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A B S T R A C T
Data streams are becoming omnipresent on the Web. The Stream Reasoning (SR) paradigm,
which combines Stream Processing with Semantic Web techniques, has been successful in
processing these data streams. The progress in SR research has led to several applications in
domains such as the Internet of Things, social media analysis, Smart Cities, and many others.
Each of these applications produces and consumes data streams, however, there are no fixed
guidelines on how to manage data streams on the Web, as there are for their static counterparts.
More specifically, there is no fixed life cycle for Streaming Linked Data (SLD) yet. Tommasini
et al. [66] introduced an initial proposal for a SLD life cycle, however, it has not been verified if
the proposed life cycle captures existing applications and no guidelines were given for each step.

In this paper, we survey existing SR applications and identify if the life cycle proposed by
Tommasini et al. fully captures the surveyed applications. Based on our analysis, we found that
some of the steps needed reordering or being split up. This paper proposes an update of the
life cycle and surveys the existing literature for each life cycle step while proposing a number
of guidelines and best practices. Compared to the initial proposal by Tommasini et al., we drill
down into the details of the processing step which was previously neglected. The updated life
cycle and guidelines serves as a blueprint for future SR applications. A life cycle for SLD that
allows to efficiently manage data streams on the web, brings us a step closer to the realization of
the SR vision.
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Streaming Linked Data Life Cycle

Figure 1: Streaming Linked Data life cycle.

1. Introduction
The Semantic Web community has witnessed a growing interest in streaming data over the last decade. Under the

Stream Reasoning (SR) umbrella, Semantic Web technologies were combined with Stream Processing ones to answer
the research questions is it possible to make sense, in real-time, of heterogeneous, vast, incomplete, and noisy data
streams coming from complex domains? This research question spans a number of application domains, including
social media analytics, the Internet of Things for smart cities [52, 31], and cluster management [56].

The research outcomes of SR include but are not limited to, findings on Continuous Querying over RDF
Data, Incremental Reasoning, and Complex Event Recognition [21]. In particular, the research around RDF Stream
Processing (RSP) has been incredibly active. Indeed, the related literature shows evidence of query languages
and systems architectures but also working prototypes, benchmarks, and applications [43]. RSP proposes several
extensions1 of the semantic Web stack depicted in Figure 2, i.e., an extension of RDF to represent infinite streams
of data, i.e. RDF Streams, continuous extensions of SPARQL, and engines capable of ingesting RDF streams and
evaluating queries under continuous semantics defined in RSP-QL [22].

Recent achievements, e.g., RSP4J [64] and the Stream Reasoning Playground [55] attempt to push the community
boundaries by lowering the cost of approaching the field. Moreover, the growing availability of data streams re-opened
the debate around publishing dynamic data on the Web. In particular, there is a growing need for guidelines on how to
produce and consume data streams in a sustainable manner.

Figure 2: RSP extension proposal for the Se-
mantic Web Stack.

Similar guidelines exist for non-streaming data, e.g., the Linked
Data Principles, which support the original vision of Sir Tim
Barners-Lee, and the FAIR initiative, which provides principles to
make data Findable, Accessible, Interoperable and Reusable. To-
gether they inspired the first attempt to define a Streaming Linked
Data (SLD) life cycle [66]. Such a proposal identifies the life cycle
steps starting from three situations a practitioner may find when
dealing with SLD. Three possible starting points are identified, i.e.,
Web Data published in batches; Linked Data published in batches;
and Web Data published as streams. Although realistic, the work
presented in [66] elicits the life cycle, neglecting an application
perspective. In practice, a lot of attention is given to how to provision
data, neglecting the important role of querying.

Despite RSP leading to the vision of SLD, best practices for
sharing highly dynamic datasets on the Web are still missing. The
existing proposal [66] does not fully capture the complexity of stream
reasoning applications. Therefore, this paper presents a novel life
cycle for SLD, which extends the one in [66] with best practices
elicited from state-of-the-art SR/SLD applications.

The new life cycle is depicted in Figure 1. It consists of seven steps and aims at making data streams findable,
accessible, reusable, and interoperable [70]. In particular, the life cycle details how to publish SLD, indicating how to
(i) identify and name data streams as Web resources, (ii) model data and metadata, (iii) shape the data, (iv) annotate the
data into RDF, (v) describe the data to improve stream discovery, and (vi) serve the streaming data. Differently from
[66], the description step (4) is postponed after the conversion that, in turn, is split into shaping and annotation. Like
in [66], the paper highlights the available resources to be used within each step ultimately helping practitioners in the
maintenance. For example, the paper discusses ontologies [67, 27], systems [44, 64], and describes how to use them

1Non-Standard
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in practice with reference to the seven steps. Compared to [66], this paper goes into much more detail when discussing
each step, proving the reader with ample background to make the correct decisions when publishing SLD. Finally, the
life cycle terminates in a querying step, which is discussed in more depth than in [66] and includes the sub-task we
identified while studying the surveyed projects. In summary, the paper contributions are:

• we survey existing stream reasoning/streaming linked data projects and we highlight their characteristics.
• we criticize the existing linked data lifecycle proposal [66]. In particular, we show that it does not fully capture

how existing SR applications were designed. Therefore, we justify two amendments, i.e., we postpone the
description step and we split the conversion step into two, i.e., shaping and annotation.

• We drill down into the details of the querying step that was previously neglected. In particular, we distinguish
the essential operational components of application pipelines and we present them using the RSP-QL reference
model.

• we introduce a running example of the novel life cycle using a well-known stream reasoning task, i.e., the DEBS
Grand Challenge 2015. We use such an application to walk through the new life cycle as was done in [63],

• We provide a more comprehensive description of the resources required at every step than in [63]. In particular,
we present the alternatives and discuss the pros and cons.

• Finally, we discuss the level of maturity of the state of the art for each step, we elicit best practices, and we draw
potential future research directions for the SR/SLD community.

We highlight that this paper focuses on surveying SR/SLD projects and not on Semantic Web of Things (SWoT)
projects in general. The difference resides in the fact that the former has much more dedicated focus on how to handle
streams on the Web, while the latter has its focus on the Thing, i.e. how to discover the Thing, how to represent the
Thing, how to communicate with the Thing and how to make various Things interoperable. Even though the Things
might produce streams, the discovery, description and general focus is on the Things and not on the streams as in SLD.
There is some overlap between SLD and SWoT, i.e. some SWoT projects fall within the SLD paradigm, however, SLD
also has applications outside of the SWoT, such as social media analysis.
Outline. Section 2 describes the survey methodology while Section 3 introduces the selected Stream Reasoning
Applications. Section 4 discusses the limitation of the existing proposal wrt. the selected SR applications. Section 5
introduces a running example used to explain the different steps of the lifecycle. Section 6 presents the updated lifecycle
in details, and Section 7 positions the survey in the state of the art. Section 8 concludes the paper by highlighting best
practices and drawing guidelines for future research.

2. Survey Methodology
In particular, we aim at answering the following research questions: Are existing stream reasoning applications

compliant with the proposed SLD lifecycle? Intuitively, in case of a negative response, we are interested to understand
the reason for such a mismatch.

Our analysis of the state-of-the-art follows the guidelines for systematic mapping studies proposed in [12], which
were successfully applied to other surveys on the semantic web. In particular, we follow the same research protocol
applied in [12]. Reyero-Lobo et al. first collected relevant studies following a keyword-based search then applied
different filters, i.e., a source-based filter that discards non-relevant research areas; a metadata-based filter that inspects

Figure 3: Selecting relevant work on Streaming Linked Data.

Bonte et Tommasini: Preprint submitted to Elsevier Page 3 of 31



Streaming Linked Data Life Cycle

Projet Year Deployment Domain Task
SpitFire 2011 Smart Building Enabling services for Semantic Web of Things

Bottari 2012 Seul, Korea Social Media
Augmented reality application for personalized
and localized restaurant recommendations,

SLD 2013
London, UK
Milan, Italy Event Management

Collect analyse of data streams and
visualise the results in dashboards .

StarCity 2014 Dublin, Ireland Smart City
Spatio-temporal diagnosis of traffic conditions;
Spatio-Temporal exploration of traffic contexts;
Traffic Status Prediction.

OpenIoT 2015 Internet of Things
Integrate, communicate and enable
interoperability between IoT sensors

CityPulse 2016 Aarhus, Denmark Smart City Smart city service creation

AgriIoT 2016 Smart Farming
Fertility management of dairy cows;
soil fertility for crop cultivation

Optique 2017
Munich, Germany
Stanger, Norway

Manufacturing,
Oil Extraction Monitoring of qualist of drills and turbine

OpenSense2 2017 Lausanne, Switzerland Smart City Estimating air quality
StreamingMASSIF 2018 Ghent, Belgium Smart City Detection of traffic events
CitySensing 2019 Milan, Italy Smart City Visual story telling of activity in the city

Table 1
Summary of the Selected Projects.

the title, abstract, venues, and years; a content-based filter which inspects the paper in details. An enrichment step
(aka snowballing) concludes the selection, where additional papers are added inspecting citations and related works of
those resulting from the filtering. Figure 3 visualizes these different steps and indicates the number of identified works
in each step.

For our search, we used DBLP, ACM library, and Google Scholar. The latter was also used for enrichment. The
keywords we selected are stream reasoning, streaming linked data, dynamic linked data, rdf stream processing, Linked
Streams and Linked Stream Data. Moreover, we refine the selected papers by searching for keywords that indicate the
phase of the proposed life cycle, i.e., naming, modeling, converting, serving, querying.

According to [12], the paper collection process should follow Inclusion Criteria, which simultaneously defines
the scope and allow one to deterministically decide if a paper needs to be considered. The criteria applied during the
metadata-based filtering are:
IC1 Papers written in English
IC2 Papers published between 2010 and 2022
IC3 Papers subject to peer review.

Moreover, for content-based filtering, we focus on a paper that describes a stream reasoning system within the
context of a use case. In particular, we exclude papers that focus only on the definition of a query language, an execution
engine, or a benchmark to prioritize work that approaches stream reasoning as a full-stack problem.

3. Summary of Selected Projects
To verify if the steps of the SLD life cycle in [66] map to real SR/SLD applications, we investigated various

successful SLD frameworks and applications from the literature. For these frameworks and applications, we investigate
if they are compliant to the SLD life cycle in[66] or if the life cycle needs updating to better capture real-life SR/SLD
applications.

BOTTARI [4] is a streaming analytic application designed to make sense of social media using inductive and
inductive stream reasoning methods. The platform performs analyses of the activities of monitored influencers around
the points of interest (POIs) of a given area. The analysis is window-based, spanning from a few seconds to months. The
social media streams are gathered from the Web (in particular from Twitter) and converted into an RDF stream using
the proprietary crawling and sentiment mining infrastructure of Saltlux. BOTTARI, which employs augmented reality
Bonte et Tommasini: Preprint submitted to Elsevier Page 4 of 31
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applications for personalized and localized restaurant recommendations, was experimentally deployed in the Insadong
district of Seoul. In BOTTARI, data is modelled using the SIOC and WGS-84 ontology. In order to convert the tweets
to RDF, a hard-coded solution for annotation is used. Once annotated, the RDF data is served using websockets and
queried using the C-SPARQL [8] RSP engine.

The CityPulse project [52] handles a typical Smart City use case. The framework allows the development of
applications that can provide a continuous and dynamic view of a city, making sense of social and sensor streams. To
this extent, CityPulse employs semantic discovery, data analytics, and large-scale reasoning in real-time. CityPulse is
built in a service-oriented manner combining RDF Stream Processing and Complex Event Processing. The framework
was demonstrated using live data from the city of Aarhus, Denmark. In CityPulse, the sensor data is annotated
using a custom hard-coded solution, resulting in a stream producing graph shaped time-annotated events. The events
themselves have been identified using random identifiers, allowing to differentiate between events. The SSN, PROV-O
and OWL-S ontology are used to model the event data, while the SAO ontology is used the describe the streams
themselves. The CQELS [38] RSP engine is used to query the RDF streams.

