe that AE-abs and SHAP_AE perform better for the top-1
accuracy. AE-pvalues certainly provides a correlated attribute in
the first position more often than the two other methods. How-
ever, when we take the top-𝐾 with 𝐾 > 2, AE-pvalues becomes
the most accurate method. That is we are more likely to obtain
the abnormal feature in the provided top-𝐾 explanations. As we
can find, SHAP_AE delivers less accurate explanations compared
to AE-pvalues and AE-abs. We further demonstrate the superior
accuracy of the explanation results produced by AE-pvalues in Fig-
ure 6. We first aggregate the variance of reconstruction error per
feature dimension to obtain the averaged variance of reconstruc-
tion error for each network traffic feature. We then split all the
network traffic features into two separate subsets. One set contains
the features with an averaged variance larger than 10−6 (noted as
the large variance subset), and the other set contains those with
an averaged variance less than 10−6 (noted as the small variance
subset). Figure 6 illustrates the top-𝐾 accuracy of all the involved
explanation methods over the larger and small variance feature
subsets. As shown in the right side plot of Figure 6, the proposed
AE-pvalues gives significantly higher top-𝐾 accuracy than AE-abs
and SHAP_AE, especially with 𝐾 less than 4. By comparison, the
top-𝐾 accuracy of AE-pvalues, AE-abs and SHAP_AE are close when
the average variance of network traffic features is small according
to the left side plot. The observation echos the motivation of using
p-values instead of AE-abs and SHAP_AE. The limit of AE-abs and
SHAP_AE is rooted in the use of L1 distance based reconstruction
error as the measurement to evaluate feature informativeness. The
L1 distance only indicates the magnitude of the reconstruction er-
ror. It does not consider the baseline variance of the reconstruction
error under the noise-free scenario. In case the variance of the re-
construction error is large in the noise-free case, a large magnitude
of L1 distance-based reconstruction error does not necessarily indi-
cate the existence of anomalies. By incorporating p-value selection,
the explanation output of AE-pvalues is more robust to variations
in the reconstruction error’s variance. Consistently, the average

ranks of the good explaining features and category values are better
using AE-pvalues method as shown in the Table 2.

5.3 Performance considerations
Beyond the relevance of the explanations brought by the different
explaining methods, we also measured the scalability of the dif-
ferent methods. In the Table 3, we present the time to process the
explanations for a single sample. The measurements were done on
100 vectors (samples) to explain, and the values represent the aver-
age processing time. Given the table, on the one hand, we clearly see
that SHAP_AE does not scale well since the duration is far too long
to process many vectors. On the other hand, AE-pvalues method
is much faster and thus can be used to process many vectors. It is
important to mention that AE-pvalues method takes approximately
150 additional seconds as a pre-processing step to compute the
distributions associated with the "normal" behaviors. This duration
only depends on the size of one vector. Here the size of each vec-
tor is 400 dimensions. It is only computed once for all and does
not depend on the number of samples to explain. Moreover, the
implementation of AE-pvalues can be easily parallelized and thus
provide even much more efficient performances for many samples
to explain.

Method Processing time per sample
SHAP_AE 28 s
AE-pvalues 1.9 ms
AE-abs 1.0 ms

Table 3: Processing time for one sample for each explaining
method

6 EXPLANATION IN THE CONTEXT OF
ANOMALY DETECTION

Through Section 5, we analyzed different explaining methods. From
the benchmark, we know AE-pvalues is the most accurate explain-
ing method. Moreover, AE-pvalues is scalable. For all these rea-
sons, the explanations obtained hereafter will be only based on
AE-pvalues. In the following, we demonstrate how human analysts
can benefit from these explanations to analyze alerts raised by IDS.
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Figure 5: Comparison of the top-𝐾 accuracy of the explanations of the different XAI methods

Figure 6: Comparison of the top-𝐾 accuracy of the explanations of the different XAI methods. The left Figure is for small
variance network features, and the right Figure is for the high variance ones.

