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Abstract

This study aimed to monitor the course of liver regeneration by multiparametric magnetic-

resonance imaging (MRI) after partial liver resection characterizing Small-for-Size Syn-

drome (SFSS), which frequently leads to fatal post-hepatectomy liver failure (PLF).

Twenty-two C57BL/6 mice underwent either conventional 70% partial hepatectomy

(cPH), extended 86% partial hepatectomy (ePH) or SHAM operation. Subsequent MRI

scans on days 0, 1, 2, 3, 5 and 7 in a 4.7T MR Scanner quantified longitudinal and trans-

verse relaxation times, apparent diffusion coefficient (ADC) and the magnetization-transfer

ratio (MTR) of the regenerating liver parenchyma. Histological examination was performed

by hematoxylin-eosin staining. After hepatectomy, an increase of T1 time was detected

being larger for ePH on day 1: 18% for cPH vs. 40% for ePH and on day 2: 24% for cPH vs.

49% for ePH. An increase in T2 time, again greater in ePH was most pronounced on day 5:

21% for cPH vs. 41% for ePH. ADC and MTR showed a decrease on day 1: 21% for ePH

vs. 13% for cPH for ADC, 15% for ePH vs. 11% for cPH for MTR. Subsequently, all MR

parameters converged towards initial values in surviving animals. Dying PLF animals exhib-

ited the strongest increase of T1 relaxation time and most prominent decreases of ADC and

MTR. The retrieved MRI biomarkers indicate SFSS and potentially developing PLF at an

early stage, likely reflecting cellular hypertrophy with extended water content and concomi-

tantly diluted cellular components as features of liver regeneration, appearing more intense

in ePH as compared to cPH.
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Introduction

Liver resection is often the only chance of cure in patients with liver malignancies such as

hepatocellular carcinoma or colorectal liver metastases [1]. In the last years, techniques of liver

resection, also termed as partial hepatectomy (PH), have been significantly refined with an

increasing number of patients being amenable to curative resection [2]. In case of extended

PH (>70% resected liver volume) patients may develop postoperative, often fatal complica-

tions such as post-hepatectomy liver failure (PLF) due to insufficient volume or insufficient

function of the remnant liver, also known as small for size syndrome (SFSS). The incidence of

PLF after extensive PH is estimated to reach up to 9% with a mortality of up to 5% [3]. SFSS is

not uniformly defined and the underlying molecular mechanisms are not fully understood [1].

The prospect of liver recovery after PH is therefore difficult to judge and the currently applied

prognostic criteria diagnosing SFSS and predicting its exacerbation towards PLF are mainly

based on different grades of hepatic encephalopathy and on blood parameters such as pro-

longed prothrombin time, hyperbilirubinemia and hypoalbuminemia determined on consecu-

tive postoperative days (PODs) [1, 3].

Magnetic-resonance imaging (MRI) is typically applied for pre-operative planning of the

treatment strategy, mostly to diagnose the type of tumors, compute liver volume and predict

the size of the liver remnants [4]. However, magnetic resonance provides not only excellent

intrinsic soft-tissue contrast for 3D liver segmentation but offers also a variety of imaging

biomarkers allowing for a deeper understanding of the underlying pathophysiology. The tis-

sue magnetic relaxation times, T1 and T2, reflect various factors such as macromolecular

tissue composition, as well blood and water content, and are therefore fundamental for the

contrast seen in an MRI examination. In the last years, diffusion-weighted imaging has

become increasingly important in liver imaging, as the restriction of passive water diffusion

described by apparent diffusion coefficient (ADC) maps may be indicative of a malignant

liver tumor [5]. The magnetization transfer is a further contrast, which is independent of

the classical relaxation properties, measuring the interaction of water-molecules with the

macromolecular environment, typically described by the magnetization-transfer ratio

(MTR).

The elucidation of the inherent mechanisms of SFSS and PLF as well as the development of

non-invasive molecular imaging techniques to monitor the early post-operative patient recov-

ery and to diagnose impending SFSS might be of clinical importance. The purpose of the pres-

ent study was twofold: (a) to characterize SFSS and (b) to provide early discriminators for

SFSS and its developing complications such as PLF using non-invasive multimodal MRI tech-

niques in mouse models of conventional partial hepatectomy (cPH) and extended partial hepa-

tectomy (ePH), the latter representing the animal model of SFSS.

Material and methods

Animal protocol and study design

The study on C57Bl/6 mice was approved by the Veterinary Office of the Canton Zurich

(license no. 131/2011). Mice (n = 57; 25–32 g) at the age of 8–10 weeks were housed in the ani-

mal facility of our hospital with a 12-hour day-night cycle. All animals received care in strict

accordance to The Principles of Laboratory Animal Care (promulgated in 1985 and most

recently revised in 1996). Animals were kept under standardized conditions in accordance

with the institutional animal care guidelines with unlimited access to standard diet and water.

Research staff conducting the experiments has received special education and training accred-

ited by the Federation of Laboratory Animal Science Associations (FELASA).
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The study design comprised essentially two cohorts of mice. One cohort of mice was dedi-

cated to MRI assessment after cPH, ePH or SHAM operation in a longitudinal study (nMRI =

22), the other cohort, requiring tissue harvest for histological examination of the liver paren-

chyma was hence examined in a cross-sectional study after cPH, ePH or SHAM operation

(nHistology = 36), providing essentially the histology of liver regeneration corresponding to each

time point of the MRI investigation. Fig 1 depicts the study flowchart of the entire cohort.

