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ABSTRACT
Online conformance checking deals with finding discrepancies be-
tween real-life and modeled behavior on data streams. The current
state-of-the-art output of online conformance checking is a prefix-
alignment, which is used for pinpointing the exact deviations in
terms of the trace and the model while accommodating a trace’s
unknown termination in an online setting. Current methods for
producing prefix-alignments are computationally expensive and
hinder the applicability in real-life settings.

This paper introduces a new approximate algorithm – I Will
Survive (IWS). The algorithm utilizes the trie data structure to
improve the calculation speed, while remaining memory-efficient.
Comparative analysis on real-life and synthetic datasets shows
that the IWS algorithm can achieve an order of magnitude faster
execution time while having a smaller error cost, compared to the
current state of the art. In extreme cases, the IWS finds prefix-
alignments roughly three orders of magnitude faster than previous
approximate methods. The IWS algorithm includes a discounted
decay time setting for more efficient memory usage and a look-
ahead limit for improving computation time. Finally, the algorithm
is stress tested for performance using a simulation of high-traffic
event streams.
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1 INTRODUCTION
Process mining [23] is a data-driven approach for analyzing process
execution data. The process execution data is commonly collected
in event logs. In its simplest form, an event log is a sequence of
events characterized by a case identifier, indicating the unique
process instance, the label of the executed activity, and a timestamp
(Table 2). The sequence of events having the same case identifier is
called a trace.

An important aspect of business systems is the ability to detect
anomalies and report them in a human-readable form [17]. Confor-
mance checking [9] is the sub-area of process mining that attempts
to discover and quantify deviations in business process executions.
Conformance checking assumes the prior knowledge of how the
world should work – i.e., we have a process model – and examples
of how the world is working – i.e., we have process traces. We then
compare the traces to the model to analyze the conformance of the
process. The state-of-the-art output from conformance checking, in
terms of explainability, is an alignment [20]. Importantly, anomalies
and non-conformance may not necessarily indicate wrongly exe-
cuted processes. Deviations may also be a sign of possible process
enhancement. Regardless, it is important to be able to find such
discrepancies between modeled and actual behavior.

Conformance checking originates in the static setting, where
event logs are collected from the business systems and analyzed
offline. However, organizations have thousands of ongoing pro-
cess executions at the same time. Therefore, the analysis of past
data quickly loses its value, as deviations usually need to be dis-
covered and acted upon in a timely manner. Such observations
have paved the way for online conformance checking, where
conformance checking is done on infinite event streams rather than
logs. Reporting about deviations follows an event-driven fashion
to allow process analysts to take action as early as possible. While
the underlying goal is the same – finding discrepancies between
modeled and real-life behavior – the termination of a single process
execution is unknown in an online setting, given that the event
stream is unbounded. Thus, computationally efficient algorithms
are necessary to keep up with the incoming data.
Problem Statement. While efficient algorithms exist for online
conformance checking, they do not use alignments as their out-
put [8], i.e., they do not provide as output a mapping between the
event streams and the process model. At the same time, methods
using prefix-alignments have been introduced for conformance
checking [18, 26], but their computational complexity hinders their
applicability in real-life streaming settings.

This paper attempts to bridge this gap by introducing a new
efficient algorithm for online conformance checking. The algorithm
outputs prefix-alignments with comparable error costs to the state
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Concept Notation Set notation
Petri net source 𝑖 -
Petri net sink 𝑜 -
Petri net transition 𝑡 -
Silent transition 𝜏 -
Model behavior - 𝑀

Proxy behavior - 𝑀′

Execution sequence on model 𝜋 -
Prefix execution sequence 𝑖𝜋 -
Event 𝑒𝑣𝑡 -
Case identifier 𝑐𝑎𝑠𝑒 U𝑐𝑎𝑠𝑒

Event activity 𝑎𝑐𝑡 U𝑎𝑐𝑡

Trace 𝜎 -
Activity at i-th position 𝜎 (𝑖) -
Trace suffix �̂� -
Event log - 𝐿

Proxy log - 𝐿′

Trie - 𝑇

A node in a trie 𝑛 𝑁

An edge in a trie 𝑒 𝐸

Trie labelling function 𝑙 -
Trie branching factor 𝑏𝑓 -
Alignment 𝛾 -
Prefix-alignment 𝛾 -
Skip symbol in an alignment ≫ -
Cost of an alignment 𝛿 (𝛾) -
A state in the algorithm 𝑠 𝑆

Decay time 𝑑𝑡 -
Discounting factor 𝑑 𝑓 -
State buffer - 𝐵

Look-ahead limit 𝑙𝑖𝑚 -
Table 1: Notations summary

of the art while improving the computation time by a noticeable
extent. The paper is structured as follows: in Section 2 a theoretical
background is given. Section 3 introduces the approach and the
algorithm. Section 4 compares the algorithm to the state of the
art in terms of cost deviations and execution time. A stress test
under a fast-paced stream is performed to validate the algorithm’s
applicability in real-life settings. Finally, Section 5 summarizes the
work and provides venues for future research.

2 BACKGROUND
In this section, we introduce the main components necessary for
understanding the content of the paper. We describe process mod-
els, event logs, conformance checking, and its adaptation to the
streaming context. Table 1 summarizes the notations used in the
rest of the paper.

2.1 Process Models and Event Logs
A process model defines which sequences of activity executions
are considered to be valid. There are many notations to model
business processes varying in their richness and formal semantics.
For the purposes of this paper, we utilize a special case of a Petri
net called a Workflow net [22] (WF-net) where there is a single
source place 𝑖 , and a single sink place 𝑜 , and any other node, i.e.,

Case identifier Activity Timestamp

1 a 2022-08-01 15:00
1 b 2022-08-01 15:02
2 a 2022-08-01 15:03
2 b 2022-08-01 15:06
1 c 2022-08-01 15:06

Table 2: A simple event log showing the case identifier, exe-
cuted activity, and execution timestamp.

either a place or a transition, is on a path from the source place
to the sink place. In other words, adding a transition 𝑡 to the net
with one arc from 𝑜 to 𝑡 and another arc from 𝑡 to 𝑖 , the resulting
Petri net forms a single strongly connected component. WF-nets
follow the standard semantics of transitions enablement and firing
as ordinary Place/Transition Petri nets [24].

The WF-net in Figure 1, a simplistic order fulfillment process,
serves as our running example having five labeled transitions:
𝑎, 𝑏, 𝑐, 𝑑, 𝑒 . Silent transitions (𝜏 transitions) cannot be observed dur-
ing the execution of a process model and are colored in grey. In
Figure 1, the 𝜏 transition allows to skip 𝑐 , but there is no labeled
activity associated with skipping 𝑐 that could be shown on the
model.