In Section 5, we focused on the explanations for a single vector
that represents a single edge in the graph, see Section 2.1.2 for de-
tails. In practice, the Sec2graph method represents a single network
connection with several vectors (several edges). We hence define
how to combine explanations produced from different vectors. The
goal is to achieve the categorization of different attack types in the
network connections.

Using the anomaly scores aggregated per network connection
either of each category value or of each network feature, we show
that we can perform clustering on them and group by attack type
the different network connections that are identified as positives
by the detector.

6.1 Clustering explanation outputs to identify
network attack types

Weperform clustering over the explanation outputs fromAE-pvalues.
We aim to unveil different attack types in the detected anomalies.
The clustering results can help demonstrate the expressiveness of
the explanations to capture differences among attack events. Thus,
when a new security alert is generated, the security operator can
obtain insights into the type of attack the alert belongs to by lever-
aging the previously labeled alerts and associated clusters. To this
end, we constructed vectors by extracting the explanations and
their corresponding anomaly scores from a network connection,

as detailed in Section 6.2. These vectors have dimensions equal
to the number of possible features, and their values represent the
anomaly scores of each feature. We experiment with both the cate-
gory value scores and the network feature scores. Each vector thus
captures the abnormality scores of either the category values or
the network features for a given network connection. To ensure
sufficient representation of each attack type, we sampled 1000 net-
work connections of each type. We used all the available attack
types existing in the CICIDS2017. As presented in Table 1, some
types of attacks, such as heartbleed, infiltration, and web attacks,
are significantly more rarely witnessed than others. For the attack
types with less than 1000 network connections, we used all the
available network connections relative to this attack.

We employ an unsupervised hierarchical clustering algorithm
to detect clusters among the vectors, where we specify the desired
number of clusters to be formed. In this study, we aim to have 7
clusters corresponding to the major classes of attacks, including
patator, Denial Of Service (DoS), heartbleed, portscan, web, infil-
tration, and botnet attacks. The algorithm then attempts to group
together vectors that share similarities in the explanations of each
network connection. The method constructs a hierarchical tree of
clustering outcomes, starting from a single cluster encompassing
all the vectors and then repeatedly partitioning it until the desired
number of clusters is obtained. The complexity of the hierarchical
algorithm is 𝑂 (𝑛3), where 𝑛 is the number of network connections
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involved in the clustering. The clustering analysis was performed
on a Linux machine with an Intel(R) Core(TM) i7 CPU processor
(2.70GHz, 12 cores), and 32Gb of RAM. The execution took 17 sec-
onds to cluster 2 × 9848 data points with respective dimensions
(389, 109) for (feature dimensions, network features) .

We proceed to calculate the Normalized Mutual Information
(NMI) between the predicted clusters and the actual labels. In the
case of a random strategy, the NMI obtained is 0.0011. However,
when using the clustering method based on the anomaly scores
of network features obtained from AE-pvalues, the NMI value of
the clustering results significantly increases to 0.64. This is much
better than the random guess baseline, as shown in Table 4.

The attack types captured by each of the seven clusters are
illustrated in Figure 7. It can be observed that the SSH-patator
attack and port scans are effectively captured in a single cluster,
namely clusters 4 and 5, respectively. The network connections
associated with the SlowHttpTest attack, which belong to cluster
5 are rejected network connection attempts that behave similarly
to port scans. This explains why they are grouped together in the
same cluster. However, for DoS attacks, they are divided among
clusters 0, 2, and 6. The ftp-patator and botnet attacks are contained
in cluster 1. Detailed information regarding the composition of each
cluster is available in the appendix B.

AE-pvalues NMI scores Random
feature dimensions 0.638 0.0011network features 0.554

Table 4: Comparison of the NormalizedMutual Information
scores using AE-pvalues to obtain explaining scores per fea-
ture dimension and per network feature and aRandom strat-
egy.

The results demonstrate the feasibility of categorizing network
connections based on their associated attack types. The methods
used to calculate the anomaly scores at the network connection
level will be elaborated in Section 6.2.