Surgery

Surgical anaesthesia, analgesia and postoperative care. For analgesia, 0.1 mg/kg body-

weight (BW) buprenorphine (Temgesic, Indivior, UK) was administered subcutaneously 30

Fig 1. Study flowchart of all animals assigned to assigned either MRI experiments or histology. The study design comprised essentially two

cohorts of mice. One cohort of mice was dedicated to MRI assessment after cPH, ePH or SHAM operation in a longitudinal study (nMRI = 22),

the other cohort, requiring tissue harvest for histological assessment of the liver parenchyma corresponding to each time point of the MRI

investigation was examined in a cross-sectional study after cPH, ePH or SHAM operation (nHistology = 36).

https://doi.org/10.1371/journal.pone.0192847.g001
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min prior start of any surgical intervention. Subsequently, anaesthesia was induced by 5% (v/

v) isoflurane supplemented oxygen (Attane, Minrad I, Buffalo, NY) in an enclosed container.

After applying eye ointment and shaving of the abdomen, animals were fixed for surgical

intervention.

During surgical intervention, anaesthesia was maintained with 2–4% (v/v) isoflurane sup-

plemented oxygen administration via small nose cone. Anaesthetic depth was monitored by

clinical parameters such as respiratory rate and inhalation depth, colour of mucous mem-

branes and inner organs and was adjusted accordingly by the isoflurane concentration. Having

completed the surgical procedure, animals recovered in a warmed cage and if needed, bupre-

norphine (0.1 mg/kg BW, s.c.) was readministered within 3 hrs, thereafter analgesia with

buprenorphine (0.1 mg/kg BW, s.c.) was repeated every 8 hrs on POD 1 and 2.

Afterwards, the animals were carefuly monitored at least once a day for the duration of

the experiment i.e. until POD 7 for the cohort undergoing MRI (nMRI = 22) examination

respectively until POD 1, 2, 3, 5, 7 (nHistology = 35) for the cohort dedicated to tissue harvest for

histological examination. However, signs of moderate to severe clinical pain, distress and dis-

comfort unalleviated by analgesia, weight loss of� 15% of original body weight, mutilation of

the site of operation, jaundice and behavioral changes resulted immediately to a premature ter-

mination of the experiment.

Conventional 70% Partial Hepatectomy (cPH). After a midline laparotomy on mice

undergoing 70% cPH (nMRI = 8, nHistology = 15), medial and left lateral liver lobes were dis-

sected out of their ligaments. Then, the cystic duct was ligated with 8–0 polypropylen suture

(Prolene, Ethicon, Cincinnati, OH, USA) and the gallbladder removed. Subsequently, the left

and right medial lobes and the left lateral lobe were ligated with 6–0 silk suture (Look SP114 6/

0 Silk Spool, Hospeq, Miami, FL, USA) and resected. The remnant liver part corresponded to

the right and caudate lobes. Finally, the abdomen was closed with interrupted 5–0 polypropy-

len sutures (Prolene, Ethicon).

Extended 86% Partial Hepatectomy (ePH) and Post-Hepatectomy Liver Failure

(PLF). After a midline laparotomy on mice undergoing 86% ePH (nMRI = 11) (nHistology = 15),

the liver was freed from ligaments and portal tributaries to the medial, right inferior, left and

caudate lobes were ligated individually with 8–0 polypropylen sutures (Prolene, Ethicon). Cho-

lecystectomy was performed after ligation of the cystic duct with 8–0 polypropylen sutures (Pro-

lene, Ethicon). Subsequently, the deportalized liver lobes were ligated with 6–0 silk suture (Look

SP114 6/0 Silk Spool, Hospeq) and resected. The remnant liver part corresponded to the right

upper lobe. The abdomen was closed with interrupted 5–0 polypropylen sutures (Prolene, Ethi-

con). However, 4 animals died due to PLF (nMRI = 4) (nMRI = 2 death on day 2, nMRI = 2 death

on day 3) which constituted the PLF group.

Taken together, animals after 86% ePH constituted two study groups, namely the ePH

group (nMRI = 7), representing SFSS and the PLF group (nMRI = 4), suffering a fatal PLF due to

SFSS (S1 Fig).

SHAM operation (n = 3). Mice (nMRI = 3) (nHistology = 5) underwent a midline laparot-

omy. Subsequently, medial- and left lateral liver lobes were freed from ligaments and the abdo-

men was closed with interrupted 5–0 polypropylen sutures (Prolene, Ethicon).

Histology

A separate cohort of mice (nHistology = 35) was sacrificed for histological examination of the

liver remnant on PODs 1, 2, 3, 5 and 7 after cPH respectively ePH with three animals for each

time point, and after SHAM with one animal for each time point. Liver tissue samples of the

right lobe were immersion fixed in 4% buffered formalin (24 h, 20˚C), dehydrated through a
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series of graded alcohols, cleared in Histo Clear (Brunschwig, Basel, Switzerland), impregnated

with liquid wax (Paraplast, Leica Biosystems, Muttenz, Switzerland) and cut into 3 μm tissue

sections. Specimens were subsequently stained with hematoxylin-eosin (H&E). For immuno-

histochemistry against phosphorylated Histone 3 (pH3), sections were transferred to Target

Retrieval Solution (K8004, Dako Denmark A/S, Glostrup, Denmark, 20 min, 97˚C) within a

Dako PT Link (PT100/PT101, Dako Denmark A/S) for the 3-in-1 procedure i.e. deparaffiniza-

tion, rehydration, and heat-induced epitope-retrieval (HIER) of formalin-fixed, paraffin-

embedded tissue sections. A standard IHC staining protocol was performed on a Dako Auto-

stainer Link48 Instrument (Dako Denmark A/S) for pH3 using a rabbit polyclonal anti-pH3

antibody (Anti-H3S10p, 06–570, Merck Millipore, Germany) working dilution 1:50 in Dako

Antibody Diluent (S2022, Dako Denmark A/S, 20min, 20˚C). (06–570, Merck Millipore, Ger-

many). The visualization system consisted of the Dako EnVision™ Rabbit/HRP/DAB system

and Hematoxylin as counterstain. After IHC staining the tissue specimens were dehydrated,

permanently mounted and microscopically evaluated.