SLD (which stands for Streaming Linked Data) [7] is a framework to collect, annotate, and analyse data streams.
To this aim, SLD uses semantic technologies like RDF and SPARQL as well as techniques for sentiment mining. The
framework follows the publication method proposed in [9]. SLD was successfully used to monitor the London Olympic
Games 2012 and the Milano Design Week 2013 and 2016. In SDL, the idea of instantaneous Graphs (iGraphs) is used
to identify a set of triples that have the same timestamp. The data itself is modeled using the SIOC ontology2 and a
custom hard-coded mapper is used to annotate the data to RDF. The C-SPARQL engine is used to query the data.

STAR-CITY [41], which stands for Semantic Traffic Analytics and Reasoning for CITY, is a system for streaming
data integration and analysis focusing on traffic data management. STAR-CITY is capable of interpreting the semantics
of contextual information and then deriving innovative and easy-to-explore insights. In practice, it computes the spatio-
temporal similarities of traffic congestion and calculates accurate traffic forecasting using recent theoretical research
work in contextual predictive reasoning. STAR-CITY was developed in collaboration with IBM Dublin, Ireland, where
it was also applied. STAR-CITY also uses a custom hard coded mapper to annotate the data to RDF and uses the Time3
and Geo Ontology 4 to model the events. Rest APIs are used to provide and serve the data that is being queried by the
Jena SPARQL engine.

The SpitFire project [49] enables the creation of SWoT services by providing specialized vocabularies, i.e. the
SpitFire Ontology, abstracting sensors, semi-automatic generation of annotations, and efficient search of sensors. It
uses custom code to annotate the sensor data. The streams themselves are not described, but rather the sensor (or
things) that produce the sensor streams. Once a certain sensor has been identified as being of interest, the CQELS
engine is used to query the data.

The OpenIoT project [59] is an open-source IoT platform aiming at semantic interoperability of IoT services. It
is designed to enable and facilitate SWoT projects and has showcased its capabilities through agriculture, smart city,
smart building, or IoT-enabled communication [1] applications. OpenIoT uses the X-GSN [16] sensor middleware to
collect data streams from virtual sensors or physical devices. X-GSN has custom hard-coded mapping functionality to
annotate the sensor data to the SSN ontology. As OpenIoT is a SWoT project, the streams themselves are not described,
but rather the sensor (or things) that produce the sensor streams. OpenIoT uses the Linked Stream Middleware [40] for
this purpose and allows querying using the CQELS RSP engine.

Agri-IoT [31] is a highly customizable online platform for IoT-based data analytic in the context of smart farming. It
is capable of large-scale data querying, and automatic reasoning based on data streams of data coming from a variety of
sources, e.g., sensory systems, surveillance cameras, hyperspectral images from drones, weather forecasting services,
and social media. Agri-IoT aims at helping farmers in more informed decision-making in real-time and fast reaction
to changes and unpredictable events. In Agri-IoT is annotated using a custom hard coded mapper and the events are
modeled using the Agri-IoT ontology, which extends the SSN 5 and OWL-S ontology6. The SAO ontology7 is used to
describe the streams themselves, such that they can be queried by RSP engines such as CQELS and C-SPARQL.

2https://www.w3.org/Submission/sioc-spec/
3https://www.w3.org/TR/owl-time/
4https://www.w3.org/2005/Incubator/geo/XGR-geo-ont-20071023/
5https://www.w3.org/TR/vocab-ssn/
6https://www.w3.org/Submission/OWL-S/
7http://iot.ee.surrey.ac.uk/citypulse/ontologies/sao/sao
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The Optique [33, 35] project handles several Big Data scenarios in the context of energy production. The case of
Siemens Energy (Munich, Germany) aims at monitoring a number of service centers for power plants, the main task was
monitoring remotely and in real-time thousands of appliances like gas and steam turbines, generators, and compressors
installed in plants. The case of Statoil (Stavanger, Norway) aims at improving the data gathering and analysis routines
of Statoil geologists, who need IT specialists in order to make sense of multiple complex and large data sources.
The Optique platform employs semantic technologies for enabling ontology-based data access for the aforementioned
scenarios. Logical reasoning is used in form of query rewriting to efficiently analyze data from heterogeneous data
sources. In the Optique project, R2RML [19] is used to annotate the data which much more flexible instead of a hard-
coded solution. Incorporating the annotation allows performing rewriting from the RDF Streams to the underlying
data to improve efficiency. The data is modeled using a turbine ontology and queryed using the STARQL engine.

The OpenSense2 project aims at integrating air quality measurements captured by various mobile and crowd-
sensing data sources and sensors, intending to understand the impact of urban air pollution exposure on the health
of the citizens. OpenSense2 also uses X-GSN and allows to use its custom mapping annotation functionality or
use augmented CSV as a common format for describing observation as RDF can be too verbose. This augmented
CSV follows descriptions that follow the specifications of the CSV on the Web Working Group8. The sensor data is
modeled using the SSN ontology. OpenSense2 allows to use Complex Event Processing (CEP) or RSP engines such
as CSPARQL and CQELS to query the data.

StreamingMassif [10] is an extension of the MASSIF platform for cascading stream reasoning. It combines several
layers of processing that include RSP, Description Logic reasoning, complex event recognition, and aggregations.
Streaming Massif was studied to overcome MASSIF limitations in terms of throughput and latency. Its layered structure
eases the deployment of expressive components for advanced analytics. Streaming Massif uses a simplified version of
RML [24] to annotate the data while identifying the time annotated graphs using the idea of iGraphs. It allows the use
of multiple ontologies to model the data and WebSockets are used to serve the data to the engine. By exploiting the
shape of the data, it is able to push some of the processing closer to the source of the stream.

CitySensing combines various social media streams and anonymous call data records during large city-scale events,
such as the Milan Design Week. It is mainly used for visual storytelling, giving an overview of activity hotspots
in a visual interface. CitySensing semantically annotates the stream through the FraPPE ontology, which takes its
inspiration from the digital image domain. The ontology allows to split up the view and events in the city in pixels
and frames to provide a spatial unit of aggregated information. Doing this allows zooming in and out on the events
happening throughout the city. CitySensing uses an ontology-based access approach while annotating the data with
the FraPPE ontology and integrating it with more static resources. Data are ingested from streaming data sources,
i.e., Instagram, Twitter, and TelecomItalia’s Call Data Records, and several static sources for places and events. Input
data are converted using triple templates into the activity stream 2.0 format. The description of streaming data follows
sGraph approach, but it is not fully detailed in the work, nor is the serving protocol. Finally, a system called Natron
semantically augments data using a custom Named Entity Recognition and evaluates a continuous query every 15min.
The result of this continuous query is a stream modeled in FraPPE.

4. Renewing the SLD life cycle
We can now look at the presented projects, in terms of the original life cycle steps, i.e., identify, model, describe,

convert, serve, and query. Table 2 classifies the projects above, according to the six steps of the original SLD life
cycle. Two problems can be identified by comparing how existing SLD applications were designed and how to how
to original life cycle models its various steps. A first problem arises when looking at the position of the Convert
steps in the original life cycle. Conversion from potential raw data to RDF happens after the description step, making it
impossible the describe the conversion step in the stream meta-data in the Describe step. Incorporating this information
allows to exploit how the data is shaped to improve querying, e.g. in Streaming MASSIF and OpenIoT, or to enable
rewriting techniques, e.g. in Optique and CitySensing. The former brings us to the second problem, the Convert step
does not investigate the shape of the items in the stream. Shaping events differently can have an impact on querying
performance. Based on these insights, and the investigation of how the above projects provisioned their RDF Streams,
we propose an improved SLD life cycle by 1) reordering the steps and placing the Describe step before the Serve step
instead of directly after the Model step and 2) splitting up the Convert step in both a Shape and Annotate step. The new
life cycle is depicted in Figure 1 and contains the following steps:

8https://www.w3.org/TR/csv2rdf/
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Projet Domain Identify Model Describe Convert Serve Query
SpiteFire Smart City custom DSO REST CQELS
Bottari Social Media source (tw) SIOC,WGS-84 custom websocket C-SPARQL

CityPulse Smart City random
SSN,PROV-O,
OWL-S SAO custom REST? CQELS

SLD Event M ts and igraphs SIOC sGraph custom CSPARQL

StarCity Smart City
Time and
Geo Ontology custom REST SPARQL

OpenIoT Crowd M SSN custom CQELS

Agri-IoT Smart Farming DSO SAO
CSPARQL,
CQELS

Optique Energy M source (db) DSO R2RML STARQL

OpenSense2 Smart City SSN
custom,
CSV2RDF

CEP,
CSPARQL,
CQELS

Streaming
MASSIF Healthcare igraphs multiple RML websocket

YASPER,
CSPRITE,
OBEP

CitySensing Smart City source(ig,tw)
Activity Streams 2.0
FrApPE sGraph

Triple
Template Natron

Table 2
Classification of SLD projects according to the original life cycle. Legend: [M]management; [T]time [S]tamp; [D]domain
[S]specific [O]ntology

• Identify, which focuses on the assignment of an IRI to identify data streams as Web resources.
• Model, which necessitates knowledge representation abilities to represent both the data stream metadata and the

data itself, while accounting for their ephemeral nature.
• Shape, which discusses the method of the data model of choice, i.e., how to represent the smallest unit of data.

RDF does, in fact, lead to a variety of design decisions that have an impact on querying performance.
• Annotate, which focuses on converting raw streaming data into RDF streams. This optional step emphasizes the

need for having an interoperable data format for data streams, too.
• Describe highlights the need for extensive and interoperable metadata that enables stream discovery.
• Serve focuses on the format, protocol, and services needed for data sharing in practice.
• Query concludes the life cycle indicating the remaining processing steps which are summarized in the following.

5. Running Example
As a running example, we will use the taxi dataset made available by ACM DEBS 2015 Grand Challenge9. The

goal of the running example is to provide tangible examples for each of the steps of the updated lifecycle. The DEBS
challenge consists of a taxi route analysis scenario in the city of New Year. The dataset consists of two streams: A ride
stream that represents the route of a taxi rides in terms of (i) taxi description, (ii) pick-up and drop-off information
(e.g., geographical coordinates of the place and time of the event), and (iii) the number of passengers. The fare stream
describes the ride payment information (e.g., tip, payment type and total amount). In more detail, Table 3 describes the
fields contained in the rides stream, while Table 4 describes the fields in the fare stream. Note that the rideId, taxiId
and driverId are contained in both streams.

The dataset was used in the DEBS challenges to solve two queries: 1) finding the frequent routes and 2) detecting
the most profitable areas. For the first query, the goal was to find the top 10 most frequent routes during the last 30
minutes. The second query aimed to inditify areas that are, at a certain time, most profitable for taxi drivers. In the
remainder of this paper, we will use the taxi dataset as a running example to detail the various steps of the life cycle.

9http://www.debs2015.org/call-grand-challenge.html
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field description
rideId the unique ride id
taxiId the unique id for the taxi itself

driverId the unique id of the taxi driver
isStart indicates if the ride has started or ended

eventTime timestamp of the event
startLon the longitude where the ride started
startLat the latitude where the ride started
endLon the longitude where the ride ended
endLat the latitude where the ride ended

passengerCnt the number of passengers

Table 3
Description of the taxi ride stream data

field description
rideId the unique ride id
taxiId the unique id for the taxi itself

driverId the unique id of the taxi driver
startTime the time the ride started

paymentType the type of payment, either cash or card
tip the tip amount for the ride

tolls the amount of tolls payed for this ride
totalFare the total fare

Table 4
Description of the taxi fare stream data

6. The New Lifecycle in Pratice
The following section will go through each of the life cycle steps in more detail. For each step, state-of-the-art

solutions are described and compared. The running example is used to give ample examples for each step.
6.1. Identify

The lifecycle’s identification step aims to distinguish relevant resources and design IRIs to identify them. When
discussing streaming data on the Web, two types of resources are critical: the stream itself and the elements that
the stream contains. Indeed, data streams, like datasets, represent a collection of data points, each of which can be
independently identified. Some important aspects of the data stream are highlighted by Tommasini et al. [66] as they
affect how data should be managed and identified, i.e., they are unbounded and ordered [61]:

• Unboundedness refers to the stream’s inability to be stored in its entirety.
• Order refers to how data is consumed, i.e., sequentially as soon as it arrives.