WhenWF-nets are enacted, one can observe sequences of labeled
transitions based on firing sequences. As such, the model behavior
𝑀 may also be represented by a set of sequences of activities. 𝑀
is infinite when the model has loops because a loop can unfold
an unlimited number of times. The sequence of fired transitions
is called an execution sequence. An execution sequence 𝜋 ∈ 𝑀

starts from a transition enabled by the source place, 𝑖 , marking and
ends with a transition that marks the sink place, 𝑜 , after its firing.
A prefix of an execution sequence 𝑖𝜋 indicates the execution until
the 𝑖-th position in 𝑀 . An instance of an execution sequence is
shown as 𝜋 = ⟨𝑎, 𝑏, 𝑐, 𝑒⟩, representing the execution path followed
by executing, a, b, c, and e transitions from the WF-net in Figure 1.
Another execution sequence 𝜋 = ⟨𝑎, 𝑏, 𝑑, 𝑐, 𝑏, 𝑑, 𝑏, 𝑑, 𝑒⟩ has the loop
around transitions 𝑏 and 𝑑 executed two times.

Ideally, processmodels are deployed to process execution engines
which ensures faithful executions [11]. In practice, most process
execution is unmanaged by a process engine [23]. Rather, they are

a

c

b
d

e

Create
Order Check

Supply

Apply
Discount Pack

Order

Wait for
Replenishment

Figure 1: A small example process model with parallelism,
skip activity and a loop.
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supported by individual information systems that lack an end-to-
end tracking of process instances.

One discrete data unit in the execution of a process within infor-
mation systems is commonly referred to as an event (Definition 2.1),
while a multiset of events is represented as an event log [23] (Defi-
nition 2.2.

Definition 2.1 (Event). An event 𝑒𝑣𝑡 is a tuple 𝑒𝑣𝑡 = (𝑐𝑎𝑠𝑒, 𝑎𝑐𝑡, 𝑡𝑖𝑚𝑒) ∈
U𝑐𝑎𝑠𝑒 ×U𝑎𝑐𝑡 ×U𝑡𝑖𝑚𝑒 with 𝑐𝑎𝑠𝑒 referring to the case identifier (ca-
seID), 𝑎𝑐𝑡 referring to the executed activity and 𝑡𝑖𝑚𝑒 denoting the
event timestamp.

Definition 2.2 (Event log). An event log 𝐿 is a multiset of events
𝐿 ∈ B(U𝑐𝑎𝑠𝑒 ×U𝑎𝑐𝑡 ×U𝑡𝑖𝑚𝑒 )

Definition 2.3 (Trace). A trace 𝜎 = ⟨𝑎𝑐𝑡1, . . . , 𝑎𝑐𝑡𝑛⟩ ∈ U𝑎𝑐𝑡 is a
finite sequence of activities with a common caseID. We use the
notation 𝜎 (𝑖) for the activity at the 𝑖-th position of 𝜎 .

A log contains traces (Definition 2.3), a sequence of events, each
denoting a single execution of the process. Traces representing
distinct process executions built of events that induce the same
sequence of activity executions are said to be of the same trace
variant. A relatively simple model for event logs is sufficient for the
context of this paper, i.e., an event consists of a caseID for assigning
an event to a particular process instance, an activity label, and a
non-decreasing timestamp.

A proxy log, 𝐿′, is an event log that represents a finite subset
of behavior – proxy behavior (𝑀′) – allowed by the model. For
example, the model in Figure 1 allows for infinite behavior due to
the model containing a loop. An example of proxy behavior could
be limiting looping to a single traversal of activity 𝑑 . Eliciting such
restrictions allows us to generate a proxy log (Table 3) that contains
traces describing a finite subset of the model behavior.

2.2 Conformance Checking
Conformance checking compares the behavior recorded in an event
log 𝐿 with the behavior specified by a process model𝑀 [9]. Typi-
cally, it relies on the concept of alignments [20]. Alignments map
the moves in the log (actual behavior) and possible moves in the
model. Generally, alignments provide good diagnostics, as it is easy
to interpret expected behavior and deviations, e.g., skipping an
activity or conducting an activity not expected by the model [21].

Formally, an alignment 𝛾 = ⟨(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)⟩ is a sequence
of steps, each step (𝑥,𝑦) ∈ (U𝑎𝑐𝑡 ∪ {≫}) × (U𝑎𝑐𝑡 ∪ {≫}) linking

𝑐𝑎𝑠𝑒 𝜎 (1) 𝜎 (2) 𝜎 (3) 𝜎 (4) 𝜎 (5) 𝜎 (6)
𝑐𝑎𝑠𝑒1 a b c d b e
𝑐𝑎𝑠𝑒2 a b c e
𝑐𝑎𝑠𝑒3 a b d b e
𝑐𝑎𝑠𝑒4 a b d b c e
𝑐𝑎𝑠𝑒5 a b d c b e
𝑐𝑎𝑠𝑒6 a b e
𝑐𝑎𝑠𝑒7 a c b d b e
𝑐𝑎𝑠𝑒8 a c b e

Table 3: Running example: proxy log

an activity of the trace, or the skip symbol≫, to an activity of the
execution sequence, or the skip symbol, whereas a step (≫,≫)
is illegal. Each activity in the trace and the model are paired in
a move. Here, it must hold that the projection of 𝛾 on the first
component, ignoring ≫, yields 𝜎 , and the projection of 𝛾 on the
second component, ignoring ≫, yields 𝜋 . A step (𝑥,𝑦) is called
synchronous move if 𝑥,𝑦 ∈ U𝑎𝑐𝑡 , log move if 𝑦 =≫, a model move if
𝑥 =≫, while the last two are jointly referred to as asynchronous
moves.

As multiple alignments are possible, a cost is associated with
steps for decision-making. In this paper, a cost of one is assigned
to asynchronous moves, while synchronous moves have zero cost.
Moves on 𝜏 transitions can never be observed in the trace; thus,
they also have a cost of zero. In the remainder, we write 𝛿 (𝛾) for
the total cost of an alignment 𝛾 .

An optimal alignment minimizes the edit distance between a
trace and an execution sequence. Identifying a cost-optimal (mini-
mal) alignment for a trace and all execution sequences of a model
is computationally expensive [9].