Magnetic resonance imaging

The animals underwent MRI scans measuring longitudinal and transverse relaxation times,

diffusion properties and magnetization transfer ratio. The liver regeneration was further

assessed by MR liver volumetry. For that purpose, mice were placed in prone position on a

respiratory sensor (SA Instruments, Stony Brook, NY, USA) located in a plastic holder with

nose cone, providing air supplemented with 1.0–1.5% isoflurane (Attane, Minrad I, Buffalo,

NY), and covered by a warming pad to maintain the body temperature. Ophtalmic ointment

was used averting harmful dryness of the eyes while scanning. Experiments were performed

on a 4.7T small animal MRI system (Pharmascan 47/16 US; Bruker BioSpin MRI GmbH,

Ettlingen, Germany) with a gradient strength of 375 mT/m and a slew rate of 3375 T/m/s

equipped with a linear polarized hydrogen whole-body mouse transmit-receive radiofre-

quency coil. The measurements were performed on the day before surgery and then on PODs

1, 2, 3, 5 and 7.

After a gradient-echo localizer scan in three directions, the imaging protocol included an

axial and sagittal T2-weighted, two-dimensional fast spin-echo sequences (2D-RARE) with

time-to-echo (TE) = 33ms/ time-to-repetition (TR) = 2500 ms, number of averages (AVG) =

1, receiver bandwidth (BW) = 50000 Hz, echo train length = 8, echo spacing = 11.0 ms, field of

view (FoV) = 40 x 40 mm, slice thickness = 1 mm, matrix 256 x 256, voxel size = 0.156 mm x

0.156 mm x 1 mm were recorded to cover the entire abdomen in 20 slices. The duration of the

scan was 1 min 20 sec. All settings of the following MRI experiments are also listed in S1

Table.

Liver volumetry. For volumetric assessment of liver regeneration, a three-dimensional

fast low angle shot magnetic resonance imaging (3D-FLASH) sequence was applied with fol-

lowing settings: TE = 2.6 ms, TR = 15.0 ms, AVG = 4, flip angle (FA) = 20˚, BW = 100 000 Hz,

FoV 30 x 30 mm, slice thickness = 22.5 mm, acquisition matrix 256 x 256 x 96, voxel size 0.117

mm x 0.117 mm x 0.234 mm, scan time 20min 21s.

Relaxometry. Longitudinal relaxation times (T1 times) were measured using a respiratory

triggered two-dimensional segmented inversion-recovery true fast imaging with steady preces-

sion (2D-trueFISP) sequence with TE = 2.25 ms, TR = 4.5 ms, n = 16 segments resulting in 60

inversion times TI starting with TI1 = 90 ms and TIn = TI1 + n�144ms, FA = 60˚, AVG = 4,

BW = 81521.7 Hz, echo spacing = 2.2 ms, FoV = 30 x 30 mm, slices = 1, slice thickness = 1.5

mm, matrix = 128 x 128, voxel size = 0.234 mm x 0.234 x 1.5 mm. Scan duration was calculated

with approximately 10 min 40s, but slightly deviated due to respiratory triggering.
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Transverse relaxation times (T2 times) were determined by a 2D-RARE sequence with 5

different echo times and 7 repetition times: TE = 11, 33, 55, 77 and 99 ms, TR 118, 258, 400,

800, 1500, 3000 and 4000 ms, RARE factor = 2, AVG = 2, BW = 480769 Hz, FoV 30 x 30 mm,

slices = 10, slice thickness = 1.5 mm, matrix size 128 x 128, voxel size = 0.234 cm x 0.234 cm x

1.5mm. The acquisition time was 7 min 12 sec. Due to technical problems, one 86% PH animal

could not be measured on day 5 using this sequence, hence opted out of the study and there-

fore T2 relaxation was assessed on 86% PH with nMRI = 6.

Diffusivity. Water diffusion was assessed using a respiratory triggered diffusion-weighted

spin-echo echo-planar imaging sequence with fat saturation and the following settings:

TE = 30 ms, TR = 3000 ms, AVG = 8, fat suppression prepulse, BW = 250 000 Hz, number of

b-values 2 (0, 800 s/mm2), field of view (FoV) 30 x 30 mm, slices = 10, slice thickness = 1.5

mm, matrix size 128 x 128, voxel size = 0.234 x 02.34 x 1.5 mm. Scan duration was calculated

with approximately to 10 min 40s, but deviated due to respiratory triggering.

Magnetization transfer. Magnetization-transfer (MT) was measured with two three-

dimensional spoiled gradient-echo sequences (3D-FLASH). Sequence parameters were:

TE = 2.65 ms, TR = 18.4 ms, AVG = 8, FA = 12˚; BW = 100 000 Hz, FoV 30 x 30 mm, slice

thickness = 15 mm, acquisition matrix 128 x 128 x 10, voxel size = 0.234 mm x 0.234 mm x 1.5

mm. The scan time amounted to 2 min 21 sec. This sequence was acquired with a MT pre-

pulse (Gaussian pulse shape applied for each TR, off-resonance frequency 1500 Hz, flip angle

1200˚, magnetization transfer pulse length = 10.96 ms, magnetization transfer pulse BW = 250

Hz, interpulse delay 0.01 ms, no dummy pulses). A reference scan for MTR quantification was

acquired using the same sequence without the MT prepulse.