6.2 Aggregating explanations of each network
connection

We utilize the p-values obtained from the explanation list of each
network feature vector to rank the feature dimensions and network
features. The p-values indicate the abnormality of each feature
dimension and their ranking order. Our proposed ranking scheme
takes into account the global reconstruction score of each vector
𝑗 , which is computed using BinaryCrossEntropy (BCE) as 𝑏𝑐𝑒 𝑗 .
We assign a higher weight to vectors with higher reconstruction
error (higher bce). The p-value 𝑝𝑖 of the 𝑖-th dimension indicates
its abnormality; smaller p-values indicate a higher abnormality. As
the variation of the 𝑏𝑐𝑒 𝑗 score is the opposite of the variation of the
p-value 𝑝𝑖 , we use (1− 𝑝𝑖 𝑗 ) which we call 𝛽 scores to make the two
quantities evolve in the same way. The score of the 𝑖-th dimension
is the average of all the 𝛽 scores, weighted by their respective bce,
for all vectors related to the network connection. The formula for
computing the score of the 𝑖-th dimension is given by Eq 3.

𝑠𝑐𝑜𝑟𝑒_𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑖 =
1

𝑛𝑏_𝑒𝑑𝑔𝑒𝑠𝑖

𝑛𝑏_𝑒𝑑𝑔𝑒𝑠𝑖∑︁
𝑗=1

𝑏𝑐𝑒 ′𝑗 × (1 − 𝑝𝑖 𝑗 ) (3)

We also aim to aggregate the explanations at the network feature
level and propose Eq 4 to achieve this. The basic principle is similar
to the per feature dimension case described in Eq 3. However, since
we have multiple category values for a single network feature, we
needed to devise a strategy to combine the abnormality scores of
the different category values into a single score. We decided to use
the highest abnormality score among all the category values of the
network feature. Therefore, we use the max function over the 𝛽
scores for each category value that belongs to the network feature.

𝑠𝑐𝑜𝑟𝑒_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑖 =
1

𝑛𝑏_𝑒𝑑𝑔𝑒𝑠𝑖

𝑛𝑏_𝑒𝑑𝑔𝑒𝑠𝑖∑︁
𝑗=1

𝑏𝑐𝑒 ′𝑗 × max
𝑙 ∈𝑑𝑖𝑚_𝑓 𝑒𝑎𝑡𝑖

(1 − 𝑝𝑙 𝑗 )

(4)
In both Eq 3 and Eq 4, 𝑛𝑏_𝑒𝑑𝑔𝑒𝑠𝑖 is the number of edges that are

compatible with the 𝑖-th network feature or category value and
𝑏𝑐𝑒 ′

𝑗
is the 𝑏𝑐𝑒 𝑗 score normalized as expressed in Eq 5.

𝑏𝑐𝑒 ′𝑗 =
𝑏𝑐𝑒 𝑗∑𝑛𝑏_𝑒𝑑𝑔𝑒𝑠

𝑘=1 𝑏𝑐𝑒𝑘

(5)

6.3 Explaining alerts raised by a ML-based
NIDS

To figure out if the explanations were relevant for each attack
type, we took all the True Positive (TP) samples obtained with the
Sec2graph approach. Like in the clustering section, we analyzed
the explanations of 1000 network connections of each attack type.
These network connections were obtained using the following sam-
pling scheme: we took the first 300 network connections and the
last 300 network connections, and then we sampled 400 network
connections uniformly in the rest of the available network con-
nections. We chose this approach to get connections related to the
beginning, the middle, and the end of each attack. Indeed, the be-
havior of the attack may change over time, as shown afterward.
We include a manual inspection of several attacks in CICIDS2017
and verify whether the explanations produced by AE-pvalues are
consistent with the unveiled attack mechanisms in the network
traffic data. In addition, we also performed the manual investigation
for some False Positive (FP) samples.

In practice, a security operator is likely to be able to handle
between three and five explanations per network connection. If
we provide more than five explanations, the operator might be
unable to analyze them thoroughly. If we provide less than three
explanations, the explanations might not be discriminating enough
to identify the attack type. In this section we decided to always
work with the top-5 feature dimensions or network features.