Definition 6.1. A Web data stream is a Web Resource that identifies an unbounded ordered collection of pairs (𝑜, 𝑖),
where 𝑜 is a Web resource, such as a named graph, and 𝑖 is a metadatum, e.g. a timestamp, that can be used to build an
ordering relation.

Definition 6.1, as originally proposed by Tommasini et al. [66], makes no assumption on the data that will be
received. Instead, the definition decouples the identification between the data stream and the resource it contains. The
use of HTTP IRIs to identify Web resources is recommended by Linked Data best practices for good IRIs design. While
these recommended practices apply to the Web Stream resource as well, it’s worth noting that for data access it is not
the same. Streaming data does, in fact, necessitate an always-on connection (e.g., WebSocket). Hereafter, the section
introduces two methods for solving identification, one from Sequeda et Corcho [57] and the other from Barbieri et
Della Valle [9]. Notably, both methods require human intervention to design the URI scheme as shown in Figure 10.

1 hrs:1 a s:Sensor ;
2 s:measures [
3 _measurement a hr:HeartRateMonitor ] .
4 hrs:1 s:measures hrs:1/2022-07-15 17:00:00 .
5 rdf:type hr:HeartRateMonitor;
6 hr:heartRate "74";
7 hr:timestamp "2022-07-15 17:00:00"^^xsd:dateTime
8 hrs:3 s:measures hrs:1/2022-07-15 17:05:00 .
9 rdf:type hr:HeartRateMonitor;

10 hr:heartRate "58";
11 hr:timestamp "2022-07-15 17:05:00"^^xsd:dateTime

Listing 1: Sensor and Observation from Sequeda et Corcho [57].
Sequeda and Corcho suggested three new IRI approaches for identifying sensors and their observations [57]. The

URI scheme below identifies a window with start and end times:

Bonte et Tommasini: Preprint submitted to Elsevier Page 8 of 31
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http://linkeddata.stream/sensor/name/%start time%,%end time%

Listing 1 shows an example from [57] that specifies a sensor as a streaming data source, and an observation as a
streaming element. Sequeda et Corcho’s vision includes spatio-temporal metadata in addition to streaming data. Sensor
data are frequently linked to location metadata.10.

1:sgraph1 sld:lastUpdate "𝜏𝑖+1"^^xsd:dataTime ;
2sld:expires "𝜏𝑖+2"^^xsd:dataTime ;
3sld:windowType sld:logicalTumbling ;
4sld:windowSize "PT1H"^^xsd:duration .
5
6:igraph1 :receivedAt "𝜏𝑖"^^xsd:dataTime ; :rdfs:seeAlso :sgraph1.
7:igraph2 :receivedAt "𝜏𝑖+1"^^xsd:dataTime ; :rdfs:seeAlso :sgraph1.
8
9:igraph1 { # I-Graph at 𝜏𝑖 using TriX Syntax
10:broker1 :does [ :tr1 :with "$ 1000" ] }
11:igraph2 { # I-Graph at 𝜏𝑖+1 using TriX Syntax
12:broker1 :does [ :tr2 :with "$ 3000" ] .
13:broker2 :does [ :tr3 :with "$ 2000" ] . }

Listing 2: sGraph and iGraphs from Barbieri et Della Valle [9].
Barbieri et Della Valle suggested to identify streams using IRIs that resolve a named graph comprising all relevant

metadata (called sGraph) and IRIs to identify a single element in a stream (called iGraphs) via time-stamping. iGraphs
and sGraph are linked to each other using the rdfs:seeAlso property, while the :receivedAt [9] property attaches
a timestamp to the iGraphs using 𝑥𝑠𝑑 literals. For example, in lines 1-4 in Listing 2 the sGraph is the result of
resolving http://stockex.org/transactions. The iGraphs in Listing 2 lines 6-8 and 12-19 are the result of resolving
http://stockex.org/transactions/urlenconde(𝜏𝑖), and http://stockex.org/transactions/urlenconde(𝜏𝑖+1). Barbieri et Della
Valle propose two URIs schemes:

http://linkeddata.stream/%stream-name%

http://linkeddata.stream/%stream-name%/urlenconde(%timestamp%)

In practice, unboundedness implies the ephemerality of stream elements. Indeed, clients subscribing to the stream
will receive data chronologically, starting from the beginning of the connection. If past data are not explicitly stored,
they will be inaccessible. Barbieri et Della Valle bypass this difficulty by linking iGraphs to the origin sGraph, which is
always referentiable. Sequeda et Corcho propose that such dependencies be encoded inside the IRI schema. Extending
the IRI schema though, may lead to misinterpretation, since each resource becomes independent of the stream. Rather
than that, hash IRIs and fragment identifiers enable the binding of stream elements to stream resources without the
requirement for an additional triple or the use of a special IRI scheme, i.e.

http://linkeddata.stream/{stream-name}#{igraph-id}.
Example 6.1. (cont’d) Carrying on the running example for the identification step, the taxi streams can be identified
by the base URL http://linkeddata.stream. Moreover, the following URI schemas will be used to identify Web
Resources that are relevant for the paper:

1. http://linkeddata.stream/ontologies/taxi-ontology

2. http://linkeddata.stream/resource/ride-stream

3. http://linkeddata.stream/resource/fare-stream

4. http://linkeddata.stream/resource/ride-stream#ride-id

5. http://linkeddata.stream/resource/fare-stream#ride-id.
10The interested reader can consult the book [42]
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Figure 4: SAO Schema.

6.2. Model
This life cycle stage is concerned with defining the application domain from which data arrive. Towards this

end, ontologies and models are designed using formal languages such as RDFS or OWL, which allow describing
domain knowledge in a machine-readable fashion. At the time of writing, no mechanism for representing stream-
specific knowledge exists, nor exists tools to support such a specific knowledge representation effort. Although the
task remains experimental and essentially manual (cf Figure 10), some ontologies are well-known in the stream
reasoning literature, like SIOC [13], Event Ontology [53], Activity Streams 11. Moreover, ontologies like FrAPPE [6]
and SAO [27] were designed specifically for stream reasoning applications. Therefore, their conceptualizations present
peculiar characteristics that can guide future modelling efforts for stream reasoning. Notably, the role of a knowledge
engineer is essential to the step completion.

There is widespread consensus in the stream processing literature regarding the most important abstractions.
Specifically, streaming data is typically classified as instantaneous or time-varying. The former classifies data items
as valid at a certain point in time, for example, sensor observations in a IoT stream; the latter classifies data that are
changing over time, for example, the people that are in a room. Arasu et al. [2] introduced such data dichotomy to the
extent of clarifying relational continuous queries, while Dell’Aglio et al. [22] extended it to RSP in order to operate
on RDF graphs. Time-Varying abstractions are the consequence of a continuous stateful computation being applied
to instantaneous data. While strictly static data are excluded from the formalization, they are frequently employed in
practice. Indeed, the formalization can be extended to describe permanent facts [43]. The section will show how SAO
and FrAPPE differentiate between such notions. Additionally, the section builds on the previous examples by modeling
the color domain using the same abstractions. The comparison of the two ontologies to the abstract concepts used in
stream processing is summarized in Table 5.

1<sensor> a ssn:Sensor ;
2ssn:observes qoi:Freshness .
3:sensorRec1 rdf:type sao:Point ;
4prov:wasAttributedTo <sensor> .
5:sensorRec2 rdf:type sao:Point ;
6prov:wasAttributedTo <sensor> .
7:traffic-sensor-recording-619 rdf:type sao:StreamEvent ;
8prov:wasAsscoatedWith :government ;
9prov:used [ rdf:type :sensorRec1, :sensorRec2 ] ;
10sao:time [ rdf:type tl:Interval ;
11tl:at "2014-02-13T08:25:00"^^xsd:dateTime ;
12tl:duration "PT15H30M"^^xsd:duration ] .
13:freshness-traffic-619 rdf:type qoi:Freshness ;
14qoi:value "2014-02-13T08:25:00"^^xsd:dateTime .
15:sax_AverageSpeedSample rdf:type sao:SymbolicAggregateApproximation;
16rdfs:label "The sax representation of the traffic sensor recording obtained from Aarhus City.";
17sao:value "bbbbacdd";
18sao:alphabetsize "4"^^xsd:int ;
19sao:segmentsize "8"^^xsd:int ;
20prov:wasGeneratedBy :traffic-sensor-recording-619;
21qoi:hasQoI :freshness-traffic-619 .

Listing 3: SAO Example.
11https://www.w3.org/TR/activitystreams-core/
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Figure 5: Frappe Schema.

The Stream Annotation Ontology (SAO)12 enables publishing IoT-derived data streams. The vocabulary allows
the in depth description of the stream transformations. PROV-O is used by SAO to track the provenance and OWL-
Time is used for the temporal annotations [36]. To represent instantaneous data, SAO adopts two classes: sao:Point
and sao:StreamEvent. The former represents one single data point in a stream of sensor observation (see Listing 3
at line 3.), while the latter models an artificial classification of the elements in the stream (see Listing 3 at line 7.).
Moreover, SAO includes two Time-Varying concepts, i.e., sao:StreamData that models data points which are the
results of aggregation, and sao:Segments, which allow representing a specific portion of a stream. The class sao:
StreamAnalysis in SAO is used to represent a continuous computation (see line 15, Listing 3). As mentioned above,
the result of the continuous computation is a time-varying concept. Finally, in SAO, the conceptualization is limited
to the sao:Sensor class that represents the source of the streaming data (see line 2, Listing 3).

Frappe13 is an OWL 2 QL vocabulary which is designed for spatio-temporal data analytics. It borrows its
conceptualization from the photography domain [6]. As in photography, Frappe represents the world as a sequence
of frames and events occurring within a spatio-temporal context. Listing 4 shows how Frappe can be use to model
the dataset from the running example. Frappe borrows the instantaneous concept Event from the EventOntology. The
Event concept represents something that happened in the real world at a given time. Notably, both SAO and Frappe
make use of the OWL Time ontology to represent temporal concepts (see Listing 4 at line 17). Similarly to SAO,
Frappe identifies time-varying concepts frp:Pixel and frp:Frame, which respectively correspond to the results
of continuous computations over the Events occurring in a Cell or Grid. (see Listing 4 at lines 26 and 29.) Frappe
represents the continuous computations through the concepts frp:Capture and frp:Synthesize (see Listing 4 at
line 34). Furthermore, the classes Grid, Cell, and Place, which are used to represent spatial context, are assumed to be
static (see Listing 4 at line 2). Note that data are treated as static when they do not change during the query execution.
Notably, the static data represent different concepts which are not subject to time like such as units of measurement.