Over the years, various alignment-based techniques and outputs
have been investigated. Anti-alignments [10], for example, quantify
the extreme deviations from the model, allowing for the detection
of imprecise models. Some recent techniques [5, 16] have encoded
alignment calculations as an SAT problem. Various cost functions
have been investigated – some techniques have investigated not ob-
taining the optimal alignment, but obtaining the maximum amount
of synchronous moves [3, 16]. A cost function penalizing earlier
deviations of a trace more than later deviations was introduced
in [4]. While new methods [15] are emerging, the most common
way of finding an optimal alignment requires building a so-called
synchronous product net and using the A* search algorithm to find
the shortest path through the net [20]. When building the synchro-
nous product net, the search space may grow exponentially. Thus,
calculating optimal alignments is still considered computationally
challenging in real-life settings.

For our running example, let us assume that we have observed a
trace 𝜎 = ⟨𝑎, 𝑏, 𝑏, 𝑐⟩. Figure 2 shows two alignments between this
trace and the process model. The row marked with 𝜎 shows the
complete trace that has been seen. The row with 𝜋 shows the cor-
responding moves in the model. For the first alignment, the second
execution of 𝑏 is considered erroneous, and thus a log move is made.
Alternatively, the second alignment shows that a model move on 𝑑
would entail the same cost – in this case, we would assume that the
activity 𝑑 was either skipped or not recorded properly. For both of
the alignments, a synchronous move on 𝑐 , and a model move on 𝑒

need to be executed for the execution sequence to conclude.
While both of the alignments in Figure 2 are optimal, an align-

ment can also be suboptimal, i.e., its associated cost is non-minimal.
Approximate algorithms commonly produce alignments that may
be suboptimal. Such algorithms quantify the distance from optimal-
ity via an error. For a more thorough background on conformance
checking, we refer to [9].

2.3 Related Works
The general framework for conformance checking on top of event
streams – online conformance checking – was introduced in [7]. The
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approach for conformance checking can calculate conformance in
near real-time.

The work in [8] used behavioral patterns for calculating confor-
mance in a streaming setting. Most notably, the method outputs
completeness and confidence metrics in addition to conformance.
These metrics give additional insights to the user in terms of the
reliability of the conformance. Also, the behavioral methods do
not penalize warm starting scenarios. That is, cases where a pro-
cess execution has been started before the conformance checking
begins. More recently, [13] extended the behavioral approach, bas-
ing their method on Hidden Markov Models, alternating between
state estimations and calculating conformance. While the meth-
ods in this direction are very fast in computation time, they are
less informative in diagnosing the causes of deviations. Generally,
these methods can be considered trace-level metrics, indicating
whether something is wrong and how trustworthy the assessment
is. The outcome of utilizing these methods is an alert rather than
an alignment, and thus it is hard to pinpoint what exactly is the
non-conforming part between the trace and the model.

Another research path has focused on prefix-alignments [1],
which were first introduced for process event streams in [26]. In
a streaming setting, conformance-checking frameworks usually
observe a subsequence of the trace. Indeed, the trace execution
may not yet have concluded, and it is unknown how the execution
sequence might play out. A complete alignment would overestimate
the conformance cost in such cases. A prefix-alignment 𝛾 is a
variation of the alignment where complete path traversal to the
model’s sink is unnecessary. Returning to the trace 𝜎 = ⟨𝑎, 𝑏, 𝑏, 𝑐⟩,
one can deduce that the final event 𝑒 may still occur, and thus there
exists no deviation in terms of the activity 𝑒 . In this case, there
exist two equally optimal prefix-alignments. Prefix-alignments (𝛾 )
of trace 𝜎 are shown in Figure 2. In a streaming setting, a prefix-
alignment is calculated event-by-event, finding a match between
the arrived event and allowed model behavior.

The algorithm in [26] uses a window-size parameter to trade-off
between the computation time and alignment optimality. An infi-
nite window size allows for calculating optimal prefix-alignments
but has the slowest execution time. A window size of one is the
fastest, but the alignments produced may be suboptimal. In [18], the
authors improved upon their work by introducing an incremental
A* algorithm, which can calculate optimal prefix-alignments with a
smaller memory footprint. However, computationally, the newer

𝜎 a b b c ≫

𝜋 a b ≫ c e

𝜎 a b ≫ b c ≫

𝜋 a b d b c e

𝛾

𝛾

𝛾^

𝛾^

(1)

(2)

Figure 2: Running example: two optimal alignments and
prefix-alignments.

method remained noticeably slower than the initial algorithm with
a window size of one. Recent work has seen proposals for vari-
ous memory-efficient approaches for calculating prefix-alignments
in a streaming setting [28]. But in general, due to the reliance
on computing synchronous product nets and then doing shortest
path traversal, the prefix-alignment methods exhibit a heavy com-
putation load and remain impractical for most real-life scenarios
(Section 4).

3 APPROACH
In this section, we introduce our approach named I Will Survive
(IWS). In particular, Section 3.1 provides the formal foundation of
the IWS data model that consists of event streams, a state buffer,
and a trie to represent the proxy log; Section 3.2 drills down into the
algorithmic details of IWS, as depicted by Algorithm in the pipeline
shown in Figure 3.

3.1 Data Model
Our approach IWS assumes the existence of an event log or an
event stream and a process model. The process model is simulated
in step (1) into a proxy log. From the proxy log, step (2) constructs
a trie 𝑇 . A trie is a particular type of tree, commonly referred to
as a prefix tree, where all the children of a node have a common
prefix. For the trie construction, we need a finite set of traces, i.e.
a proxy log [2]. Definition 3.1 gives a formal definition of the trie
in the context of this work. The trie is computed offline in the
pre-processing step and is considered immutable as the algorithm
executes. That is, the underlying process is not expected to change
during the conformance checking.

Utilizing a proxy log such as in Table 3 leads to the construction of
the trie shown in Figure 4. The trie is a more concise representation
of the proxy log, e.g., all the eight traces start with the activity 𝑎,
which is represented as a single node in the trie.

The trie is given as input to the algorithm in step (3) when the
algorithm is initialized. In step (4), the algorithm expects an event
coming from an event log or event stream and consisting of a caseID
and an event activity. The algorithm checks for conformance and
stores a list of states – a state buffer – for each caseID in step (5).
Finally, two optional steps are step (6), for fetching the latest prefix-
alignment for a case, and step (7), for calculating and fetching a
complete alignment, that is permissible by the state buffer. Notably,
as the algorithm holds a list of states with prefix-alignments, it is
possible to use different methods, such as [2] or [12], in step (7) for
finding the complete alignment from a prefix-alignment. However,
for the purposes of this paper, fetching complete alignments is out
of scope as we aim to produce prefix-alignments in the context of
event streams.