Quantification of MR imaging biomarkers

For all fitting procedures, non-linear least square fits to the signal intensities were performed

based on the Levenberg-Marquardt-Algorithm (Matlab “lsqcurvefit”) in a pixel-by-pixel

manner.

For calculation of T1 time, the signal intensities of the inversion-recovery trueFISP

sequence were fitted to the equation

S TIið Þ ¼ S0 1 � INV � e�
TIi
T1�

� �
ð1Þ

with INV indicating the ratio between the initial signal S0 and the steady state signal and T1

being calculated from

T1 ¼ T�
1
cos

a

2
INV � 1ð Þ ð2Þ

according to a Schmitt et al. [6]

The T2 time was calculated from the RARE sequence by fitting the equation

S TEið Þ ¼ S 0ð Þ � e�
TEi
T2 þ N ð3Þ

to the signal intensities of the different echo time TEi with N meaning the noise.

The apparent diffusion coefficient (ADC) was calculated from the logarithmic signal inten-

sities

ADC ¼
1

b
ln

Sðb0Þ

SðbÞ

� �

ð4Þ
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with S(b) meaning the signal intensity at the b-value of 800 s/mm2, and b0 the b-value = 0 s/

mm2.

The MTR values (in %) were calculated from the MT sequences with and without MT pre-

pulse in the following manner:

MTR ¼
M0 � Msat

M0

ð5Þ

with M0 meaning the signal intensity without MT prepulse and Msat the signal intensity with

MT prepulse.

Definition of a region-of-interest (ROI)

Applying custom-written Matlab scripts (MathWorks, Natick, MA, USA) a region-of-interest

(ROI) analysis was performed with manually drawn RoIs on anatomical images of the respec-

tive sequences and subsequently copied to the parametrical maps. Three independent polygo-

nal ROIs were drawn in the right lobe under avoidance of large vessel structures within the

parenchyma and representative ROIs are shown in Fig 2. The image noise was determined in

a ROI positioned outside the body in the upper left hand corner in the background of the

image and corrected by squared subtraction according to Gudbjartsson [7].

For the volumetric assessment of liver regeneration, the liver contour was manually

retraced on each of the 0.23mm-thick slices using ImageJ (http://imagej.nih.gov/) [8]. The

sum of all liver areas multiplied by the slice thickness retrieved the liver volume. The liver vol-

ume was normalized to its original volume prior surgery and is therefore presented as relative

liver volume in percent.

Statistical evaluation and image post-processing

For descriptive analysis, mean values and standard deviations of the liver remnant volume, the

T1 and T2 times, ADC values and MTR were calculated and numeric data are presented as

mean ± standard deviation. Statistical evaluation of the acquired parameters between the study

groups was performed by two-way analysis of variance (ANOVA) with Bonferroni correction

using GraphPad Prism 5 software (GraphPad Software, Inc., La Jolla, CA, USA). Assessing the

correlation between the liver volume and the retrieved MR parameters for the regenerating

Fig 2. Typical ROI drawing is depicted as red areas. Three independent polygonal ROIs were drawn in the right lobe under avoidance of large macroscopic vessels.

The contour of the liver is indicated by a yellow line.

https://doi.org/10.1371/journal.pone.0192847.g002

Prediction of small for size syndrome after extended hepatectomy by multimodal magnetic resonance imaging

PLOS ONE | https://doi.org/10.1371/journal.pone.0192847 February 14, 2018 7 / 19

http://imagej.nih.gov/
https://doi.org/10.1371/journal.pone.0192847.g002
https://doi.org/10.1371/journal.pone.0192847


liver, a Pearson correlation was carried out using SPSS Software vers. 25 (IBM Corporation,

Armonk, NY, USA) and GraphPad Prism 5. Generally, a P-value of less than 0.05 was consid-

ered significant. All MR parameters obtained for animals after ePH have been further analyzed

by binomial logistic regression accommodating the MR parameters as quantitative, indepen-

dent and predictive variables and the death of the animal by PLF as dependent dichotomous

variable by using SPSS.

Results

Extended hepatectomy is associated to cellular hypertrophy and lipid

accumulation

On representative H&E stains of paraffin embedded tissue sections, there are notable morpho-

logical alterations over the time course of liver regeneration, but also within the two study

groups, cPH and ePH on PODs 1, 2, 3, and 5 (Fig 3). Throughout the process of early liver

regeneration, the liver parenchyma appears homogenous without any visible signs of necrosis.

Following hepatectomy, hepatocytic cytoplasm in the liver remnant appears swollen, indicat-

ing a cellular hypertrophy in both groups, due to a notable infiltration of fluids and lipids in

the hepatocytes. This phenomenon is most pronounced on day 1 after cPH and on days 1 and

2 after ePH (Fig 3). Subsequently, the steatotic, vacuolated structure of lipid droplets within

hepatocytes remains visible on day 2 after cPH and on day 3 after ePH (Fig 3). The representa-

tive immunohistochemical images depict already pH3 positive hepatocytes on POD 2 for cPH,

but no positive hepatocytes for ePH at this time point and in contrast to cPH, the number of

positive, thus mitotic hepatocytes is much higher in the ePH group on POD3 (S2 Fig). There

are hardly any positive hepatocytes detectable in the SHAM operated liver parenchyma (S3

Fig).