1:Grid_1 gs:sfContains :Cell_1, :Cell_2 .
2:Cell_1 a fr:Cell ;
3rdfs:label "39460"^^xsd:long ;
4fr:isReferredBy :1356995100000_39460 ;
5gs:sfContains :place1 ;
6gs:sfWithin :Grid_1 .
7:place1 a fr:Point ;
8gs:asWKT "POINT( 40.715008 -73.96244 )"^^gs:wktLiteral ;
9gs:sfWithin :Cell_1 .
10
11:E_A a :PickUpEvent ; a event:Event ;
12event:time [ a time:Instant ;
13time:inXSDDateTime "2013-01-01T00:00:00"^^xsd:dateTime ];
14fr:location :place1 ;
15:hackLicense "E7750A37CAB07D0DFAF7E3573AC141"^^xsd:string;
16:medallion "07290D3599E7A0D6209346EFCC1FB5"^^xsd:string .
17:E_B a :DropOffEvent ; a event:Event ;
18event:time [ a time:Instant ;

12http://iot.ee.surrey.ac.uk/citypulse/ontologies/sao/sao
13http://lov.okfn.org/dataset/lov/vocabs/frapp
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Concept SAO FrAPPE Taxi Example
Instantaneous Point,StreamEvent Event Ride/Fare
Time-Varying StreamData,Segment Pixel, Frame FrequentRoute/ProfitableArea
Continuous ColorSynthesis Synthesize RouteComposition/FareComposition
Static StreamAnalysis Grid, Cell, and Place CityMap/Road/POI/...

Table 5
Concepts and Classes for SAO, Frappe, and Taxi Example.

19time:inXSDDateTime "2013-01-01T00:02:00"^^xsd:dateTime ];
20fr:location :B ; :connected :E_A ;
21:paymentType "CSH"^^xsd:string;
22:fareAmount "3.5"^^xsd:double;
23:totalAmount "4.5"^^xsd:double;
24:tripDistance "0.44"^^xsd:long; :tripTime "120"^^xsd:long.
25
26:1356995100000_39460 a fr:Pixel ;
27fr:isIn :1356995100000 ;
28fr:refers :Cell_1 .
29:1356995100000 a fr:CapturedFrame ;
30fr:contains :1356995100000_39460, :1356995100000_39461 ;
31fr:wasCapturedFrom :Grid_1 ;
32prov:wasGeneratedBy :1356995100000 ;
33fr:samplingTime [ a time:Instant ;
34time:inXSDDateTime "2013-01-01T00:05:00"^^xsd:dateTime].

Listing 4: Frappe DEBS Example.

Example 6.2. As indicated above, it is important to differentiate between instantaneous and time-varying concepts.
These concepts are essential for the formulation of information needs and to present them as continuous transfor-
mations. Furthermore, if any static data abstraction emerges it should be included in the modeling. In our running
example, the observed taxi events (both rides as fares) capture well the idea of the instantaneous concept as it is only
valid at a certain point in time.

In our taxi ontology, the class :Ride identifies instantaneous concepts, while :FrequentRoute models time-
varying ones resulting from the co-occurrence of multiple rides. In this taxi stream example, the acts of computing
frequent routes or profitable areas are continuous, i.e., they are repeatedly evaluated over a stream of input and their
output is also a stream. In particular, the result of the continuous computation that takes care of the ride composition
through the :RouteComposition concept, is a stream of derived routes from the ride events. Finally, it is worth
noting that the association between ride and the geographical areas does not depend on any temporal annotation.
Thus, location information themselves, e.g. data regarding the roads, are represented as static knowledge that can be
joined with the stream of rides and fares.

6.3. Shape
The shaping step of the lifecycle is concerned with the structuring of stream data items in order to facilitate their

consumption and processing [21]. There are two types of data streams in the stream processing literature: structured
and semantic. The former denotes a data stream whose contents are restricted by a schema. For instance, in relational
stream processing, each element of a data stream must adhere to a single, unique set of attributes. The latter is a
data stream whose immediate elements can be interpreted in terms of a particular model. In practice, the model is
frequently expressed using a knowledge representation language (e.g., RDFS or OWL), and the interpretation is guided
by conventional deductive reasoning tasks. Typically, the schema for structured streams is determined in advance. Thus,
the shaping process is reduced to identifying a subset of the schema to publish or expanding the schema through the
use of numerous data sources. By contrast, semantic streams often use a schema-free data paradigm, such as RDF.
Thus, shaping is reduced to determining the smallest structural unit that makes up the stream data item. Shaping is
distinct from modeling in that the conception is already specialized in an ontological schema at this point. Rather than
that, the amount of granularity at which data is provided has yet to be established. To determine the final shape, the
following critical questions must be addressed:

• What is minimal unit of information that is useful for the processing?
• What are the requirements in terms of throughput-latency?
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(a) Triple-based. (b) Graph-based.
Figure 6: RDF Stream.

In the stream reasoning literature, two approaches are popular for shaping streaming data, i.e., triple-based RDF
streams, which use individually timestamped triples to punctuate the data stream, and graph-based RDF streams,
which use timestamped (named) graphs to punctuate the data streams. From a formal standpoint, the two techniques
are equivalent [22]. Indeed, by grouping the items by time, it is always possible to construct a graph-based stream from
a triple-based one. To convert a graph-based stream to a triple-based stream, on the other hand, requires a stateless
operation that flattens the stream’s content (e.g. flatMap).

Figure 7: RDF Molecule from [25].

The two models, however, have a distinct effect
on processing performance. In particular, triple-based
streams (see Figures 6a) minimize latency, as ingestion
occurs concurrently with input parsing (which happens
node by node, triple by triple, and graph by graph).
However, they impact redundancy as equivalent nodes
are repeated multiple times. On the other hand, graph-
based streams (see Figure 6a and 6b) optimize better
for throughput since they are a de-facto micro-batching
mechanics, but they require a more sophisticated parsing
process. The finer-grained punctuation makes the triple-
based streams more subject to noise like late arrivals,
while graph-based molecules have a higher risk of information loss. Finally, triple-base streams are quite generic
and suitable for any processing task, including incremental maintenance (i.e., they should be further interpreted as
addition and deletions). Instead, graph-based streams pave the road to query-driven stream shaping.

Other options are ERI Streams, which are sequences of blocks with the same subjects triples [26]. The solution
then employs an encoding procedure akin to that used by the Efficient XML Interchange (EXI) format but adapted
for RDF. Each group is multiplexed into lists of items with comparable values that are well-suited for compression
using common techniques. ERI Stream makes use of Ding et al [25] notion of RDF’s Molecule to determine groups.
In practice, the notion can aid in generalizing the concept of shaping RDF streams. RDF molecules, according to
Definition 6.2, are significantly more informative than individual RDF triples but are not classified as named graphs
(see Figure 7). Notably, Ding’s molecules are not identified as a-priori and they are meant for provenance tracking. An
agreement between the stream molecule and the shape of continuous queries might allow performance optimisation.
Figure 6b presents a graph stream in which every graph follows one of the most common SPARQL query shapes that
could inspire specific molecular structures.
Definition 6.2. RDF Molecule. Given an RDF graph G, an RDF molecule M ⊂ is a finest set of triples {𝑡1, 𝑡2, ..𝑡𝑛}
that decomposes the graph without loss of information [25].

Notably, although methods for asserting the data validly based on shapes exist, e.g., SHACL [18] and Shex [60];
to the best of our knowledge they were never applied to the streaming scenario.
6.4. Annotate

The annotation step of the lifecycle focuses on converting streaming data into a machine-readable format. As for
Linked Data, RDF is the data model of choice for publishing data on the Web. However, data streams are not always
Bonte et Tommasini: Preprint submitted to Elsevier Page 13 of 31
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rideId taxiId driverId startTime paymentType tip tolls totalFare
1305 2013008681 2013007085 2013-01-01T00:02:00 CSH 1.0 0 4.5
1306 2013002109 2013005429 2013-12-01 00:02:01 CRD 0.5 0 7.5
1307 2013002083 2013002080 2013-12-01 00:02:11 CRD 2.87 0 14.37

Table 6
Example of event in the fare stream.

produced directly in RDF. For instance, in the IoT, sensors usually push observations using a tabular format like CSV
or document formats such as JSON. In many applications, data are also compressed to save bandwidth and reduce
transfer costs. To tackle these problems, a conversion mechanism must be set up that can transform the data stream
into a machine-readable format. In order to design an adequate conversion pipeline, the following questions should be
answered first:

• What is the model of the input data and what is the expected output?
• Is there any contextual information that can be used during the conversion?
• What mapping language is best suited for the conversion?
• How can the streaming temporal dimension be treated during the annotation?
The domain ontologies designed during the modeling step should be used in the conversion pipeline to annotate the

raw data to the RDF model. Additionally, streaming data may be combined with more contextual domain knowledge,
which allows capturing the domain information collected in an ontological model. The result of the annotation step
should shape the original stream as an RDF stream, according to the decision made at the previous step of the lifecycle.
Thus, the RDF molecule described in the Shape step, also plays an important role in the annotation process.

Technologies like R2RML [19] and RML [24] are adequate to set up static data conversion pipelines, but they are
suited to deal with data streams.14 In particular, due to the infinite nature of streaming data, the conversion mechanism
does not terminate if it operates under the same assumptions used for static dataset annotation. In the literature, the
most common workaround for this problem consists of annotating the stream one element at a time. Alternatively,
one can use a window-based Stream Processing engine to transform the input stream by means of a continuous query.
The latter approach has however only been described theoretically, yet never implemented. A notable exception is the
Morph𝑠𝑡𝑟𝑒𝑎𝑚 [15] engine, which extends the mapping language to include the windowing semantics. However, rather
than annotating the data to RDF, it uses the mapping to enable ontology-based streaming data access [34].
Example 6.3. Continuing the taxi stream running example, the annotation step should make use of the taxi ontology
in Listing 4. Table 6 depicts a number of observed fare event. In practice, event data are often represented as JSON or
CSV. For simplicity, we assume the latter.

For the transformation of the CSV stream into an RDF Stream, the conversion pipeline must apply a transformation
rule that can be specified using the RML mapping language. RML is preferred over R2RML W3C recommendation
since RML has support for processing CSV directly as well as a number of other formats and input protocols. Listing 5
shows a subset of the transformation rules that transforms the fare event. Similar rules are deployed for the ride events.
Note that the mapping represented here uses the more readable YARRML syntax [29], which is more concise than
RML. Finally, Figure 8 depicts the mapping process and the resulting RDF stream denoting a sample occurrence of
a taxi fare. Streaming conversion pipelines can implemented using CARML15 or RMLStreamer16 [28], which support
streaming-like annotation given a standard way for iterating over the input data, i.e., line-by-line for CSV or document-
by-document for JSON.

14Note that RML is more generic and stronger theoretical foundations than CSV2RDF used in the OpenSense2 project.
15https://github.com/carml/carml
16https://github.com/RMLio/RMLStreamer

Bonte et Tommasini: Preprint submitted to Elsevier Page 14 of 31

https://github.com/carml/carml
https://github.com/RMLio/RMLStreamer


Streaming Linked Data Life Cycle

1prefixes:
2taxi: "http :// linkeddata.stream/ontologies/taxi-ontology#"
3

4mappings:
5fares:
6sources:
7- [’source_1.csv~csv’]
8s: taxi:fare/$(rideId)
9po:
10- [a, taxi:DropOffEvent]
11- [taxi:paymentType , $(paymentType)]
12- [taxi:totalAmount , $(totalFare)]
13...

Listing 5: An RML Mapping.

6.5. Describe
The Describe step of the life cycle aims at providing useful representations of the data streams to be consumed

by humans and/or Web agents. In practice, metadata must be written using formal language while sharing the used
terminology. In the case of the description of static datasets, the use of standard vocabularies for metadata management,
e.g., DCAT or VOID, is established. Public data catalogues such as DataHub, Zenodo, or Google’s dataset search
then use the metadata for indexing purposes. The WebDataCommons indexes more than two million datasets that are
annotated using schema.org. Although machine-readable metadata can be generated or extracted from the data, the
curation work remains substantially manual.