The Figure 8 proposes a general overview by summarizing the
features contributing by at least 10% in an attack’s explanation. To
compute these values, we collected the first five explaining network
features for each network connection and measured the appearance
frequency of these features for each attack type. The darker the
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Figure 7: Proportion of each attack type in the different clusters

color, the higher frequency has the feature for the corresponding at-
tack. The maximum score per network feature is 20%, which means
the network feature always occurs among the top-5 explanations.
We can observe some common patterns based on the different attack
types. For instance, web attacks (highlighted in green) are charac-
terized by the user agent (browser and operating system). Several
attacks are characterized by the port_value, which is involved in
attacks such as the port scan and botnet attacks. SSH-related fea-
tures are specific to the ssh-patator attack. From this high-level
perspective, the explanations seem reasonable and consistent with
the class of attack. In this section, we present a manual analysis of
the DoS Slowloris, the brute force belonging to the web attacks, the
SSH-patator, the botnet attack, and the DoS GoldenEye.

In the following, we use both network features and feature di-
mension explanations. Each feature dimension can be described as
a tuple (feature, category value). For clarity, we write such a tuple as
feature/category. For example, the explanation ua_browser/Firefox
means that the value Firefox of the feature ua_browser is important
to explain the abnormality of the network connection. As seen in
Section 2.1.2, continuous features are categorized using GMM. Thus
the name of these features ends with _gmm, and their associated
category value is the number of the Gaussian in which the value
falls. Again for clarity’s sake, some very long category values are
shortened with "[. . . ]".
DoS Slowloris With this attack, the attacker seeks to consume all
the processes or threads allocated by the web server to process
queries. They do so by maintaining the TCP connections open
for a very long time. To maintain these connections open, the
tool does not end the HTTP header part of the request and regu-
larly sends (before the server timeout) a new HTTP header. The
most frequent explanations provided at the category values level
are: http_status_code/∅, http_info_code/∅, http_status_msg/other,
http_info_msg/∅, and http_status_code/other. They represent 55% of
the samples, i.e., of 1000 network connections of this attack type.
These explanations describe the situation when the server is down.
Thus, it is not responding anymore. Therefore we can observe the

missing status code and message since the server never replied
before the network connection was stopped.

Then 40% of the network connections were explained by the
following feature dimensions ua_browser/Firefox, ua_os/Mac OS X,
ua_browser/other, filetransfer_mime_type/image/gif, and filetrans-
fer_mime_type/application/xml. These explanations are related to
the abnormal user-agent of the attacker. Indeed, the user-agent
seen during this attack has never been used on the training day
(the day without attacks). The Auto-Encoder detects this anomaly,
and the explanation method correctly highlights the user-agent
(containing the browser and the operating system).
Brute Force (web) With this attack, the attacker makes many au-
thentication attempts on a web page with a machine under the
Kali Linux operating system. Thus the attacker has a very discrim-
inating user agent, and the detection model uses it to detect this
attack. We find it again in the explanations. 96% of the 73 network
connections associated with this attack are explained at the fea-
ture dimensions level by the following attributes: ua_browser/other,
ua_browser/Firefox, ua_os/Mac OS X, ua_browser/Safari and
http_status_msg/Found. The HTTP message "Found" is consistent
with the fact that the attacker requests the login.php page to per-
form the brute force, and for each query, the server returns the code
302 and the message "Found". The explanations at the network fea-
ture level are ua_browser, ua_os, http_status_msg, http_status_code,
http_trans_depth, are also valuable for the expert since they relate
the fact that there are a large number of HTTP requests within
the same network connection as shown in the http_trans_depth
category. At the network feature level, we find the user-agent and
the HTTP status code related features again.
SSH-Patator The attack consists in brute forcing an SSH server to
try to obtain access to the server. The attacker uses a tool named
Patator, developed in Python. That tool uses the paramiko library
to establish the ssh connection and attempts some login password
couples. Zeek logs four authentication attempts for each network
connection. None of the attempts are successful.
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Figure 8: Visualisation of the explanations per attack type. The scores are the percentages indicating how often the features
occur in the top-5 explanations for the respective attack type.