Liver remnant volume is markedly decreased after ePH and PFL compared

to cPH

When compared to the SHAM group, MR liver volumetry showed a decreased liver remnant

volume after hepatectomy in all other groups (cPH, ePH and PLF). Compared amongst each

other, all liver resection study groups, exempt ePH vs. PLF, showed significant differences con-

cerning the postoperative liver volumes (cPH vs. ePH and ePH vs. SHAM day 1—day 7

P<0.001; cPH vs. SHAM day 1—day 5 P<0.001, day 7 P< 0.05). Already on POD 1, liver rem-

nant volume as percentage of preoperative total liver volume reached 46,4% ± 7,3% after cPH,

27,7% ± 3,6% after ePH % and 30,9% ± 1,3% for the PFL group (Table 1). On POD 2, the liver

further gained 54,0% ± 8,1% after cPH, 32,3% ± 3,6% after ePH, and 33,5% ± 3,1% for the PFL

group. Finally, liver remnant volumes on POD 7, represented 87,1% ± 6,8% after cPH and

68,7% ± 9,6% after ePH (Fig 4A; Table 1).

Quantitative multimodal MRI differentiates between liver tissue after cPH

and ePH

On day 1 after resection, an increase of T1 relaxation time was detected being generally more

pronounced after ePH. T1 relaxation increased on POD 1 by 18% for cPH vs. 40% for ePH

and on POD 2 respectively by 24% for cPH vs. 49% for ePH animals (Fig 4B; Table 1). There

was a prolongation in T2 relaxation, again greater after ePH, with a prominent increase on day

5 by 21% for cPH vs. 41% for ePH (Fig 4C; Table 1). ADC and MTR showed a strong decrease

after ePH on day 1 with 21% for ePH vs. 13% for cPH for ADC and with 15% for ePH vs. 11%

for cPH for MTR (Fig 4D and 4E; Table 2). After having reached their maximum (T1 and
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Fig 3. Representative images depicting H&E staining of regenerating liver parenchyma. Hematoxylin stained

nuclei appear blue, whereas eosin stains proteins nonspecifically pink. The image shows formalin-fixed, paraffin

embedded tissue sections of liver parenchyma after cPH on POD 1, 2, 3 and 5 (left panel) and parenchyma after ePH

on POD 1, 2, 3 and 5 (right panel). The reported cellular hypertrophy leading to the early volume gain of the

regenerating liver is mainly driven by an increased accumulation of fluids and lipids into parenchymal cells, resulting

in the vacuolated appearance during the first few days [9]. For all images, scale bar is 20 μm.

https://doi.org/10.1371/journal.pone.0192847.g003
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T2), respectively their minimum (ADC and MTR), all MR parameters converged towards

their initial value on POD 7 in surviving animals. In the PLF animals, which died between day

2 and 3 after extended hepatectomy, a strong increase of T1 time and a very prominent decline

of ADC and MTR were observed (Fig 4A–4D; Tables 1 and 2).

The increase of T1 relaxation time was significant for animals after ePH compared to cPH

(day 1 P < 0.05; day 2 P<0.01; day 3 P<0.001). The ePH group showed significant differences

in their relaxation time compared to SHAM operated mice (day 1 - day 3 P<0.001; day 5

P< 0.05), while the T1 relaxation time of the cPH mice does not reach significance compared

to SHAM mice (Fig 4B). For T1 relaxation, there was a moderate, but significant negative cor-

relation with the regenerating liver volume for cPH (r = -0,5234; P� 0,0001) and a strong and

statistically significant negative correlation for ePH (r = -0,8087, P� 0.0001). In contrast,

there is no correlation between T1 relaxation time and the volume of the liver remnant in the

case of PLF (Fig 5A).

T2 relaxation time increased rather towards the end of the liver regeneration in all study

groups having undergone liver resection (Fig 4C; Table 1). The mice after ePH behaved signif-

icantly different as compared to animals after cPH (day 5 P<0.001; day 7 P<0.01) and SHAM

(day 3 P<0.01; day 5 P<0.001; day 7 P<0.001), and also the T2 time for cPH was significantly

higher than SHAM (day 3 P<0.05; day 5 P<0.05) (Fig 4C). The T2 time of the study groups

deviate rather towards the end of the liver regeneration and there was no significant difference

for PLF mice allowing differentiation of PLF from ePH and cPH. For T2 relaxation, there was

a weak correlation for ePH mice (r = 0,3308, P� 0.05) and no correlation for cPH and PLF

mice with the volume of the regenerating liver (Fig 5B).

By comparison to SHAM operated animals, there is a notable decrease of ADC on POD 1

for all study groups having undergone liver resection, most pronounced in the ePH and PLF

group (Fig 4D, Table 2). The ADC of the ePH mice recovers again on POD 2, whereas the

ADC of the PLF mice continuously diminishes. Comparing the ADC of the ePH group to

SHAM and cPH mice, there is a significant difference of ADC (day 1 P<0.05), whereas the

cPH group is not significantly different as compared to SHAM. The difference of PLF to

SHAM reaches significance (day 3 P<0.01), but there is no significance of PLF to either cPH

nor ePH (Fig 4D). Again, there is a weak positive correlation of ADC with the liver volume for

cPH (r = 0,3355, P� 0.05), and a moderate positive correlation for ePH (r = 0,4501, P� 0,01)

and PLF (r = 0,5911, P� 0,01) (Fig 5C).

Compared to SHAM operated animals, MTR decreases directly after liver resection in all

study groups on POD 1. This is especially the case in the two high-risk groups, namely ePH

and PLF, which both reach significance (day 1–2 P<0.001; 86% PH day 3 P<0.05) compared

to SHAM (Fig 4E). However, albeit their MTR is not significantly different amongst each

other, it is statistically significant in comparison to cPH for PLF (day 1 P<0.01; day 2

Table 1. Liver regeneration was monitored by MR volumetry and by longitudinal T1 and transversal T2 relaxometry for all study groups, cPH, ePH, PLF and

SHAM, prior surgery and on POD 1, 2, 3, 5, 7.