In addition, streaming data calls for domain-specific metadata that captures their time-varying nature. Open data
catalogue search capabilities struggle to interpret data semantics correctly, often falling into pitfalls that hinder the
user’s ability to discover data streams. To avoid such issues, two important questions should be answered:

• How can we capture the semantics of streaming data?
• What metadata are essential for streaming data?
Link in the modelling step, metadata curation for data streams is mostly human-centred (cf Figure 10). In this

context, prominent vocabularies are emerging to address the problem of describing streaming data. The Vocabulary
for Cataloging Linked Streams (VoCaLS) is an ontology to enable the interoperability between data streams and
streaming services on the web [67]. It presents three modules for 1) publishing of streaming data following the Linked
Data principles, 2) description of the streaming services that process the streams, and 3) tracking the provenance of
stream processing [67].

Figure 8: Illustrating the annotation process from a table stream to an RDF Stream through RML.
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The Stream Annotation Ontology (SAO) allows the publishing of derived data about IoT streams. SAO can
represent both raw and aggregated data. The vocabulary allows the description of the aggregation transformations in
depth. SAO relies on PROV-O to track the aggregation provenance and OWL-Time for the temporal annotations [36].

Linked Data Event Stream (LDES)17 defines a collection of immutable objects that evolve over time. It can
describe both historical and real-time updates. LDES uses the TREE specification18 for modeling the collections and
data fragmentation purposes when the size of the collections becomes too large for a single HTTP response. TREE
defines a collection of objects that adhere to a certain SHACL shape, and how these collections can be fragmented and
interlinked using multi-dimensional HTTP pagination [37].

Lastly, Schema.org (SORG) includes two concepts that are relevant for stream representation, i.e., DataFeed19
and DataFeedItem20.

The FAIR initiative21 highlights that metadata should be generous and extensive, including descriptive and
contextual information about the data, as well as indications of data quality. However, the initiative gives some
indication of what metadata is more relevant. The remainder of this section discusses the most important metadata
with respect to SLD. In particular, the section shows how the aforementioned ontologies allow to (i) include descriptive
information in natural language, e.g., the title; (ii) include information about streaming data quality, e.g., the stream rate
and schema violations; (iii) present contextual domain knowledge, e.g., related ontologies; (iv) semantically annotate
the publishing service; (v) present proper licensing (vi) include provenance metadata, e.g., generating pipeline or
R2RML mappings.

Before going into details, we give a summary of the FAIR initiative, which aims to improve the way (scientific)
data are shared and foster interoperability, using four pillars, i.e., Findable, Accessible, Interoperable, and Reusable.
We will use these pillars to further go into details of the Discribe step of the SLD life cycle:

Findable. (F1) data should be assigned unique and persistent identifiers, e.g., DOI or URIs. (F2) data should be
assigned metadata that includes descriptive information, data quality and context. (F3) metadata should explicitly
name the persistent identifier since they often come in a separate file. (F4) Identifiers and metadata should be indexed
or searchable.

Accessible. (A1) Data and metadata should be accessible via (a) free and (b) open-sourced, and (c) standard
communication protocols, e.g., HTTP or FTP. Nonetheless, authorization and authentication are possible. (A2)
metadata should be accessible even when data are no longer available.

Interoperable. (I1) Data and metadata must be written using formal languages and shared vocabularies that are
accessible to a broad audience. (I2) Such vocabularies should also fulfill FAIR principles. (I3) Data and metadata
should use qualified references to other (meta)data.

Reusable. (R1) Data should adopt an explicit license for access and usage. (R2) Data provenance should be
documented and accessible. (R3) Data and metadata should comply with community standards.

Table 7 summarizes the analysis presented below. The table also summarizes the explicit support for RDF Streams
(I1) and Stream Descriptor (F3,A2). Moreover, the tables do not include evidence for I2 and I3. Indeed, none of the
presented vocabularies fulfil I2, as they all rely on at least one non-FAIR import. On the other hand, all the ontologies
support I3, since they all reuse concepts from other vocabularies.

Metadata. (F2) VoCALS does not allow to include of any information on data quality but limits its support to
descriptive information about the resources, e.g., name and owner, and contextual information, e.g., the vocabulary
used to annotate the stream content. SAO supports all the three metadata annotations. It is worth noticing the presence of
specific classes and properties for annotating data quality by extending QOI22. LDES explicitly supports only contextual
metadata as it directly relies on the TREE specification.

Service. (A1) The FAIR prescription for serving data and metadata relies on standard protocols. While on the Web
this usually means HTTP, it does not directly apply to streaming data that call for specific protocols. Except LDES,
which inherits the HTTP access assumption from TREE, the other ontologies include a specific abstraction that aims
at generalizing the access to the streaming data, i.e., voc:StreamEndpoint, iots:Service, ces:EventService.

17https://w3id.org/ldes/specification
18https://w3id.org/tree/specification
19https://schema.org/DataFeed
20https://schema.org/DataFeedItem
21http://go-fair.org
22https://mobcom.ecs.hs-osnabrueck.de/cp_quality/.
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Ontology D Q C RDF Stream (I1) Service (A1) Descriptor (F3,A2) LICENSE (R1) Prov. (R2)
VoCALS ✓ ✓ ✓ ✓ ✓ Apache 2 ✓

LDES ✓ ≃ ✓ CC
SAO ✓ ✓ ✓ ✓ CC ✓

SORG ✓ ✓ ✓ ✓ CC ✓

Table 7
Summary of the thirty-thousand foot view analysis. Legend: ✓=supported, ≃=partially supported, [D]escriptive, Data
[Q]uality, [C]ontextual, [C]reative [C]ommons.

License. (R1) All the selected ontologies have an explicit license. VoCaLS and LDES explicitly suggest associating
a license with the annotated data streams.

Provenance. (R2) Finally, tracking the provenance of the shared data is an encouraging practice from the FAIR
initiative. In these regards, all the ontologies includes dedicated classes and properties that allow to represent the
analysis performed on the streaming data, i.e., voc:Query based on RSP-QL; CES ces:EventPattern for complex
event recognition, sao:StreamAnalysis and iots:Analytics for continuous analysis of the data streams.
Example 6.4. (cont’d)

Carrying on the running example for the description step, Listing 6 describes the taxi stream using one of the
presented vocabularies, i.e., VoCaLS and DCAT Service metadata are listed at line 15 Provenance is limited to the
publisher, see line 13, and could be extended for example by describing the annotation process. Finally, service
metadata are listed at line 15. More details are given in Listing 7, which is discussed in the next section.

1 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
3 PREFIX dcat: <http://www.w3.org/ns/dcat#>
4 PREFIX frmt: <http://www.w3.org/ns/formats/>
5 PREFIX vocals: <http://w3id.org/rsp/vocals#>
6 PREFIX vsd: <http://w3id.org/rsp/vocals-sd#>
7 <> a vocals:StreamDescriptor .
8
9 :taxiRidestream a vocals:RDFStream ;

10 dcat:title "Taxi Ride Stream"^^xsd:string ;
11 dcat:description "Stream of taxi rides"^^xsd:string ;
12 dcat:license <https://creativecommons.org/licenses/by-nc/4.0/> ;
13 dcat:publisher "https://linkeddata.stream" ;
14 dcat:landingPage <http://linkeddata.stream/page/taxistream> ;
15 vocals:hasEndpoint :TaxiRideEndpoint .

Listing 6: Publishing taxi stream with Vocals and RSP-QL.

6.6. Serve
The fifth step of the lifecycle aims at making the streaming data accessible on the Web. This step aims to provide the

data to the audience of interest, i.e., making them available for consumption. To this extent, three important questions
should be answered:

• What data should we provision?
• How should we provide such data?
• Who (or what) is responsible for the provisioning?
Looking back at the beginning of the life cycle, and in particular at the identification step, it emerges that two

kinds of resources are relevant when publishing streaming data, i.e., the stream itself and the resource it contains. This
idea, which was originally introduced by Barbieri et al. [9], suggests decoupling the sharing of streaming data and
metadata. The former should be accessible in a continuous and reactive way, to promote streaming data access and the
development of streaming applications. The latter, instead, should be accessible via HTTP for backward compatibility
with the Web infrastructure. Although the metadata document should be standalone, it should be easy to link it to the
actual streaming data, which are provisioned using a different yet more adequate protocol. To this extent, the stream
descriptor should incorporate service metadata that describes the streaming data access.
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Regarding specialized protocols, Van de Vyvere et al. wrote a comprehensive comparison between push and pull-
based protocols for Web data [20]. We briefly summarize below the most common protocols used in processing Web
Streams [46]:

• HTTP long polling reduces the amount of requests by instructing the server to return responses to clients upon
the occurrence of an update. However, it requires stateful resource management to maintain the connections
open. HTTP Long-polling shows Websockets-like performance when the underlying network latency is lower
than half the data measurement rate [51].

• Server-Sent Events (SSE) extends, like HTTP long polling, maintains an open connection open for every client,
but allows pushing multiple updates instead of one. SSE works best on HTTP/2, which multiplex all requests
and responses over one connection

• Last but not least, Websocket is the most common protocol for real-time communication. It provides a
bidirectional communication channel over one TCP connection for every client, after an HTTP handshake
between the client and server. Websocket has a similar performance as SSE, but a lower transmission latency
when the server needs to send large messages above 7.5 kilobytes. Also, the client-to-server communication
provides Websockets with a lower transmission latency than using HTTP [58].

In addition, several streaming-oriented protocols exist (MQTT, CoAP [47], or STOMP23.) with as many advanced
features, e.g., pub/sub via topic management. However, they were not extensively used in the context of Web Stream
publishing.

Provisioning data does not only concern the choice of a protocol but also the data format. The recommendation
is to follow the standard guidelines to share the stream metadata (e.g., any suitable RDF serialization). On the other
hand, for streaming data, the choice of serialization might hugely impact the performance [26]. Moreover, Fernandez
et al. [26] clarified the need for a form of punctuation for the semantic stream that is called a molecule. Due to the strict
latency constraints of stream processing applications, it is of paramount importance that the RDF stream serialization
agrees with the molecule structure.

In absence of a standardized RDF stream serialization, existing works in the stream reasoning context seem to agree
on adopting RDF formats that simplify the temporal annotation. In particular, the most common choice results in N-
Quads and JSON-LD. Intuitively, both formats allow graph-based shaping to punctuate the stream. JSON-LD better fits
semantically richer streams whose unit of information goes beyond the single triple. Nonetheless, the more expressive
syntax allows contextualizing (which can also be referenced to avoid repeating information). N-Quads facilitate the
parsing but require rebuilding of the graph unit in memory, ultimately impacting the latency of complex processing.

Finally, in terms of systems, the research activity about data stream provisioning can count on a number of solutions:
RSP Engines like C-SPARQL [8] or CQELS [38] support the provisioning of query results; TripleWave [44] allows
sharing streaming data via WebSockets. Finally, the RSP Services [5] allows to manage the stream resulting from a
query either via WebSockets or asynchronous REST endpoint.
Example 6.5. (cont’d) Carrying on the running example for the serving step, Listing 7 completes the stream descriptor
presented in Listing 6 with the specification of the corresponding publishing service and access point. At line 4 the
endpoint specifies the protocol, while at line 2 it specifies the format. In practice, multiple endpoints that provision
alternative serialization of the stream is possible, following traditional content negotiation. Moreover, different
protocols can be enabled to satisfy the needs of different clients. Listings 8 and 9 show the difference between the
N-Quads and JSON-lD data formats formats, respectively.

1 :TaxiRideEndpoint a vocals:StreamEndpoint ;
2 dcat:format frmt:JSONLD ;
3 dcat:accessURL "ws://taxiridestream:8080" ;
4 dcat:protocol "WebSocket" .

Listing 7: An access point to the taxi stream.

1 <../64a93e56abb0> <../rdf-syntax-ns#type> <../taxi#PickUpEvent> <../taxistream#1588684149> .
2 <../842483d5c22f> <../rdf-syntax-ns#type> <../taxi#DropOffEvent> <../taxistream#1588684150> .
3 <../g46842483ds5> <../rdf-syntax-ns#type> <../taxi#PickUpEvent> <../taxistream#1588684152> .