99.6% of the alerts are explained by two groups of explanations.
77.5% of the alerts linked to SSH-Patator are explained by the follow-
ing feature dimensions: ssh_host_key/b5:61:[. . . ], ssh_mac_alg/hmac-
sha1, ssh_server/SSH-2.0-OpenSSH[. . . ], ssh_compression_alg/none,
ssh_host_key_alg/ssh-rsa. Their corresponding network features
are: ssh_host_key, ssh_mac_alg, ssh_server, ssh_compression_alg,
ssh_host_key_alg. Then the rest (22.1%) of the alerts are explained
by the following feature dimensions: ssh_host_key/b5:61:[. . . ],
ssh_mac_alg/hmac-sha1, ssh_server/SSH-2.0-OpenSSH[. . . ],
ssh_host_key_alg/ssh-rsa and ssh_compression_alg/none, and the as-
sociated network features explanations are ssh_host_key,
ssh_mac_alg, ssh_server, ssh_host_key_alg, and ssh_compression_alg.

In fact, on the training day, only one SSH server is accessed,
and the clients used to access the SSH server are all the same. It
implies that all the attributes linked to the SSH security object are
correlated. As the attacker uses the Patator tool, which uses the
paramiko library, only two network features are different in the
SSH security objects related to the attack: the ssh_client (linked to
paramiko) and the ssh_mac_alg (certainly depending on the use
of the paramiko library). The explanations support the fact that,
for the detection model, the network features of the SSH security
object are inconsistent.

Botnet. The bots are certainly preinstalled on five Windows ma-
chines of the experimental setup of CICIDS2017. The bots installed
are related to an open-source botnet developed in Python named
Ares2. The bots communicate with the C2 server by HTTP on the

2https://github.com/sweetsoftware/Ares

port 8080. They send regular beacons to the C2 and sometimes
receive commands from the server, such as taking a screenshot of
the desktop or listing a directory.

86.5% of the alerts are explained by the following feature dimen-
sions: duration_gmm/2, history/w, conn_state/RSTO, conn_state/SF,
proto/udp. The network features linked to those alerts are: duration,
history, conn_state, proto, orig_ip_bytes.

The HTTP connections related to these alerts are linked to the
beaconing, and they last less than 10ms. That is due to the fact that
the C2 server responds to those beacons only with HTTP headers
(no HTML page is sent by the server) and to the geolocation of the
C2 server which is in the same setup as the other machines (only
one router is between the computers infected by the botnet and the
C2 server). The explanations point to the fact that the duration value
should be higher and that, for very short-lived connections, it is
abnormal to have a full HTTP connection on tcp (conn_state/RSTO,
conn_state/SF, proto/udp). So the explanations are corroborated by
the actual analysis.

DoS GoldenEye. The GoldenEye tool3 is a DoS tool that aims
to take down a server by preventing the cache mechanism, main-
taining connections with the keep-alive header (timeout option)
and sending a large number of requests. In order to prevent easy
filtering of the requests, all requests have a random argument with
a random value; the referrer is also random, and the user-agent is
taken randomly from a list of user agents. It must be noted that
the Apache server attacked by that DoS does not care about the

3A version of the tool can be found here: https://github.com/jseidl/GoldenEye

https://github.com/sweetsoftware/Ares
https://github.com/jseidl/GoldenEye
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timeout value specified in the request and sets it to five seconds.
After those five seconds, if the client sends no packets, the server
closes the TCP connection.

For this attack, we observed two cases. For the first case, 25.9%
of the alerts are explained by the following feature dimensions:
http_method/other, http_trans_depth_gmm/2, http_status_msg/other,
http_status_code/304, http_trans_depth_gmm/1. The network feature-
level explanations related to those alerts are the following: http_me-
thod, http_trans_depth, http_status_msg, http_status_code, history.