In a streaming setting, the events are expected to be processed
one by one in the temporal order. Furthermore, it is common that
multiple cases are ongoing simultaneously, meaning that events
coming in belong to different cases. The algorithm needs to keep
track of the seen cases and their states while performing optimiza-
tions for low memory consumption. For handling these demands,
the definitions for a state, decay time, state buffer, and look-ahead
limit are introduced.
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Figure 3: Approach overview

Definition 3.1 (Trie). Let 𝑀′ ⊆ 𝑀 be some proxy behavior of
a process model. Then, the trie constructed for it is a structure
𝑇 = (𝑁, 𝐸, 𝑟𝑜𝑜𝑡, 𝑙) where:
• 𝑁 is a finite set of nodes. There is one node per prefix 𝑖𝜋 for
any execution sequence 𝜋 ∈ 𝑀′ as well as one additional
node 𝑟𝑜𝑜𝑡 ∈ 𝑁 .
• 𝐸 ⊂ 𝑁 × 𝑁 is a set of edges, s.t. for all 𝑛 ∈ 𝑁 it holds
|{𝑛′ | (𝑛′, 𝑛) ∈ 𝐸}| ≤ 1 and (𝑁, 𝐸) is a connected graph.
There are edges from 𝑟𝑜𝑜𝑡 to all nodes representing prefixes
of length one, and from each node 𝑛 to node 𝑛′, if the pre-
fix represented by 𝑛′ is obtained from the prefix of 𝑛 by
concatenation with a single activity.
• 𝑟𝑜𝑜𝑡 ∈ 𝑁 is the root of the trie, i.e., the only node 𝑛 ∈ 𝑁 for
which |{𝑛′ | (𝑛′, 𝑛) ∈ 𝐸}| = 0;
• 𝑙 : 𝑁 → (U𝑎𝑐𝑡 ∪ {⊥}) is a labeling function for nodes.
The label is the activity of the prefix represented by the node,
while 𝑟𝑜𝑜𝑡 is assigned ⊥.

Definition 3.2 (State). A state 𝑠 is a tuple (𝑛,𝛾, �̂�, 𝛿 (𝛾), 𝑑𝑡), where
𝑛 is the current node in the trie, 𝛾 is the prefix-alignment up to this
node, �̂� is the trace suffix, 𝛿 (𝛾) is the total cost of the current state,
and 𝑑𝑡 is the associated decay time of the state.

Definition 3.3 (Decay time). Let N = {1, 2, 3, . . . ,⋉} where ⋉ is a
large natural number. Then, decay time 𝑑𝑡 ∈ N. 𝑠 .𝑑𝑡 is the decay
time associated with a particular state. With every arrival of a new
event within the scope of state 𝑠 , 𝑠 .𝑑𝑡 = 𝑠 .𝑑𝑡 − 1. Let 𝑆 be the set of
states kept in memory. If 𝑠 .𝑑𝑡 < 1, then 𝑆 = 𝑆 \ {𝑠}.
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Figure 4: Running example: trie

Definition 3.4 (State buffer). Let 𝑆 be the set of states associated
with a 𝑐𝑎𝑠𝑒 ∈ U𝑐𝑎𝑠𝑒 , while P(𝑆) is the powerset of all the sets of
states. The state buffer B is then a mapping 𝐵 : U𝑐𝑎𝑠𝑒 ↦→ P(𝑆).

The state holds the information necessary for the algorithm to
compute the conformance. For the running example, let us assume
that we have seen the trace 𝜎 = ⟨𝑎, 𝑏, 𝑏, 𝑐⟩. The most recent optimal
states 𝑠 would thus have the current node 𝑛 = 𝑐 where the path
from the root is 𝑎𝑏𝑐 and 𝑎𝑏𝑑𝑏𝑐 , respectively, as this is the model
path in the prefix-alignments 𝛾 displayed in Figure 2. The suffix
�̂� = ∅ for both states, since 𝛾 contains the latest seen event 𝑐 and
no event currently remains to be processed. The total cost 𝛿 (𝛾) =
1. The decay time 𝑑𝑡 value is determined by a hyperparameter, as
discussed next.

We distinguish between two modes for initializing 𝑑𝑡 : Fixed
decay time denotes a pre-determined integer for each new state.
For example, all new states are initialized with 𝑠 .𝑑𝑡 := 5. This is
effectively a window size parameter.Discounted decay time relies
on the presumption that deviations near the beginning of a trace are
more costly than deviations near the end of a trace [4]. The equation
for calculating the discounted decay time is given in Equation 1.

𝑀𝑎𝑥 (⌊(𝑇𝑙𝑒𝑎𝑓 − 𝑖) ∗ 𝑑 𝑓 ⌋,𝑚𝑖𝑛𝑑𝑡 ) (1)

The hyperparameters are the discounting factor 𝑑 𝑓 and a min-
imum decay time𝑚𝑖𝑛𝑑𝑡 . The average length from the root of the
trie to each of the leaf nodes is marked by 𝑇𝑙𝑒𝑎𝑓 , and the current
length of the trace is indicated by 𝑖 as in 𝜎 (𝑖), where 𝑖 indicates the
𝑖-th event of 𝜎 .

To illustrate, the default values set for the algorithm in this paper
are 𝑑 𝑓 = 0.3 and𝑚𝑖𝑛𝑑𝑡 = 3. If 𝑇𝑙𝑒𝑎𝑓 = 100, then for 𝑖 = 1, i.e. the
first event of a trace, 𝑑𝑡 = 𝑀𝑎𝑥 (⌊(100− 1) ∗ 0.3⌋, 3) = 30. For 𝑖 = 50,
𝑑𝑡 = 15. For 𝑖 > 86, 𝑑𝑡 = 3, as 𝑑𝑡 will effectively remain at the value
set for𝑚𝑖𝑛𝑑𝑡 .

The State Buffer is updated with the arrival of every new event
𝑒𝑣𝑡 for 𝑐𝑎𝑠𝑒 . The current states of the caseID are appended with the
new event activity. That is ∀𝑠 ∈ 𝐵(𝑐𝑎𝑠𝑒) 𝑠 .�̂� = 𝑠 .�̂� ∪ {𝑎𝑐𝑡}. From
each State 𝑠 ∈ 𝑆 , the associated costs for adding 𝑎𝑐𝑡 are calculated.
New states with the least cost are added to the state buffer.