Day Volumetry [%] Longitudinal relaxation T1 [ms] Transversal relaxation T2 [ms]

cPH ePH PLF SHAM cPH ePH PLF SHAM cPH ePH PLF SHAM

0 100.0±0.0 100.0± 0.0 100.0±0.0 100.0±0.0 997.0±104.8 972.6± 67.7 991.7± 38.0 1030.1±46.0 29.9±3.0 32.3±3.4 29.5±6.1 32.3±0.5

1 46.4±7.3 27.7± 3.6 30.9±1.3 99.8± 2.0 1180.0±165.1 1359.7±152.6 1310.4±103.4 1040.4±58.4 30.9±1.4 31.7±1.0 34.1±3.0 31.2±1.0

2 54.0±8.1 32.3± 3.6 33.5±3.1 99.4±2.6 1232.2±182.1 1451.7± 97.4 1304.2±180.0 1033.1±60.8 32.3±2.7 33.0±2.6 32.9±1.6 29.8±2.9

3 64.1±8.3 39.3± 7.8 36.4±0.9 101.6±1.6 1084.8±112.6 1351.7±144.8 2060.6±254.8 996.9± 5.4 34.5±1.0 35.1±2.3 35.2±7.6 28.0±0.9

5 77.0±8.5 53.3±11.6 n/a 99.8±2.0 1069.8± 26.1 1172.6± 68.8 n/a 930.5±92.5 36.1±2.9 45.6±8.3 n/a 30.4±3.2

7 87.1±6.8 68.7± 9.6 n/a 100.3±1.5 1053.1± 69.2 1083.4± 76.7 n/a 934.1±34.6 32.6±1.5 38.9±4.4 n/a 29.2±1.2

https://doi.org/10.1371/journal.pone.0192847.t001
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P<0.001) respectively for ePH (day 1–7 P<0.05). The comparison of MTR for cPH to SHAM

does not reach significance (Fig 4E). For MTR, there is a moderate positive correlation for

cPH (r = 0,5139, P� 0,001), a strong positive correlation for ePH (r = 0,6915, P� 0.0001) and

a very strong positive correlation for PLF with the liver volume (r = 0,8423, P� 0.001) (Fig

5D).

As the measured MR parameters after ePH surgery in isolation do not show a very strong

predictive ability for developing PLF, a combinational statistical model using binomial logistic

regression has been applied with all MR parameters obtained on day 1 for all animals after

ePH, but due to rather small sample size a robust regression model could not be established

(POmnibus Test = 0.292, Nagelkerke R Square = 0.528). Also, noteworthy, all MR parameters

retrieved for the baseline measurement prior ePH surgery were statistically assessed and there

was clearly no predisposition to develop PLF (POmnibus Test = 0.560, Nagelkerke R Square =

0.252).

The alterations of the assessed MR parameters in dependence of the liver volume is further

depicted by calculated parametric maps for T1 and T2 relaxation, ADC and MTR for pre-sur-

gical measurement, day 1 and day 2 after liver resection (Fig 6).

Discussion

Our results show, that multimodal MRI allows for a detailed monitoring of the regenerative

process after liver resection. Longitudinal and transverse relaxation MRI as well as DW-MRI

and magnetization transfer-MRI are capable of indicating reliably animals suffering from

SFSS, but do not permit a robust discrimination of animals with exacerbation towards fatal

PLF.

After a considerable amount of liver volume has been removed through surgery, regardless

of the exact extent (cPH or ePH), the remaining lobes are required to quickly restore the origi-

nal liver volume while maintaining their vital function. The majority of liver parenchymal cells

are hepatocytes, representing 70% of all liver cells and 80% of the liver weight. Albeit up to

90% of the resting hepatocytes (G0-phase) enter cell proliferation (G1-phase) in almost perfect

Fig 4. Liver regeneration assessed by multimodal MRI for animals having undergone partial hepatectomy or SHAM

surgery. The diagrams depict the measurements of MR volumetry (A), longitudinal (B) and transverse relaxation (C), diffusion

(D) and magnetization transfer (E) of the regenerating liver remnant. After its initial liver volume loss, the liver could already

replenish liver parenchyma up to 50% for cPH and up to 30% for ePH one day after hepatectomy (A). T1 times, lesser the T2

times, increase after hepatectomy dependent on the extent of resection with almost complete recovery to baseline if the animal

survives (B, C). There are further remarkable decreases in diffusion and magnetization transfer dependent on extent of resection

(D, E). These observations appear plausible considering the reported hypertrophy of parenchymal cells, caused by an elevated

lipid and fluid content early after resection. The cellular increase of water presumably prolongs the T1 relaxation, the cellular

hypertrophy restricts diffusion whereas the cellular increase of water and lipids hampers magnetization transfer.

https://doi.org/10.1371/journal.pone.0192847.g004

Table 2. Liver regeneration was monitored by diffusion-weighted MRI and magnetization transfer MRI for all study groups, cPH, ePH, PLF and SHAM, prior sur-

gery and on POD 1, 2, 3, 5, 7.