Secondly, another case includes 16.5% of the alerts and the alerts
are explained by the following feature dimensions: http_status_msg/
other, http_trans_depth_gmm/3, http_status_msg/Found, history/R,
history/t. The explanations at the network feature level related to
those alerts are the following: http_status_msg, http_trans_depth,
history, conn_state, duration.

The network feature http_trans_depth represents the number of
HTTP requests sent in one TCP connection (thanks to the keep-
alive mechanism). For all those alerts, only one request is sent, but
the connection duration is around five seconds in the first case and
around five minutes in the second case (due to a RST packet sent by
the attacker five minutes after the FIN packet sent by the server).
For those kinds of duration, more HTTP requests should have been
sent in the TCP connection. The network feature history is also
interesting because the network connections related to the attack
are closed in an abnormal way (the attacker does not answer with
a FIN/ACK packet to the FIN packet sent by the server and, in the
second case, responds with a RST packet five minutes later). The
explanations are, therefore, consistent with the expert analysis.

False Positives analysis. The Sec2Graph NIDS raised about
17, 000 false positive alerts on the four days with attacks (containing
almost 1, 700, 000 connections on the whole). Given the results of
Table 4, the explanations for each dimension of every network
feature produce a more fine-grained and informative understanding
of the detection result. Therefore, we adopt this level of explanation
to investigate the FP examples. The alerts can be grouped into 3, 000
different explanation tuples. Each tuple corresponds to a particular
case to be investigated. One such tuple is composed of the top 5
feature dimensions ranked by the proposedAE-pvaluesmethod, like
in the TP analysis, and they are considered to contribute the most to
the corresponding alerts. We provide the analysis of three different
FP alerts with the highest anomaly scores. For these samples, there
is no ground truth regarding the explanations. We can only rely on
the understanding of the network captures.

The following 5 feature dimensions are considered to explain
the first FP example:dcerpc_endpoint/other, dcerpc_operation/other,
dcerpc_named_pipe/other, dcerpc_endpoint/lsarpc, dcerpc_named_pi-
pe/135. Given the explanations, this network connection was very
likely to be related to using the DCE RPC protocol. In the corre-
sponding network capture, we indeed observed the use of the DCE
RPC protocol for the remote administration of the machine. We
also note that, as suggested by the explanations, the endpoint, the
named pipe, and some operations used are never seen in the benign
training data of the AE. Moreover, this protocol is rarely used in the
benign network traffics and represents only 0.05% of the network
connections. The scarcity of the protocol and the unseen values may

explain why this connection triggers the FP. A network administra-
tor should know the mechanisms used for the administration of its
network. In such a situation, he or she should know whether DCE
RPC is legitimately used. Therefore from the provided explanations,
he or she should be able to eliminate this FP alert quickly.

Another interesting FP sample among the most abnormal ones is
a network connection with the following explanations: port_value/
other, port_value/80, port_value/443, history/S, conn_state/RSTR. In
this example, we can expect a problem related to the value of the
port used. The history of the network connection seemed to be
abnormal, as suggested by the SYN flag (history/S), and finally, the
connection state flags also seemed to indicate an issue (RSTR: Re-
sponder sent a RST). When we looked at the network capture, the
port value did not seem abnormal (the port value is 80). However,
the two other explanations were very indicative. The network con-
nection was observed at the beginning of Wednesday’s capture. In
fact, the beginning of the connection was missing, so it missed the
SYN packet of the emitter at the beginning of the connection. At
the end of this connection, the server ended the connection via
the issuance of a RST packet. This connection corresponded to an
update of a Windows client’s malware signatures on Wednesday
morning in the dataset. It was, therefore, not abnormal. But it was
also reasonable to return an alert regarding an initiated connec-
tion without a complete TCP handshake and then aborted by the
server. For this FP, even though the explanations well indicated
how the low-level network event occurs, we can find that a manual
inspection would be required to verify the true cause. The explana-
tions give initial clues about the anomaly to the analyst and should
accelerate the analysis.