Table 4 and Figure 5 show an example. Activities 𝑎, 𝑏, 𝑏, 𝑐 arrive
for a case and the states are calculated based on the trie from
Figure 4; 𝑎 is the first activity for this case, thus the root state with
id 0 is added to the state buffer; 𝑎 is a child of the trie’s root, so
the state with a synchronous move (𝑎, 𝑎) is also added to the state
buffer with state id 1 (step 𝑎 in Figure 5).
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Figure 5: Colored trie nodes follow the color of trace events. Grey trie node points to a model move. Thick black border means
the state with alignment ending at this node is still in the state buffer. Dashed border means that the corresponding state has
been removed from the buffer. Asterisk to the right of a trie node means it is a member of state with non-empty suffix.

Even though only new states with the least cost are included,
preserving a state buffer puts strain on the memory, as with each
new event arrival, we need to store at least one, but possibly many
new states in the buffer. Thus, the Decay Time is decremented on
each new event arrival for the associated caseID.

Lastly, the algorithm includes the look-ahead limit for speeding
up calculation time in case model moves are needed.

Definition 3.5 (Look-ahead limit). Let |�̂� | be the size of the trace
suffix, and 𝑠 .𝑛.𝑙𝑒𝑣𝑒𝑙 the level of the current state’s node in the trie.
Then, the look-ahead limit 𝑙𝑖𝑚 = |�̂� | + 𝑠 .𝑛.𝑙𝑒𝑣𝑒𝑙 + 1.

The look-ahead limit is used for handling model moves, which
are more complex in a streaming setting, as the algorithm has to
assume the model move is at least as useful as making a log move.
To limit a potentially costly traversal, a model move should be
realized iff we get a full substring match to �̂� in the paths below 𝑠 .𝑛

such that the first matching node is at most at the level 𝑙𝑖𝑚.
Table 4 shows that, in our running example, when receiving the

second 𝑏, the state 𝑖𝑑 = 2 cannot make a synchronous move, as it is
at node 𝑛 = 𝑏 where 𝑎𝑏 is the current path in the trie. |�̂� | = 1, as this
is the second 𝑏 that is not processed by state 𝑖𝑑 = 2. 𝑠 .𝑛.𝑙𝑒𝑣𝑒𝑙 = 2,
as the node is 2 steps from the 𝑟𝑜𝑜𝑡 node. The look-ahead limit
for state 𝑖𝑑 = 2 is thus 𝑙𝑖𝑚 = 1 + 2 + 1 = 4. This indicates that

Arriving
event

State
id n 𝛾 �̂� 𝛿 (𝛾) dt

a 0 - - ⟨𝑎⟩ 0 2
1 𝑎 (a,a) - 0 2

b
0 - - ⟨𝑎, 𝑏⟩ 0 1
1 𝑎 (a,a) ⟨𝑏⟩ 0 1
2 𝑎𝑏 (a,a)(b,b) - 0 2

b
2 𝑎𝑏 (a,a)(b,b) ⟨𝑏⟩ 0 1
3 𝑎𝑏 (a,a)(b,b)(b,≫) - 1 2
4 𝑎𝑏𝑑𝑏 (a,a)(b,b)(≫,d)(b,b) - 1 2

c

3 𝑎𝑏 (a,a)(b,b)(b,≫) ⟨𝑐⟩ 1 1
4 𝑎𝑏𝑑𝑏 (a,a)(b,b)(≫,d)(b,b) ⟨𝑐⟩ 1 1
5 𝑎𝑏𝑐 (a,a)(b,b)(b,≫)(c,c) - 1 2
6 𝑎𝑏𝑑𝑏 (a,a)(b,b)(≫,d)(b,b)(c,c) - 1 2

Table 4: Running example: state buffer. The prefix path of
the node is written in subscript. A fixed decay time of 2 is
used for a simple example.

the algorithm should attempt to make model moves iff it gets a
substring match on event 𝑏 at most 4 steps from the 𝑟𝑜𝑜𝑡 . From
the Figure 6 it can be deduced that the path 𝑎𝑏𝑑𝑏 is the only viable
model move path to get a synchronous move on the second 𝑏.

a

-

b

c e

d

b

e

d

e c

b

e

b

e c

e

c

b

ed

b

e

Figure 6: Running example: look-ahead limit for 𝑖𝑑 = 2 when
the second 𝑏 arrives. The current node is in blue, the look-
ahead limit in orange, and out-of-scope nodes in red.

3.2 Algorithms
The pseudo-code for the IWS algorithm is listed in Algorithm 1.
The algorithm takes as input the event 𝑒𝑣𝑡 and the trie 𝑇 .

First, the algorithm initializes some placeholder empty sets of
states (Lines 1-3). If the 𝑐𝑎𝑠𝑒𝐼𝐷 is in the state buffer, then the states
associated with the 𝑐𝑎𝑠𝑒𝐼𝐷 are fetched and assigned to the set 𝑆 ;
otherwise, the initial state with the root node of the trie is added to
𝑆 (Lines 4-7). In the running example (Table 4), this is when state
id 0 is generated.

Then, the algorithm iterates over all the states in the state buffer
and attempts to make a synchronous move based on the event
activity (Lines 8-9). Utilizing the trie, the synchronous move check
is straightforward — the event activity should be a child of the
current node of the state. New states are generated for each state
where a synchronous move is possible (Line 10). As an example,
this occurs for both events 𝑎 and the first 𝑏 in the running example.

If no synchronousmoveswere possible, the states are looped over
once more to generate non-synchronous moves and the affiliated



I Will Survive: An Event-driven Conformance Checking Approach Over Process Streams DEBS ’23, June 27–30, 2023, Neuchatel, Switzerland