23https://stomp.github.io, Graph-QL Subscriptions
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t]

1 { "@id":"http://linkeddata.stream/streams/taxistream#1588684149",
2 "@context":{
3 "taxi":"http://linkeddata.stream/ontologies/taxi#",
4 "rdf":"http://www.w3.org/1999/02/22-rdf-syntax-ns#",
5 "rdfs":"http://www.w3.org/2000/01/rdf-schema#" },
6 "@graph":{ "@id":"64a93e56abb0", "@type":"taxi:PickUpEvent" } },
7 { "@id":"http://linkeddata.stream/streams/taxistream#1588684150",
8 "@context":{...},
9 "@graph":{ "@id":"842483d5c22f", "@type":"taxi:DropOffEvent" } },

10 { "@id":"http://linkeddata.stream/streams/taxistream#1588684152",
11 "@context":{...},
12 "@graph":{ "@id":"f0e58ce1c485", "@type":"taxi:PickUpEvent" } }

Listing 9: The RDF stream of taxi rides in JSON-LD.

Listing 8: The RDF stream of taxi rides in N-Quads.

Finally, streaming data are exchanged across actors that expose, provision, and manipulate them. In traditional Web
architecture, the notion of Agent or Service was dedicated to identifying the actors interested in or responsible for given
resources. In the content of SLD, a Web Stream Processing Service or Agent (if they employ some AI technique [65])
is a special kind of Web service that manipulates Web streams and, in particular, RDF Streams.
Definition 6.3. A Web Stream Processing Agent/Service (WSP) is a special kind of Web service that manipulates Web
streams and, in particular, RDF Streams.

Three main types of Web stream services are relevant for the SLD lifecycle: (i) Catalogs that provide metadata
about streams, their content, query endpoints and more. (ii) Publishers that publish RDF streams, possibly following
a Linked Data compliant scheme (e.g. TripleWave in Listing 10). (iii) Processors, which model a Stream Processing
service that performs any kind of transformation on streaming data, e.g. querying.

Intuitively, the first two services are relevant within streaming data publication, while the latter is relevant for
querying and, thus, will be discussed in detail in the next section. Catalogs are a common abstraction in the Web of
Data due to the widespread need for dataset search. Nonetheless, existing data catalogues are not capable to capture
the data stream semantics. Specialized RSP Catalogs can interpret the semantic annotations (see Annotation Step) and
enable streaming data discovery. The adoption of vocabularies like those mentioned above are steps towards solving
this issue. Publishers deployed to provide the streaming data using a protocol suitable for continuous and/or reactive
data access. As servers, Publishers should implement content negotiation. Thus, publishing interest in serving RDF
streams take over the conversion process. As discussed alongside the section, stream descriptors have a critical role in
making the stream findable. To this extent, TripleWave [44] is a reusable and generic tool that enables the publication
of RDF streams on the Web. It can be invoked through both pull- and push-based mechanisms, thus enabling RSP
engines to automatically register and receive data from TripleWave.
Example 6.6. (cont’d) Carrying on the running example, Listing 10 adds additional metadata for the stream publisher
originally included in Listing 6. represent a bridge between publishers and catalog. Figure 9 shows how to carry on
the lifecycle consuming the taxi streams, converting it, and at the same time making the stream descriptor available.

1 <http://linkeddata.stream> a vsd:PublishingService ;
2 vsd:hasFeature vsd:transforming .

Listing 10: The Publisher of the Taxi Stream.
6.7. Query

The last step of the lifecycle details how the data, that has been Served using the previous steps in the lifecycle, can
be queried. Looking at the literature on applied stream reasoning, one can notice that the querying steps tend to repeat.
Although the community has not yet identified best practices, it is possible to enumerate a number of frequently used
streaming data transformations:
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Application System Filter Enrich Lift Merge Synthesize
BOTTARI [4] C-SPARQL/SUN 𝜎,TP POIs,Areas Splice Aggregates
SLD [7] C-SPARQL 𝜎,TP Sentiment Splice Aggregates

STAR-CITY [41] custom SPARQL
Map,Weather,
Traffic History OWL 2 EL Splice

Aggregates,
Prediction

CityPulse [52] CQELS 𝜎,TP Sensors ASP Cross
Aggregates,
Traffic Events

Agri-IoT [31] CQELS/C-SPARQL 𝜎,TP Sensors RDFS Splice Aggregates

Optique [33, 35] custom/STARQL 𝜎, 𝜋 Sensors
Configurations DL-Lite𝐴

Cross,
Splice Aggregates

Table 8
Summary of Platforms Querying Features. Legend: [T]riple [P]attern.

• Filter, i.e., remove from the input streams the sub-portion that is not relevant for the analysis;
• Enrich, i.e., add to the input streams contextual data that make the analysis more informative;
• Lift, i.e., raise the input stream’s abstraction level by means of background knowledge;
• Merge, i.e., combine two or more input streams to perform joint analyses;
• Synthesize, i.e., reduce the input streams to a summary by means of aggregations such as count, min, max,

average, quartiles, or analytical function, e.g., Pearson correlation.
Table 8 summarizes the analysis for the selected projects that provided detailed information regarding their Query step.
Finally, to aid comprehension, the section provides a visual representation using the taxi example.

Data streams are collected very close to their source at high-frequency with limited focus on data quality. Therefore,
they are often filled with redundant, noisy, and non-relevant data. Therefore, data cleansing is a necessary step for most
applications. In the mentioned frameworks, filtering is a stateless operation, i.e., it operates on a single stream element
at a time. In these cases, filtering is possible using traditional relational selection (𝜎) or Triple pattern matching. More
sophisticated forms of filtering are possible, e.g., STAR-CITY employs the full expressive of SPARQL to select data
from a view over the input sources. An example of filtering from CityPulse requires removing observations regarding
parking with no vacancy or selecting locations with low congestion levels;
Example 6.7. Listing 11 presents the filtering practice for the taxi examples. From the stream of taxi rides, the filter
removes non-Dropoff events and outputs a DropOffEvent stream.

1 PREFIX taxi: <http://linkeddata.stream/ontologies/taxi#>
2 PREFIX : <http://linkeddata.stream/resource/>

Figure 9: Converting and publishing the sensor stream with TripleWave.
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3 CONSTRUCT { ?d a taxi:DropOffEvent .}
4 FROM NAMED WINDOW <w> ON :taxistream [RANGE PT15S STEP PT5S]
5 WHERE {
6 WINDOW <w> { ?d a taxi:DropOffEvent .}
7 }

Listing 11: An example of Stream Filtering that selects all Dropoff events.

Due to strict latency requirements, it is often a good idea to reduce the information to the minimum when
publishing data streams. However, sometimes is necessary to put items in context by enriching streaming data with
static ones. Indeed, static and slowly-evolving data should not be repeatedly streamed but instead made available with
the stream’s metadata. In CityPulse, Agri-IoT, and Optique, sensors’ positions and rates evolve much slower than
sensors’ observations. Therefore, it is reasonable to keep such metadata separate from the sensors’ measurements and
assume them as static. Sensor metadata enriches streaming observations with geo-spatial context, measure precision,
or units of measure. Moreover, Optique also includes configuration regarding the platform as static metadata. Finally,
BOTTARI and STAR-City show enrichment cases with sensor data joined with POIs, traffic, and weather history.
Example 6.8. One way to enrich the taxi ride stream is by linking the drop-off or pick-up locations with the static city
map, which allows linking the Points of Interest near the drop-off or pick-up locations. The RSP-QL query to perform
this enrichment is shown in Listing 12. The enrichment is done through the variable ?place that occurs both in the ride
stream and in the static city map graph.

1 PREFIX : <http://linkeddata.stream/ontologies/taxi-ontology#>
2 PREFIX fr: <http://linkeddata.stream/ontologies/frappe#>
3 REGISTER RSTREAM : enrichedtaxistream AS
4 CONSTRUCT{ ?rideEvent a :DropOffEvent; :nearPoI ?poi }
5 FROM NAMED <citymap.rdf>
6 FROM NAMED WINDOW <rw> ON :ridestream [RANGE PT30S STEP PT5S]
7 WHERE {
8 GRAPH <citymap.rdf> { ?place :hasPoI ?poi . }
9 WINDOW <rw> {

10 ?rideEvent a :DropOffEvent;
11 fr:location ?place.
12 }
13 }

Listing 12: Enriching the ride stream with the PoI from the city map.
Similar to enrichment, lifting allows to leverage an external context for enhancing the analysis. In particular, logical

reasoning can abstract the data in the stream to higher-level concepts defined in the domain knowledge. This can be
useful for integration purposes. Considering the aforementioned frameworks, neither BOTTARI nor SLD performs any
lifting. On the other hand, STAR-CITY and Agri-IoT adopt standard knowledge representation languages, i.e., OWL
2 EL and RDFS, to define knowledge-based. CityPulse uses Answer Set Programming to perform lifting. Domain
knowledge is captured in form of rules that are leveraged to raise the abstraction level of streaming data and operate on
more complex concepts. Also, Streaming MASSIF employs Description Logics to abstract event types and combines
them using complex event recognition rules. Last but not least, the Optique project employs reasoning to perform query
rewriting rather than lifting, which is more efficient in a streaming scenario due to the permanent nature of continuous
queries. Nonetheless, the final result is comparable.
Example 6.9. In the taxi ride example, reasoning can be used to abstract the rides based on their location of pick-up
or drop-off. So for example, after enrichment, lifting can be used to abstract the rides to either CityCenterDropOff
events or SuburbDropOff events. Listing 13 shows the corresponding RSP-QL query that exploits the taxi ontology,
containing rules such as:

(𝑅1) CityCenterDropOff(?x) ← DropOffEvent(?x), hasPoI(?x, ?poi), CityCenterPoI(?poi)

(𝑅2) CityCenterPickUp(?x)← PickUpEvent(?x), hasPoI(?x, ?poi), CityCenterPoI(?poi)
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(𝑅3) SuburbDropOff(?x)← DropOffEvent(?x), hasPoI(?x, ?poi), SuburbPoI(?poi)

(𝑅4) SuburbPickUp(?x)← PickUpEvent(?x), hasPoI(?x, ?poi), SuburbPoI(?poi)

1 PREFIX : <http://linkeddata.stream/ontologies/taxi-ontology#>
2 PREFIX : <http://linkeddata.stream/resource/> .
3 SELECT ?cityDropOff
4 FROM NAMED WINDOW <ew> ON :enrichedtaxistream [RANGE PT15S STEP PT5S]
5 WHERE {
6 WINDOW <ew> { ?cityDropOff a :CityCenterDropOff. }
7 }

Listing 13: Enriching City drop offs.
All the aforementioned examples present multi-streams scenarios. Indeed, merging streams together is a standard

practice in most commercial streaming applications. Without going in-depth about streaming join algorithms, this
section distinguishes two main approaches to merging, i.e., Splice and Cross. The former consists of the point-wise
union of two-stream without any temporal evaluation. This approach is common when multiple sources are annotated
and converted locally, while data are rerouted within a mixed factory. Multiple streams can be combined to extend
the analysis expressivity. Merging include both splice, i.e., the element-wise union of two RDF streams, and crossing,
i.e., time-based windowed joins. For example, streams from different parking lots can be spliced into one and crossed
with one or more streams that monitor the streets in the last 15 minutes. BOTTARI, SLD, STAR-CITY, and Agri-IoT
focus on splicing, as they first merge all the input streams into a unified RDF stream. On the other hand, CityPulse and
Optique allow performing finer grain analysis crossing only the most recent portions of the stream of interest.
Example 6.10. Listing 14 shows the RSP-QL query for crossing ride and fare streams.