For the third FP sample, the explanations include ssh_version/other,
ssh_server/other, ssh_kex_alg/other, ssh_cipher_algo/other, ssh_host_
key/other. We observe many ssh-related explanations. We can thus
expect an issue with this ssh protocol. The network connection was
initiated by a Windows client with the IP address 192.168.10.5 to-
ward the Ubuntu web server with the IP address 192.168.10.50. The
client did not launch any attack against the web server. However,
in parallel to this connection, an SSH-Patator attack was ongoing
on the web server. When we checked the fields of network features
highlighted by the explanations, we observed that all of them ex-
cept the ssh_version were left empty, which is never witnessed in
benign traffics. These fields were empty because when the client
initiated the connection, the server had no more available resources
due to the attack. The server thus sent a FIN packet right after the
TCP handshake. The client continued to issue data, but the server
terminated the connection by issuing a RST packet. No informa-
tion about the versions of cipher and key exchange algorithms was
exchanged. This network connection was not malicious but had
unusual behavior due to the ongoing attack. In the above paragraph
on the SSH-Patator attack, we saw that the explanations on the true
positive alerts allowed the analyst to understand that the paramiko
tool was used, revealing an ongoing ssh-related attack. Similarly,
the explanations of this alert also highlighted ssh-related issues, so
the analyst could quickly understand that it was a consequence of
the attack.

Discussion. The explanations are very precise at the network
level, pointing to the feature dimensions and the network features
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that differentiate the network connections of the attacks from nor-
mal network connections. However, they are generally too low-level
to give an immediate insight to the analyst so that he can classify
the alert without further analysis. The clustering of the alerts is a
way to give this insight and ease the classification (see Section 6.1).
However, since the clustering is unsupervised, clusters are not la-
beled and thus require analysts to have previously labeled some
samples of the different clusters to infer which attack type it is.

The lack of high-level explanations is mainly due to four reasons:
high correlations between some feature dimensions or some net-
work features, many biases in the CICIDS2017 dataset, the fact that
the detection model is only based on a single network connection
and the fact that the explanations only point out a feature dimen-
sion or a network feature without telling whether the value should
be present or absent. This last issue can be illustrated as follow. If an
explanation is history_R, the analyst does not know if the detection
model expected that the client sent an RST packet, but this event
did not happen, or if it is the opposite and the explanation high-
lights the presence of such a history flag. We could easily overcome
this issue by confronting the explanations at the feature dimension
level with the actual category value existing in the vector. This
information is more difficult to obtain at the network features level.

About the biases of the CICIDS2017 dataset, we discovered many
of them by analyzing the explanations given by our method. Sev-
eral works already tackled CICIDS2017 dataset quality and per-
formed sometimes a manual analysis of the network captures such
as [17], [22] or [15] however, they highlighted labeling issues, flow
extraction issues, traffic capture issues, but none of them is high-
lighting the biases that exist in the dataset. To the best of our knowl-
edge, the biases we identified are novel and were not previously
reported. For example, we can see in Figure 8 that the alerts for
the web attacks and the botnet attack are mainly explained by net-
work features related to the user-agent. In fact, in the CICIDS2017
dataset, the user agents are the default ones specified in the tools
used to implement those attacks. Script-kiddies would certainly
keep those values, while a more advanced attacker would change
them. Thanks to the explanations, we realized that for those attacks,
the detection is more related to an artifact of the attacker’s tool
than the network behavior of the attack type. The experimental
setup used to generate the dataset also affects network features
such as the duration of connections (for the botnet attack, the C2
server is in the experimental setup while all the other web servers
are on the Internet). In the false positive analysis, we even saw how
cutting network captures can artificially make benign connections
have abnormal behavior. These examples point out an issue shared
by several security datasets: the evaluated detectors can learn to
correctly identify attacks by relying on experimental artifacts, lead-
ing to a potential overestimation of the detection performances of
these detectors on such datasets without being relevant in practice.