Algorithm 1 I Will Survive
Input: 𝑒𝑣𝑡,𝑇
1: 𝑆 ← ∅
2: 𝑆𝑠𝑦𝑛𝑐 ← ∅
3: 𝑆𝑛𝑜𝑛𝑠𝑦𝑛𝑐 ← ∅
4: if 𝑒𝑣𝑡 .𝑐𝑎𝑠𝑒 ∈ 𝐵 then
5: 𝑆 ← 𝐵(𝑒𝑣𝑡 .𝑐𝑎𝑠𝑒)
6: else
7: 𝑆 ← {𝑟𝑜𝑜𝑡𝑠𝑡𝑎𝑡𝑒}
8: for each 𝑠 ∈ 𝑆 do
9: if 𝑠 .𝑠𝑦𝑛𝑐𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 (𝑒𝑣𝑡 .𝑎𝑐𝑡) then
10: 𝑆𝑠𝑦𝑛𝑐 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠𝑆𝑡𝑎𝑡𝑒𝑠 (𝑠, 𝑒𝑣𝑡 .𝑎𝑐𝑡)
11: if |𝑆𝑠𝑦𝑛𝑐 | = 0 then
12: for each 𝑠 ∈ 𝑆 do
13: 𝑆𝑛𝑜𝑛𝑠𝑦𝑛𝑐 ← 𝑆𝑛𝑜𝑛𝑠𝑦𝑛𝑐 ∪ ℎ𝑎𝑛𝑑𝑙𝑒𝐿𝑜𝑔𝑀𝑜𝑣𝑒 (𝑠, 𝑒𝑣𝑡 .𝑎𝑐𝑡)
14: 𝑆𝑛𝑜𝑛𝑠𝑦𝑛𝑐 ← 𝑆𝑛𝑜𝑛𝑠𝑦𝑛𝑐 ∪ ℎ𝑎𝑛𝑑𝑙𝑒𝑀𝑜𝑑𝑒𝑙𝑀𝑜𝑣𝑒𝑠 (𝑠, 𝑒𝑣𝑡 .𝑎𝑐𝑡)

15: 𝑆𝑛𝑜𝑛𝑠𝑦𝑛𝑐 ← 𝑎𝑝𝑝𝑙𝑦𝐶𝑜𝑠𝑡𝐹𝑖𝑙𝑡𝑒𝑟 (𝑆𝑛𝑜𝑛𝑠𝑦𝑛𝑐 )
16: 𝑆 ← ℎ𝑜𝑢𝑠𝑒𝑘𝑒𝑒𝑝 (𝑆) ∪ 𝑆𝑠𝑦𝑛𝑐 ∪ 𝑆𝑛𝑜𝑛𝑠𝑦𝑛𝑐
17: 𝐵.𝑆 ← 𝑆
18: 𝑅𝑒𝑡𝑢𝑟𝑛 �̂�

states. This part of the algorithm is explored with the arrival of the
second 𝑏 in the running example. Handling log moves is simple,
as the arrived event activity is simply appended as a log move,
and no traversal in the trie is necessary (Line 13). The state id 3 is
constructed in this phase. Handling model moves (Line 14) is the
most complex part of the algorithm, as multiple model moves may
be possible and have the same cost. The state id 4 is constructed
when executing the handling of model moves. A more detailed
description of handling model moves is described in Algorithm 2.
Once the non-synchronous moves are generated, a cost filter is
applied to keep only the states with the lowest added cost (Line 15).
This is most relevant when the decay time is longer, there are many
states in the state buffer, and some of the states find more optimal
paths than other states.

In the final part, the old states receive housekeeping as the as-
sociated decay time is updated, and states that have exhausted
the decay time are removed from memory (Line 16). For example,
if the algorithm has processed the second 𝑏, then states with ids
0 and 1 (Table 4) are removed. An optional limit, defined during
the algorithm’s initialization, checks if the number of cases in the
state buffer is more than allowed; if yes, the case that has not re-
ceived an update for the longest time is removed from the state
buffer. Thereafter, the state buffer is updated with the housekept old
states and newly generated states (Line 17). Ultimately, the latest
prefix-alignment is returned (Line 18).

The algorithm for model moves (Algorithm 2) expects a state
and an activity as input. First, the event activity is appended to the
state suffix to ensure that any unprocessed activities are played out,
and the result is stored in a variable �̂�𝑐ℎ𝑒𝑐𝑘 (Line 1). Referring to
the example in Figure 6 and state id 2 from Table 4, the state suffix
is empty when the second 𝑏 arrives. Thus, �̂�𝑐ℎ𝑒𝑐𝑘 will consist of
only the activity 𝑏.

An empty set is initialized for holding potential model moves
(Line 3), and the look-ahead limit is initialized (Line 2) with the
parameters defined in Definition 3.5. For the running example,

Algorithm 2 Handle Model Moves
Input: 𝑠, 𝑎𝑐𝑡
1: �̂�𝑐ℎ𝑒𝑐𝑘 ← 𝑠 .�̂� + 𝑎𝑐𝑡
2: 𝑙𝑖𝑚 ← |�̂�𝑐ℎ𝑒𝑐𝑘 | + 𝑠 .𝑛.𝑙𝑒𝑣𝑒𝑙
3: 𝑆𝑚𝑜𝑑𝑒𝑙 ← ∅
4: 𝑁𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← 𝑠 .𝑛.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛
5: 𝑁𝑚𝑎𝑡𝑐ℎ𝑒𝑑 ← ∅
6: while 𝑙𝑖𝑚 > 𝑠 .𝑛.𝑙𝑒𝑣𝑒𝑙 do
7: 𝑁𝑚𝑎𝑡𝑐ℎ𝑒𝑑 ←𝑚𝑎𝑡𝑐ℎ𝑆𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔(𝑁𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛, �̂�𝑐ℎ𝑒𝑐𝑘 )
8: if |𝑁𝑚𝑎𝑡𝑐ℎ𝑒𝑑 | > 0 then
9: break
10: 𝑙𝑖𝑚 ← 𝑙𝑖𝑚 − 1
11: 𝑁𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← 𝑛.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ∀𝑛 ∈ 𝑁𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛
12: if 𝑙𝑖𝑚 = 0 𝑎𝑛𝑑 |�̂�𝑐ℎ𝑒𝑐𝑘 | > 1 then
13: 𝑝𝑟𝑢𝑛𝑒 (�̂�𝑐ℎ𝑒𝑐𝑘 )
14: 𝑁𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← 𝑠 .𝑛.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛

15: if |𝑁𝑚𝑎𝑡𝑐ℎ𝑒𝑑 | > 0 then
16: for each 𝑛 ∈ 𝑁𝑚𝑎𝑡𝑐ℎ𝑒𝑑 do
17: 𝑆𝑚𝑜𝑑𝑒𝑙 ← 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑆𝑡𝑎𝑡𝑒𝑠 (𝑛)
18: Return 𝑆𝑚𝑜𝑑𝑒𝑙

𝑙𝑖𝑚 = 1+ 2+ 1 = 4, meaning that the algorithm traverses maximally
to a distance of 4 from the root node.

Two sets of nodes are initialized – children nodes (Line 4) are
used for traversing in the trie, and matched nodes (Line 5) are used
for potential storing of nodes that have a substring match. In the
running example (Figure 6), the children nodes would be 𝑐 , 𝑑 , and 𝑒 ,
which are direct children of the node𝑏 shown in blue. The matching
nodes are initialized as an empty set.