1 PREFIX taxi: <http://linkeddata.stream/ontologies/taxi-ontology#>
2 PREFIX : <http://linkeddata.stream/resource/> .
3 CONSTRUCT { ?g a :RideFareEvent; ?pr ?or; ?pf of.}
4 FROM NAMED WINDOW <rw> ON :bluestream [RANGE PT30S STEP PT5S]
5 FROM NAMED WINDOW <fw> ON :yellowstream [RANGE PT15S STEP PT5S]
6 WHERE {
7 WINDOW <rw> { ?r a :RideEvent . ?r :hasrideID ?id; ?pr ?or}
8 WINDOW <fw> { ?f a :FareEvent . ?f :hasRideID ?id; ?pf ?of.}
9 BIND( UUID() as ?g )

10 }

Listing 14: Crossing ride and fare streams.
Finally, to synthesize the content of a stream, RSP allows the use of Aggregations, which can consist of counting

several occurrences, computing averages, computing minimum/maximum values, etc. Common aggregations are time-
scoped for efficiency reasons, e.g., the average car passing by a certain section within 15 minutes. Moreover, CityPulse
suggests the reporting of composite events. In CityPulse, aggregations are used to compute the average vehicle speed
over the past 5 minutes to enable route planning. Aggregations are an important querying step in RSP, as it allows to
summarize the data that is captured inside a certain window.
Example 6.11. Listing 15 shows an aggregation example for the ride example.

1 PREFIX taxi: <http://linkeddata.stream/ontologies/taxi#>
2 PREFIX : <http://linkeddata.stream/resource/>
3 SELECT (COUNT(?d) AS ?num_dropOff)
4 FROM NAMED WINDOW <w> ON :taxiStream [RANGE PT1H STEP PT5M]
5 WHERE {
6 WINDOW <w> { ?d a taxi:DropOffEvent .}
7 }
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Listing 15: An example of Stream Aggregation that counts all Blue occurrences.

In summary, the query step of the lifecycle is the one with the highest maturity from a system standpoint: BOTTARI
and SLD use the C-SPARQL engine to implement the querying step of the lifecycle. At the same time, AgriIoT,
SpitFire, OpenIot and CityPulse also include a second RSP engine, i.e., CQELS engine, for optimizing latency. Finally,
STAR-CITY and Optique implement custom solutions. The former relies on existing reasoners for ontology stream
reasoning, while the latter leverages ontology-based data access technologies for translating the queries that later
developed into STARQL [32]. Although each project organizes the pipeline independently, we can notice how they all
agree on the design and implementation.

7. Related Work
In this section, we discuss the related work positioning our survey in the stream reasoning literature. At the center

of our investigation, there is the life cycle of stream reasoning applications. Nonetheless, as the title suggests, the
proposal of [66] is the first attempt to formalize the steps. On the other hand, there have been a number of proposals
for non-SLD life cycles.

The closest proposal to [66] is the one by Hyland et Wood [30]. Indeed, Tommasini et al. explicitly reuse the same
steps to stress the generality of the SLD approach. The main difference, which appears in all the traditional Linked Data
life cycles, lies in the continuous nature of each step. Despite Hyland and Wood taking the problem of maintenance
into account while facing dataset updates, the published resources are assumed to be finite. This aspect emerges clearly
in those steps that involve algorithmic work, e.g., Conversion.
Steps of the Life Cycle (underlying the relevant ones): Identify, Model, Name, Describe, Convert, Publish, Maintain.

Auer et al. [3] describe LOD2, i.e., a tool that integrates different resources to support a circular life cycle. Their
proposal contains eight steps. However, the authors recommend that such steps shall not be taken in complete isolation.
The steps, which are listed below, are tailored for handling data that change slowly or not at all. Indeed, the proposal
includes a storage step. On the other hand, both authoring and evolution/repair hint at the possibility of time-varying
linked data. Nonetheless, neither LOD2 nor the described process suggests any continuous processing approach.
Notably, a more detailed introduction to such a life cycle was provided in [48]. However, none of the changes concerns
the steps, but just the resources involved.
Steps of the Life Cycle (underlying the relevant ones): Extraction, Storage, Authoring, Interlinking, Classification,
Quality, Evolution/Repair, Search/Browsing/Exploration.

Villazón-Terrazas et al. [68] describe a life cycle and a set of guidelines for the publication of governmental data.
Similar to Auer et al., their proposal is a circular life cycle. However, their selected steps are more abstract and
further elaborated in while described. It is worth noticing the presence of a unique step, i.e., data cleansing within
the transformation context, which is mentioned to remove the huge amount of noise. Neither in [66] nor in our updated
proposal such step is considered. Indeed, to the best of our knowledge cleansing for Streaming Linked Data has not been
investigated yet. Although the life cycle is tailored for handling static or slowly changing data, a further similarity with
our approach lies in the exploitation step. Indeed, Villazón-Terrazas et al. discuss the role of applications consuming
such data and stress the importance of data discovery.
Steps of the Life Cycle (underlying the relevant ones): Specification, Modeling, Generation (Transformation and
Cleansing), Publication, Exploitation.

Furthermore, we position our work with reference to other surveys in the Stream Reasoning/RDF Stream Processing
context. In particular, to the best of our knowledge, three surveys were published on the topic of SLD over the years.

Margara et al. [43] surveys existing Stream Reasoning processing proposals, starting from concrete application
scenarios to extract the requirements for Stream Reasoning. The survey focuses mainly on different proposals and
provides a research agenda to move forward. It does not provide any details on the other steps of the life cycle, except
for the processing step.

Mileo et al. [45] give an overview of the Stream Reasoning paradigm, focusing on expressivity, scalability,
distribution, and benchmarking of existing processing approaches. The paper also identifies the key application
domains for Stream Reasoning, such as Smart Cities, Web Of Things, and many others. The paper does not provide
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Step Maturity Assumption Contributions Best Practices
Identify High A1 [9, 57] Use Hash IRIs with fragment identifiers

Model Medium A2 [17, 13, 6, 52]
Distinguish Instantaneous and Time-Varying Concepts
Mind the Static-Streaming Gap
Represent Continuous Computations

Shape Low A2 Align Shape and Instantaneous Concept

Annotate Medium A2 [24, 19]
Use Semantic Streams
Avoid Temporal Data Annotations

Describe Medium A1;A2 [67, 52] Use Specialized Vocabularies

Serve High A1;A2 [44, 5, 9]
Use HTTP for metadata and Continuous Protocol for Streams
Use RDF Serialization that simplifies time annotation
Describe known Services that are related to stream

Query Very High [11, 8, 38, 34, 22, 64]

Filter as early as possible
Keep Static Data Small
Little Semantics goes the long way
Opt for Crossing when streams are not synchronized
Use time-based windows to scope advanced practices

Table 9
Discussion Summary.

any details of the other life cycle steps discussed here in the paper, however, it identifies the lack of unified foundations
in Stream Reasoning, hindering its adoption. We believe that a unified life cycle for SLD will increase the adoption of
Stream Reasoning in general.

Dell’Aglio et al. [23] provide a complete overview of the Stream Reasoning domain, comparing different
approaches for entailment and highlighting many open problems and challenges for the future. Interestingly, the survey
touches on the topic of shaping, annotating, and describing streams as open challenges. It does not provide an overview
of solutions that were available at the time of writing (if any) or a broader view of a complete life cycle.

8. Discussion
In this section, we present the observations we collected while analyzing the life-cycle compliance of existing

projects. In particular, we report best practices for the life cycle steps and we highlight the research gaps. Figure 10
depicts the extended proposal once again by colouring each step according to its maturity level and human involvement
in each of the steps.
8.1. Maturity of the lifecycle steps

In our investigation, we discern the presence of two underlying assumptions
• A1: the Web architecture and its extensions are adequate for the distribution and consumption of data streams;
• A2: Semantic technologies, except those related to querying, are sufficient to implement the life cycle steps.
Such assumptions influenced the progress of research on Streaming Linked Data and, thus, the formulation of

research questions and the emergence of best practices. Below we discuss our findings according to A1 and A2.

Figure 10: Streaming Linked Data life cycle.
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Identify - Maturity: High (green). The identification step focuses on naming data streams as Web resources, i.e.,
assigning an IRI. As a consequence of A1, HTTP IRIs are adopted for stream resource identification. This emerges
also in state-of-the-art proposals [9, 57]. In these regards, the best practice is to Use Hash IRIs with fragment identifiers,
which ensures that the stream content representation is directly associated with the stream resource itself. We believe
that relaxing A1 would not substantially impact such steps, except for extended URI schemes. Therefore, we consider
the maturity level high.
Model - Maturity: Medium (yellow). The modelling step focuses on the knowledge representation efforts concerning
SR/SLD applications. A2 directly impacts such a step, which relies on knowledge representation languages like RDFS
and OWL, and recently temporal logics [69]. We identified the following best practices when A2 holds: (i) Distinguish
Instantaneous and Time-Varying Concepts: Instantaneous concepts are valid at a specific point in time, e.g., a sensor
observation. On the other hand, time-varying concepts change over time. They represent the two conceptual sides of
a streaming application that operate on the elements in a stream. (ii) Mind the Static-Streaming Gap: When modeling
the application domain it is important to take into account links between static and streaming data. Such links should
be time-agnostic and ease tasks like streaming data enrichment and augmentation. (iii) Representing Continuous
Computations: Identifying continuous computations allows for characterizing the streaming application workflow.
Moreover, they link instantaneous and time-varying concepts, enabling provenance tracking for streaming analyses
and transformations. Relaxing A2 implies the investigation of continuous knowledge representation languages that are
able to incorporate continuous computations in the language semantics. To the best of our knowledge, such languages
were not yet proposed. Nor a knowledge engineering method that is suitable for representing ephemeral knowledge.
Therefore, we consider the maturity level medium.
Shape - Maturity: Low (red). The shaping step concerns the choice of a data model. Currently, little work has been
done which directly derives from A1, i.e., RDF objects like triples, graphs, and datasets are used within the SLD context.
We recommend to Align Shape and Instantaneous Concept. Notably, the stream shape directly impacts different aspects
of the ingesting, e.g., parsing and filtering. Aligning it with the instantaneous concepts simplifies the design of efficient
querying steps. Without relaxing A2, the introduction of recent work such as SHACL are being investigating by the
SR community. Therefore, we consider the maturity level low.
Annotate - Maturity: medium (yellow). The annotation step focuses on converting non-RDF streams into RDF ones to
increase interoperability. On the one hand, such a step partially relaxes A2 as a minimal extension of RDF is adopted for
SLD. However, such an extension does not impact RDF semantics but introduces a simple form of punctuation to order
RDF objects. In addition, as for Step 1, mapping languages like R2RML/RML are designed for static data conversion.
Therefore, we identified the following best practices when A2 holds: (i) Use Semantic Streams: like for Linked Data,
the recommendation is to adopt semantic streams to foster data sharing and integration. (ii) Avoid Temporal Data
Annotation: due to the limitations of existing mapping languages, it is recommended to annotate element by element
or adopt a micro-batching approach to ensure the termination of the conversion process. Relaxing A2 would call for
novel mapping languages that capture the continuous aspect of the annotation process. A step towards this direction is
the work of Calbimonte et al. [15] that extends the mapping language to incorporate windows. However, they propose
a syntactic extension tailored for rewriting. Thus, we rank the maturity level as medium.
Describe - Maturity: medium (yellow). The description step covers the need for extensive and interoperable metadata.
Both assumptions directly impact such a step, as the access to data stream metadata follows traditional interaction
patterns of the Web (client/server). Moreover, the focus has been on static stream metadata (e.g., licensing and access).
Nonetheless, some stream metadata are time-varying, e.g., stream rate in the last 5 minutes. Under the aforementioned
assumptions, it emerges the recommendation to Use Specialized Vocabularies, e.g., VoCaLS or SAO. Stream-specific
metadata allows to correctly interpret the streaming data semantics, improving discovery. Moreover, they simplify the
automation that concerns streaming linked data access. Relaxing the assumptions would allow imagining alternative
Web representations for streaming data. Currently, this speculation is beyond the scope of this survey. Moreover,
research in this direction is active. In summary, the maturity level is medium.
Serve - Maturity: high (green). The serving step discusses how streaming data sharing, including their metadata,
is done in practice. The emerging assumptions directly influence such a step. Indeed, the existing proposals adopt a
client/server interaction pattern, except for web-socket-based communication (A1). Moreover, standard data formats
are adopted for sharing data streams on the web. Under such assumptions, we identified three best practices: (i) Use
HTTP for metadata and Continuous Protocol for Streams: When publishing Web streams, it is essential to guarantee the
reactivity of the stream content consumption as well as the backward compatibility of metadata retrieval. (ii) Use RDF
Serialization that simplifies time annotation: in the absence of a standard RDF serialization, adopt those that simplify
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Step Actionable Decentralization Distribution Dependency (LW) Interoperability (RW)
Name (S0) Human Yes NotApp High High
Model (S1) Human Yes NotApp High Medium
Shape (S2) System Possible No Medium Low
Annotate (S3) Human + System Possible No Medium Medium
Describe (S4) System + Human Possible NotApp Low High
Serve (S5) System Yes Yes High Medium
Query (S6) Human + System Envisioned Yes Low High