Day ADC [10−3 mm2/s] MTR [%]

cPH ePH PLF SHAM cPH ePH PLF SHAM

0 1.54±0.25 1.52±0.22 1.53±0.18 1.45±0.14 68.5±1.2 66.2±3.2 67.2±2.0 66.5±3.7

1 1.34±0.24 1.04±0.27 1.07±0.23 1.40±0.16 61.1±2.7 56.4±3.0 55.1±2.3 65.1±2.4

2 1.24±0.18 1.21±0.17 0.93±0.15 1.49±0.18 64.3±2.1 59.4±3.3 57.4±2.6 67.2±3.6

3 1.42±0.19 1.20±0.11 0.70±0.13 1.48±0.07 66.8±2.3 62.2±2.0 56.7±1.6 67.9±3.5

5 1.42±0.22 1.35±0.13 n/a 1.34±0.09 67.5±2.8 62.9±1.9 n/a 66.2±3.1

7 1.27±0.09 1.19±0.13 n/a 1.48±0.07 68.3±3.3 63.7±4.6 n/a 66.0±2.0

https://doi.org/10.1371/journal.pone.0192847.t002
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synchrony immediately after surgery, and in line with our observations, the initially recorded

liver remnant volume gain is exclusively attributed to hypertrophy of hepatocytes with an

almost twofold increase of cellular volume independent of actual cell division [10]. The repli-

cation of cellular content takes place at a later stage (DNA synthesis in mice ~30–40 h post-

surgery) (S-phase = DNA synthesis/ G2-phase = protein and organelle synthesis) [11] and the

abundance of elevated numbers of binuclear hepatocytes towards the end of the liver regenera-

tion even indicates, that cell division (M-phase = nuclear division (mitosis) with cell division

(cytokinesis)) does not directly follow the interphase (i.e. G1 -, S-, G2-phase) [10]. According

to a previous study on this mouse model of cPH and ePH, ePH is associated with a delayed

progression through the cell cycle, especially with a pronounced procrastination of the M-

phase, as compared to cPH [12], which is in line with the representative images depicting

immununohistochemistry for the mitotc marker pH3. But also in the H&E stainings, the liver

tissue after ePH displayed notable differences compared to cPH, such as a prolonged hypertro-

phic appearance for ePH accompanied with a seemingly pronounced lipid accumulation of

hepatocytes, which may also be reflected by the retrieved MR imaging biomarkers.

The liver volume had increased already after 24 h for both cPH and ePH with the liver rem-

nant volume restored to approximately 50%, respectively 30%.This finding is in keeping with

Fig 5. Correlation of the measured MRI parameters with the volume regeneration of the hepatectomized livers. The diagrams depict the

correlation of longitudinal (A) and transverse relaxation (B), diffusion (C) and magnetization transfer (D) with the regenerating liver remnant

shown for cPH, ePH, PLF and SHAM.

https://doi.org/10.1371/journal.pone.0192847.g005
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the outlined initial step of liver remnants towards liver regeneration, namely cellular hypertro-

phy of hepatocytes, being responsible for the instant volume gain after cPH within 24 h after

liver resection [10], which apparently also applies to the PLF group due to a volume gain com-

parable to ePH. Three further investigations on the regenerating mouse liver after resection

are in support of these measurements [9], two even applying in-vivo MR volumetric assess-

ment [13, 14]. We are unaware of a study using MR volumetry on the liver after ePH in a

mouse model, but weight-based data reported by Lehmann et a. [12] suggest a duplication of

the liver remnant within 24 h for extended hepatectomy.

These outlined regenerative characteristics on the cellular level are likely to be mirrored by

this multimodal MR investigation. Here, T1 and T2 times increase after resection dependent

on the extent of the resection with almost complete recovery to baseline towards the end of the

regeneration. This finding is in line with previous studies performed on rats also reporting the

prolongation of these relaxation times [15–19]. One study conducted on mice assessed T1

relaxation times 5–6 days post PH and does not provide data on liver growth at time of mea-

surement [20]. Comparing studies on rats to our investigation requires caution, nevertheless,

two reports using laboratory rats demonstrate a prolongation of T1 times immediately post

PH, whereas the T2 time prolongation peaks much later on [17, 19], which is in good agree-

ment with our results. In light of the reported correlation of the elevated parenchymal water

content after PH with the increased T1 relaxation times, the observed prolongation of T1

relaxation time appears plausible considering that the tissue water content increases due to the

cellular hypertrophy of the hepatocytes. Moreover, the extent of replication initiation of liver

cells relies on the extent of the resection [11, 21], thus a higher number of hepatocytes will

eventually enter the cell cycle after ePH than compared to cPH, as shown by the expression of

cell proliferation markers (Ki67, PCNA) in a study using the same mouse models [12]. There-

fore, either the elevated number of hepatocytes undergoing replication or an increased hyper-

trophy of hepatocytes, or a combination of both, is likely to account for the extended T1 time

observed in ePH livers. Potentially due to aborted cell cycle in the case of fatal PLF, the T1

relaxation time deviates on day 2 from mice recovering from SFSS after ePH. This observation

might be attributed to the reduced animal number and as a consequence a wider deviation of

measured T1 relaxation times would be expected in this cohort. In contrast, on POD 3, the T1

relaxation time increases enormously and surpasses retrieved T1 times of mice after ePH,

which eventually survive the surgery. Given the complexity of events during liver regeneration,

the delayed prolongation of the T2 time after PH mainly observed in ePH is very difficult to

interpret and would be mere conjecture.

The ADC of tissues is affected in vivo by cellularity, cell size, cell shape, density and perme-

ability [22] and a recent in-vitro investigation indicated, that mainly the cell perimeter length

greatly influences the ADC and that especially a raised cell perimeter reduces eventually the

retrieved diffusion [23]. On POD 1, the ADC declines considerably in mice after ePH and to a

much lesser degree in the animals after cPH and recovers gradually in surviving animals.

Again, this finding might be due to the aforementioned hypertrophy of hepatocytes being

responsible for a decreased diffusion 24 h post-surgery, which also coincides with the peak of

hypertrophy in liver parenchyma post PH [10]. The decline in diffusion is more prominent for

liver parenchyma after ePH compared to cPH, and thus potentially attributed to an incomplete

progression through the cell cycle. The diffusion is even more restricted in animals developing

Fig 6. Representative cropped parametric maps of the regenerating liver obtained by voxel-wise fitting of the T1 relaxation time, T2 relaxation time, the

parenchymal diffusion represented by the ADC and the magnetization transfer given by MTR for pre-surgical measurement, day 1 and day 2 after conventional

partial hepatectomy (cPH). The parametric maps were twofold interpolated.

https://doi.org/10.1371/journal.pone.0192847.g006
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PLF. In this case, a conceivable explanation might lie within the elevated sinusoidal perfusion

causing considerable shear-stress [24] and concomitant congestion of hepatic parenchyma,

which inevitably results in vascular and parenchymal damage [25]. An additional factor may

be the inadequate venous drainage of the remaining liver parenchyma upon PH, which even-

tually inflicts hepatic venous congestion [26].