The most exhaustive part of the algorithm is within the while
loop (Line 6). All the children nodes are checked for a potential
substring match (Line 7) and if matching nodes are found then
the while loop is exited (Lines 8-9). Based on the running example,
activity 𝑏 does not match the nodes 𝑐 , 𝑑 , or 𝑒 . Thus, the look-ahead
limit is decreased (Line 10) and new children nodes are assigned
(Line 11). For the running example, the children nodes are now the
nodes depicted in orange in Figure 6. A substring match is found
between activity 𝑏 and the orange node 𝑏, and thus the algorithm
breaks out of the while loop.

If the look-ahead limit is exhausted, but there is more than one
activity in the state suffix (Line 12), then the first element of the
suffix is pruned, and the look-ahead limit is reinitialized with the
new size. For an example of why these steps are needed, we intro-
duce a different example in Figure 7. Here, a full substring match
for activities ⟨𝑐, 𝑥,𝑦, 𝑧⟩ is not possible from node 𝑏. However, by
removing activity 𝑐 from �̂�𝑐ℎ𝑒𝑐𝑘 , we can get a substring match on
⟨𝑥,𝑦, 𝑧⟩ by doing a model move on the node 𝑞.

Finally, if matching nodes were found (Lines 15-17), then new
states are constructed for each matching node by finding possible
synchronous moves, model moves, and log moves. For the example
in Figure 7, this would mean that our matching node is 𝑧, and we
traverse by reversing the trace suffix ⟨𝑐, 𝑥,𝑦, 𝑧⟩. Here, 𝑧, 𝑦, and 𝑥 are
synchronous moves, and then model moves are needed until node
𝑏 is reached — that is, making a model move on node 𝑞. Finally,
since activity 𝑐 was previously pruned in order to get the substring
match, the activity is reinstated as a log move.
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In the last step, the matching nodes are returned to the main
algorithm (Line 18). If no matching nodes were found, then an
empty set is returned.
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Figure 7: Example use case and resulting alignment for look-
ahead limit’s suffix pruning. The last synchronous node 𝑏 is
shown in blue; node 𝑐 is synchronous but leads to a subopti-
mal path, while nodes 𝑥,𝑦, 𝑧 are more optimal but do not get
a substring match if starting from node 𝑐.

3.2.1 Space complexity. The trie and the state buffer are the two
objects that need to be stored in memory. The trie is static, i.e. it
does not change during the execution of the algorithm, while the
state buffer is continuously evolving based on the data stream. The
trie is in the worst case linear to the size of the proxy log, 𝑂 ( |𝐿′ |),
indicating that each trace in the proxy log has a unique first activity.
Usually, the trie is logarithmic compared to the proxy log size
𝑂 (𝑙𝑜𝑔|𝐿′ |), because business processes have common prefixes (c.f.
Table 3 and Figure 4). As discussed previously, the trie is computed
beforehand and it is immutable.

The size of the state buffer depends on two factors, the number of
cases |U𝑐𝑎𝑠𝑒 | in the event stream, and the number of states stored
for each case. The number of cases stored can be controlled by
a simple limiting function that removes the cases that have not
received an update for the longest time. The number of states per
caseID is dependent on the branching factor (𝑏𝑓 ) of the trie and
the deviation in the behavior between a trace and the trie. In the
best case, when an alignment consists of synchronous moves, the
state buffer grows as 𝑂 ( |U𝑐𝑎𝑠𝑒 |.𝑑𝑡) that is because, for each newly
arriving event, one new state is generated with a synchronous move.
In the worst-case scenario, the states’ growth can be equal to the
𝑏𝑓 , of the trie node, i.e. 𝑂 ( |U𝑐𝑎𝑠𝑒 |.(𝑏𝑓 + 1).𝑑𝑡), we have only one
possible log move but 𝑏𝑓 model moves. Storage of previous states
can be controlled by the decay time setting. Using a fixed decay
time, there is a fixed upper bound on the number of states stored per
case, that can be computed based on the precomputed trie. Using a
discounted decay time, the upper bound is still dependent on the
trie, while for each individual case, the upper bound diminishes as
the case evolves.

3.2.2 Time complexity. For each newly arriving event, we fetch the
relevant states in𝑂 (1).We retrieve in theworst case𝑂 ( |U𝑐𝑎𝑠𝑒 |.(𝑏𝑓 +
1) .𝑑𝑡) states, as discussed under space complexity. Synchronous and

log moves can be done in𝑂 (1). Handling model moves depends on
the trie branching factor and the look-ahead limit. The look-ahead
limit 𝑙𝑖𝑚 can be bounded by the decay time setting, e.g. the size of
the trace suffix can never be longer than the decay time. That is,
in the worst case, we need 𝑂 (𝑏𝑓 .𝑚𝑖𝑛(𝑑𝑡, 𝑙𝑖𝑚)) steps to define the
new states to be added to the state buffer.

4 EXPERIMENTS
In this section, we present the experiments that we conducted to
validate the proposed approach.

All the executions were done on a single thread using Windows
10 running a CPU @ 1.60GHz, Java 8, and heap size set to 8GB.

The implementation in Java and the execution results are avail-
able in a git repository1.

The preliminaries and experimental results for answering the
research questions are discussed in the next subsections.

4.1 Comparative Analysis
In the following, the naming convention from [18] will be used.
The current state of the art will be referred to as OCC with two
variations: OCC-W1, referring to a window size of 1, and OCC-
Winf, with infinite window size. OCC-W1 is the current state of the
art in terms of computation time of prefix-alignments. However,
due to the window size limitation, the output approximates the
optimal alignment. The OCC-Winf provides the baseline for the
alignment cost, as the algorithm has an infinite window size and
is thus guaranteed to calculate an optimal alignment [26]. The
algorithm introduced in this paper will be referred to as IWS (I Will
Survive).

Some of the more recent alternative algorithms were excluded
from the comparison, as they have not substantially improved the
execution time, but have rather focused on memory-handling as-
pects. Furthermore, a comparison to, for example, the IASR and
IAS algorithms introduced in [18] would have been unfair, as the
algorithms are only implemented in Python, whereas the OCC
algorithms and IWS are implemented in Java. Based on [18], the
OCC-W1 implementation in Python outperformed both IASR and
IAS time-wise. The algorithm from [28] improves the memory per-
formance of OCC, but it is built on top of the existing OCC by ab-
stracting away a part of the previously calculated prefix-alignment.
While the algorithm still outputs the cost of the prefix-alignment,
it does not output the complete prefix-alignment itself, rendering a
potential analysis of the deviation more obscure. Therefore, it was
not considered for comparison with OCC and IWS that both are
able to output the entire prefix-alignment.