Table 10
Summary of System/Human perspective of the Lifecycle steps. Legend: [L]eft-[Wise]; [R]ight-[Wise]; [Not App]licable.

the temporal annotation, i.e., JSON-LD and N-Quads. (iii) Describe known Services that are related to stream: Adding
metadata about the services that are related to the stream helps contextualize the origin of the provided information and
track the data’s provenance. Relaxing assumption A1 suggests rethinking an interaction pattern tailored for streaming
resources. For instance, content negotiation could be extended to obtain a streaming representation of a certain resource.
Relaxing A2 stresses the work on data formats. Exciting work is ongoing in the stream processing community, e.g.,
Avro24, which hasn’t been discussed for SLD. Despite this possibility, the work on serving Web streams is quite mature.
Thus, we categorize the maturity of such a step as high.
Query - Maturity: very high (dark green). The last step of the life cycle focuses on the consumption and manipulation
of the published RDF streams. As indicated above, research in this area does not proceed under A2. Indeed, most
existing proposals for processing RDF Streams include an extension of SPARQL or other semantic technologies.
Therefore, we identified best practices that apply despite the holding of A2. (a) Filter as early as possible: Filtering
should precede other transformations to reduce the amount of data to transfer. (b) Keep Static Data Small: To avoid
performance loss in case of enrichment, keep the static data small and, whenever necessary, apply a cleansing technique
to avoid errors. (c) Little Semantics goes the long way: Query rewriting is possible under certain conditions that limit
the expressivity of the knowledge representation language. However, it gives substantial advantages in the streaming
context, due to the long-lasting nature of continuous queries. (d) Opt for Crossing when streams are not synchronized:
When the streams have different rates window-based merging is preferred as it regularizes the output. (e) Use time-
based windows to scope advanced practices: When it comes to Synthesizing, using window-based computation can
reduce the computational effort. In practice, window-based processing trades latency for throughput, reducing the
performance stress on the system.
8.2. Human involvement, decentralization and distribution

Table 10 summarizes some horizontal aspects of the lifecycle; in particular, it helps us elaborate on the nature of
the step, i.e., if it is either human-based or system-based, the role of decentralization and distribution.

The first column of Table 10 summarizes the actionability of each step. As represented by the human/gear icons
in Figure 10, Step S5 is the only completely automated step, as it relies on internet protocols. Steps S0, S1, S4 and S6
require some human intervention. While S0 and S1 are completely manual, in S3, S4, and S6, human intervention
enables the computation. For instance, in steps S3 and S6, the mappings and the queries shall be written by an
engineer. Moreover, in step S4, metadata can be first extracted, but their integration requires human-based analysis.
Regarding decentralization, Steps S0, S1, and S5 directly depend on the Web technological stack that guarantees
decentralized approaches. At the same time, decentralized approaches for RSP have been envisioned in the stream
reasoning context [65, 62, 14], for, Shaping, Annotation, and Description steps we can argue that is feasible yet not
evident from the analysed literature. Regarding distribution, it does not seem applicable to human-based steps S0, S1,
and S4. At the same time, we could not find evidence for Steps S2 and S2. Instead, S5, given its often related to IoT
protocols, is known to work within a distributed environment; similarly, systems for distributed RSP query exist, e.g.,
CQELS Cloud [50] and Strider [54], but they were not directly involved in the selected projects.

Table 10 also summarises our findings regarding the dependency and interoperability between neighbour steps.
Notably, given the cyclic nature of any lifecycle, we consider S6 and S1 neighbour steps too.

24https://avro.apache.org/
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Figure 11: Discovery, Access, and Reboot.

8.3. Interoperability and dependencies between the lifecycle steps
For what concerns interoperability between the lifecycle steps, we study pairs of the lifecycle steps right-wise:

(S0-S1): The naming step (S0), with the possible exception of an extended protocols scheme like a WebSockets,
interoperates well with the technologies used in the modelling steps (S1), which are part of the Semantic Web stack.
(S1-S2): as we presented in Section 6.3, if the streams have a schema/model, the shaping step is reduced to identifying
the subset to publish. Instead, if the streams are schema-free, shaping requires determining the smallest stream unit, i.e.,
RDF molecules. Although this integration requires human integration, it is currently feasible. (S2-S3): Being a subset
of the streaming model, RDF molecules are implicit in the definition of the annotation rules. However, we are unaware
of a study investigating them in depth, for example, relying on shape validation languages. Therefore, we cannot justify
the compatibility more than low. (S3-S4): Although none require the annotation phase of the data sharing principles,
we observe a medium interoperability level between annotation languages and tools and description vocabularies,
e.g., both VoCaLS and SAO have properties to link mapping files for provenance tracking. (S4-S5): From our analysis
emerges that S4 and S5 are highly interoperable. Indeed, metadata are essential for consumers to obtain the information
to access the data, which are well covered by existing vocabularies (SAO and Vocals) and APIs such as RSP4J and RSP
Services. (S5-S6): The seminal works like on TripleWave granted high interoperability between serving and querying.
Moreover, the recent advancement in the Web stack with reactive protocols increases interoperability even further.
(S6-S0): While tools like the RSP Sevices allow the integration of provisioning protocols and query answering, they
are not universally used to connect RSP systems (medium). However, every RSP engine respects the naming convention
for sharing the data results. This is essential to guarantee the continuity of the life cycle.

For what concerns dependency between the steps, we navigate the lifecycle left-wise, e.g., from S6 to S0. (S6-S5):
Arguably, query answering does not directly depend on the protocols used to provide the data. Although the protocol
choice may substantially impact performance, under assumption A1, the Web architecture strives for decentralization,
not optimisation. Therefore, the steps remain loosely coupled. (S5-S4): The description and serving steps are tightly
coupled. In particular, S5 highly depends on S4 as shown by Barbieri et Della Valle [9] and by Fernandez et al [26].
Indeed, both works show how providing access-related metadata can enable data consumption. (S4-S3): Although
there is not a strong dependency between S3 and S4, as the annotation step remains optional, we remark that the
medium interoperability level between annotation languages and tools and description vocabularies may change such
a situation in the future. (S3-S2): although the two steps are tightly-coupled, at the current stage we cannot observe
a strong dependency of the annotation step on the shaping one. Indeed, the latter is often implicit, which makes it
difficult to carry out such an analysis. (S2-S1): as we previously discussed, the shaping step is currently focusing on
the minimal transmittable unit. This is fairly dependent on the presence of a schema/model for the data streams, as
they set the vocabulary to use in the definition of the RDF molecule. (S1-S0): the modelling step depends on URI for
implementing the unique name assumption. Thus, it is tightly coupled to S0. (S0-S6): Finally, we conclude the cycle
by highlighting that the query results should be named accordingly with the conventions. Therefore, the naming step
depends on the query one when results are shared. This is possible using additional interfaces like RSP Services or
with custom implementations.
8.4. Gaps in the lifecycle

Last but not least, the gap between serving and querying in Figure 10 is worth noticing. Figure 11 zooms into the
life cycle to provide a better perspective on the grey area in the last two steps. Indeed, data stream discovery and Access
are two intermediate steps that separate publication and querying. Despite their importance within the SLD life cycle,
most of the research that has been conducted in these two areas focuses on the publisher’s perspective (see Describe and
Serve steps of the life cycle). In practice, data stream discovery and access are in their infancy and still require extensive
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ad-hoc work for each use case. For these reasons, they are out of the scope of this paper, which aims at presenting only
consolidated research work. On the one hand, the step following data querying remains undefined. Indeed, querying
often leads to analyses powered by sophisticated data visualization. The literature on this topic is extensive, and other
surveys have discussed best practices. Thus, they are also out of scope. On the other hand, publications’ best practices
like those by Auer et al. [3] stress on the "cyclic" aspect of the life cycle. Indeed, applications processing Streaming
Linked Data shall also publish their analysis results. Such a vision appeared few times in the literature [65, 14, 62].
Stuckenschmidt et al. [62] propose, among other approaches, to push the expressivity level of SR using networks of
stream reasoners. Calbimonte et al. [14] do a step toward such an idea by leveraging Linked Data Notification as a
means for P2P communication across RSP engines. Finally, Tommasini et al. [65] lift from the notion of an actor to
the one of an intelligent agent, closer to the original vision of the Semantic Web. However, none of such proposals has
been currently integrated into a stream reasoning application.

We note that the new lifecycle results from a bottom-up investigation of the existing projects, exposing some of
the limitations of the original lifecycle (which resulted from a top-down approach). The new lifecycle, therefore, better
matches and represents the existing projects. Depending on the maturity of each step, the evidence is reflected in
the various surveyed projects. For example, the new lifecycle changes the order of Describe and Annotate steps, for
which we see evidence in the projects that have data on both steps. The introduction of the Shaping step, which is low
in maturity, is backed by projects that shape the data to speed up querying and processing, such as the OpenSense2
project. By surveying the projects and defining the new lifecycle based on the results, i.e. a bottom-up approach, the new
lifecycle is grounded in reality yet opens opportunities for further research in the SLD/SR community by identifying
the maturity of each step.

9. Conclusion and Future work
In this paper, we propose an updated version of the life cycle for SLD. A complete life cycle for SLD is necessary as

the publication of dynamic data on the Web is rapidly growing. The need for guidelines on sustainably producing and
efficiently consuming data streams is increasing. An initial version of such a life cycle has been proposed in previous
research [66] and further updated in this paper. This update of the original life cycle has been proposed by surveying
existing SLD applications and investigating how they aligned with the initial life cycle. Identifying that the initial
life cycle did not fully capture the design of existing applications led to two crucial changes: the reordering of the
stream Description step and splitting up the Convert step in a Shape and Annotate step. Next to the updates on the life
cycle, this paper discussed each step in detail, explaining state-of-the-art solutions and best practices for each step. In
particular, we drill down into the details of the querying step, which was neglected in the initial life cycle. Furthermore,
we introduced a running example based on the DEBS Grand Challenge 2015 that is used to exemplify the best practices
of each step in the life cycle. The life cycle and guidelines can serve as a blueprint for future SR/SLD applications.
In this paper, we propose Querying as the last step of the lifecycle. However, the interest in processing steps beyond
querying is growing, e.g. learning approaches [39]. In future work, we also wish to research the inclusion of these
inductive processes in the lifecycle.

In conclusion, we encourage the SR community to further investigate the Stream Discovery and Access steps, which
were left out in this survey, as research in these areas is still in its infancy. This will enable to fully realize our vision
of an SLD life cycle. Adopting a life cycle for SLD brings us closer to a unified method to share and consume data
streams on the Web and realize the Stream Reasoning vision.
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