After PH, the MTR decreases in all animals strongly on POD 1 and slowly, but steadily

recovers towards the initial MTR prior to surgery. This decrease in MTR is even more pro-

nounced after ePH and in the PLF group than after cPH. Again, these results can be discussed

in regard to the hypertrophy and the accompanying unconventional cell division of hepato-

cytes, as parenchymal cell size increases already after 3h, reaching the maximum 24 h after

hepatectomy and resulting in a significantly enlarged cytoplasm without yet having replicated

the entire cellular components. Thus, the comparably dilute cytoplasm might provide lesser

protein matrix available for magnetization transfer. Moreover, it has long been recognized that

liver regeneration upon partial hepatectomy in murine models results in rapid accumulation

of intracellular lipids [9, 27–31]. This increased cellular lipid content may additionally be

accountable for a further reduction of magnetization transfer. [32]. Thus, either a potentially

elevated cellular hypertrophy or a higher number of proliferating, hence swollen hepatocytes,

or both, together with a possibly enhanced lipid content might eventually account for the

rather pronounced decline in MTR after ePH as compared to cPH. After MTR having eventu-

ally reached the minimum, cellular size gradually decreases with progressing mitosis in the

liver parenchyma, reducing the amount of hypertrophic cells [10], thus yielding a condensed

cytoplasm and allowing again for an increased MTR. There is merely a subtle reduction in

MTR after its minimum for PLF, which might be due to a failed progression in the cell cycle.

A sum of these delineated cellular events related to liver regeneration could be causative for

the observed MTR changes in the study groups. Another conceivable reason for the decline in

MTR might be the inadequate venous drainage of the remaining liver parenchyma upon PH,

which eventually inflicts hepatic venous congestion [26]. Still, this would not or not fully

explain the relatively distinct time course of MTR alteration in all groups having undergone

either cPH or ePH.

Generally, SFSS and PLF are defined as failure of hepatic synthetic and excretory functions

such as hyperbilirubinaemia, hypoalbuminaemia, prolonged prothrombin time, elevated

serum lactate, and hepatic encephalopathy of different severity [1, 3]. Despite partial hepatec-

tomy being a well-established surgical approach, it still bears the risk of PLF due to insufficient

liver volume resulting in SFSS. The prospective evaluation remains difficult [1] and the current

lack of an early biomarker for SFSS and PLF precludes an early therapeutic intervention [3, 21,

33].

In this study, only 4 animals in the ePH group developed a fatal PLF as consequence of the

inflicted SFSS. Retrospectively, a higher number of ePH mice, resulting potentially in an

increased number of fatal PLF would have allowed for a better presentation of MR parameters

on this study group. Given the short time granted for animals being assessed by MRI, only a

few MR parameters could be elucidated in this investigation. There are more MR-based

parameters conceivable, such as arterial spin labelling MRI (ASL-MRI) and MR spectroscopy

(MRS), possibly concealing the MR amenable biomarker even being able to predict liver failure

and recovery upon SFSS.

Clearly, this multimodal MRI study highlights the capability of in-vivo MRI assessments to

delineate liver regeneration and to indicate SFSS. The retrieved early biomarkers, predictors

for SFSS and potentially for developing PLF, may either represent directly resection related

pathologies or regeneration related characteristics. Such non-invasive MRI based predictors

might contribute to an improved clinical care for patients with impending SFSS as they may
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open up new avenues to diagnose SFSS and developing PLF at an early stage eventually provid-

ing the prerequisite for an interceptive therapy tailored to patient groups at risk of PLF.
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tional guidelines for the care and use of animals.

Supporting information

S1 Fig. Kaplan-Meier survival curves of mice that underwent MRI examination after 70%

cPH, 86% ePH and SHAM. In this study, animals not recovering after ePH constitute a sepa-

rate group, designated as PLF due to the fatal post-hepatectomy liver failure.

(TIF)

S2 Fig. Representative immunohistochemical images depicting hepatocytes positive for

phosphorylatedHistone-3 (pH3). The image shows formalin-fixed, paraffin embedded tissue

sections of liver parenchyma after cPH on POD 1, 2, 3, 5 and 7 (left panel) and parenchyma

after ePH on POD 1, 2, 3, 5 and 7 (right panel).Cells positive for pH3 are indicated by the dark

brown stain and cell nuclei are blue. For all images, scale bar is 100 μm.

(TIF)

S3 Fig. Representative immunohistochemical images depicting hepatocytes positive for

phosphorylatedHistone-3 (pH3). The image shows formalin-fixed, paraffin embedded tissue

sections of liver parenchyma after SHAM surgery on POD 1, 2, and 3.Cells positive for pH3

are indicated by the dark brown stain and cell nuclei are blue. For all images, scale bar is

100 μm.

(TIF)

S1 Table. Settings of all MRI experiments performed on a 4.7T small animal MRI system

(Pharmascan 47/16 US; Bruker BioSpin MRI GmbH, Ettlingen, Germany) with a gradient

strength of 375 mT/m and a slew rate of 3375 T/m/s equipped with a linear polarized

hydrogen whole-body mouse transmit-receive radiofrequency coil.

(PDF)
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