7 CONCLUSION
In this article, we proposedAE-pvalues, a new unsupervised method
based on p-values to provide explanations that could be used on
top of any AE-based anomaly detection method. We compared
this new method to existing ones and showed that it performs
better at finding the right feature responsible for the anomaly. It

also obtained better performances when it comes to clustering the
network connections by attack type based on the explanations. The
method is scalable which was not the case for SHAP_AE. Besides,
we used this p-value-based method to analyze practical attacks
of the CICIDS2017 dataset and show its relevance on real data.
On this occasion, we could observe the limitation of the dataset
regarding the quality of the attacks. They are often not stealthy
enough, and thanks to the explanations, we were able to highlight
that the detector often relies on easy clues to detect them and not
especially on the "real" malicious behavior. This is not an issue
due to the learning of the ML model but a problem related to data
quality. The explanations are an excellent tool to improve detection
by checking the proper functioning of the (N)IDS. Lastly, we also
used the anomaly scores associated with the explanations provided
by our explaining method to cluster the network connections by
the attack type they belong to and obtained good clustering results.

In our study, we did not discuss the role of evading techniques
in attacker behaviors in detecting anomalies. Our explanation tech-
nique is positioned as a post-hoc method. Therefore, it will act as
a lens to help human experts understand the logic triggering the
detection. It nevertheless does not change the results of detection.
That said, the explanations produced by our method could be used
by adversaries to evade the ML-driven IDS because they highlight
the network characteristics on which the IDS is relying for the
detection. The adversaries may change these attributes to avoid
detection. Beyond that, the defenders/practitioners of ML-driven
IDS may use the explanations to predict potential evading efforts
and take proactive actions to harden the detection system.

All these contributions are aimed at facilitating the forensic in-
vestigation and the alert analysis done by security operators. As a
future work, we plan to leverage the concept of p-values not only to
provide explanations but also for the detection step. In addition, it
would be interesting to investigate how the explanations could auto-
matically help reduce FP. We believe that the explanations provided
by our AE-pvalue method can be used to triage the different alerts
and identify FP. First of all, we have demonstrated in Section 6.1
that the explanations can be used to perform clustering of differ-
ent attack behaviors and offer a good clustering accuracy. Second,
we can combine the clustering results and a few labels of attack
types provided by the human analysts’ manual investigations. We
can then propagate the attack class memberships across the clus-
tering results based on semi-supervised learning techniques, e.g.,
label propagation [20] or even supervised learning methods, which
provide the classification confidence of each network traffic data.
The estimated confidence can help differentiate TP from FP. For
example, FP tend to locate in the ambiguous area close to the clas-
sification boundary separating benign and attack data. Therefore,
FP may have low classification confidence in the label propagation
process, which could be used as an indicator to identify them.
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A SEC2GRAPH MODEL

Figure 9: Sec2graph: security object graph definition
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B CLUSTERING RESULTS DETAILS

no_clusters_attr attack_type counts cluster_proportion (%)
0 dos slowhttptest 764 30.0
0 ddos 607 23.9
0 dos goldeneye 504 19.8
0 dos hulk 286 11.2
0 dos slowloris 256 10.1
0 web attack - brute force 73 2.9
0 web attack - xss 18 0.7
0 infiltration - portscan 12 0.5
0 botnet 10 0.4
0 ftp-patator 5 0.2
0 infiltration 6 0.2
0 heartbleed 1 0.0
0 web attack - sql injection 1 0.0
1 ftp-patator 995 57.3
1 botnet 726 41.8
1 infiltration - portscan 9 0.5
1 portscan 4 0.2
1 infiltration 1 0.1
2 dos hulk 605 48.0
2 ddos 393 31.2
2 dos goldeneye 262 20.8
2 dos slowhttptest 1 0.1
3 dos slowloris 744 100.0
4 ssh-patator 1000 100.0
5 portscan 996 44.5
5 infiltration - portscan 979 43.8
5 dos slowhttptest 232 10.4
5 dos hulk 22 1.0
5 dos goldeneye 8 0.4
6 dos goldeneye 226 68.9
6 dos hulk 87 26.5
6 web attack - sql injection 12 3.7
6 dos slowhttptest 3 0.9

Table 5: Details of the cluster content.
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