The comparative analysis aims to examine how IWS fares in
terms of alignment cost and computation time. For calculating the
computation time, only the time taken to process each event is taken
into account. This is done to mimic a streaming scenario, where
the loading of a model is done beforehand. The algorithms were
executed in an offline mode for the experiments. The event log was
loaded from a file and fed to the algorithm event by event. This was
done to have a fair comparison because the OCC implementation
would have needed extensive refactoring, and also, offline mode

1https://github.com/DataSystemsGroupUT/ConformanceCheckingUsingTries/tree/
streaming

https://github.com/DataSystemsGroupUT/ConformanceCheckingUsingTries/tree/streaming
https://github.com/DataSystemsGroupUT/ConformanceCheckingUsingTries/tree/streaming
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Figure 8: Setup: Gray (red) area shows the artifacts produced
by the preprocessing for real-life (synthetic) logs.

allows for avoiding discrepancies from networking or other external
factors.

4.1.1 Datasets. Some well-known synthetic and real-life process
logs were used for running the experiments. The synthetic process
logs2 also contained a reference WF-net process model. The real-
life process logs were BPI 20123, BPI 20174, and BPI 2020 Travel
Permits5, which do not have an associated reference model.

The OCC takes as input an event and aWF-net model, while IWS
requires an event and a trie. Thus, some preprocessing was applied
to both the synthetic and real-life datasets. The preprocessing for
synthetic data is shown in Figure 8 with the red area indicating the
steps done. For OCC, the existing log and model were used. For IWS,
a proxy log was simulated from the reference model. The simulation
method from [27] was used with default settings of random path
simulation, 2000 generated traces, and a maximum looping factor
of 3. From the proxy log, the trie was constructed and fed into the
IWS algorithm, together with the original log.

For the real-life data, the first step was to construct a process
model from the log (Figure 8, shown in gray). For this, the Inductive
Miner (IM) [14] plugin in ProM [25] was used with noise thresholds
set to 0.2, 0.5, 0.8, and 0.95. For the generation of the trie, the same
steps with the same settings were done as for the synthetic data.
Finally, while running the experiments, it appeared that the OCC
algorithms were unable to output a result due to the size of some
of the original logs. Thus, sample logs of the 1000 most frequent
trace variants were generated, and the algorithms used the sample
logs instead of the original logs.

Information about the logs and models used in the experiments
is shown in Table 5. Transitions and 𝜏 transitions refer to the WF-
net model characteristics. Trie construction time indicates the time
taken to construct the underlying trie based on the proxy log – the
trie construction is done offline. The number of events indicates
how many events are in each sample log.

4.1.2 Results. The results of the experiments are shown in Table 6.
The average alignment cost per trace is reported for each dataset.
For example, the M1 dataset has 500 traces, and the total alignment
costs across the whole dataset were 2918, 2702, and 2439 leading
to the average cost per trace of 5.8, 5.4, and 4.9 as described in
Table 6. A time per event in milliseconds is reported in terms of
computation time.

2https://github.com/PADS-UPC/RL-align/tree/master/data/originals/M-models
3https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
4https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
5https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51

In terms of the synthetic datasets, in five instances, the OCC
algorithmswere left running for 1 hour, but no output was produced.
These are marked with a - in the table. For other synthetic logs,
the cost deviations of IWS were modest. The highest cost deviation
was reported for the M9 log, where IWS reported a cost of 1.43x
higher than the optimal alignment (29.2 vs 20.5). For M4 and M8,

Dataset Transitions 𝜏

transitions
Trie
nodes

Trie constr.
time (ms) # events

M1 39 3 8281 353 6555
M2 34 2 20742 407 8809
M3 123 14 26434 524 17980
M4 52 8 13261 512 13421
M5 33 1 49571 652 17028
M6 72 2 98781 1239 26719
M7 62 4 46481 812 18803
M8 15 0 1682 326 8246
M9 55 0 7223 576 22163
M10 146 3 87289 1197 29118

BPI 2012-0.2 46 22 3962 1659 33509
BPI 2012-0.5 46 23 1721 387 33509
BPI 2012-0.8 25 8 726 262 33509
BPI 2012-0.95 24 4 106 219 33509
BPI 2017-0.2 46 21 3338 276 32646
BPI 2017-0.5 29 8 192 150 32646
BPI 2017-0.8 32 7 69 163 32646
BPI 2017-0.95 31 6 69 152 32646
BPI 2020-0.2 85 37 23603 397 15810
BPI 2020-0.5 64 15 945 71 15810
BPI 2020-0.8 65 16 887 64 15810
BPI 2020-0.95 59 14 1591 235 15810

Table 5: Dataset metadata

Dataset Cost per trace Time per event (ms)

IWS OCC-
W1

OCC-
Winf IWS OCC-

W1
OCC-
Winf

M1 5.8 5.4 4.9 0.3 1.3 1.9
M2 10.6 9.4 8.1 0.2 6.3 12.2
M3 23.9 - - 0.6 - -
M4 22.1 23.0 20.5 0.8 10.9 25.4
M5 26.0 - - 0.8 - -
M6 45.9 - - 12.4 - -
M7 29.2 - - 0.6 - -
M8 7.6 7.8 6.7 0.2 0.7 1.1
M9 29.2 26.1 20.5 0.7 19.6 32.8
M10 50.0 - - 9.0 - -

BPI 2012-0.2 27.1 0.8 0.3 0.3 2.0 3.8
BPI 2012-0.5 26.6 6.3 3.0 0.3 2.4 12.4
BPI 2012-0.8 28.3 26.1 16.8 0.3 1.2 5.3
BPI 2012-0.95 30.1 30.1 26.6 0.2 5.2 9.0
BPI 2017-0.2 26.1 4.4 1.7 0.3 3.5 9.9
BPI 2017-0.5 25.3 26.7 25.1 0.2 3.3 14.0
BPI 2017-0.8 28.6 29.0 25.4 0.2 3.2 10.7
BPI 2017-0.95 28.6 29.0 25.4 0.2 2.3 11.4
BPI 2020-0.2 12.1 6.5 5.2 0.3 4.6 7.3
BPI 2020-0.5 10.7 10.8 6.8 0.1 1.6 5.1
BPI 2020-0.8 10.3 11.2 8.7 0.1 1.8 7.6
BPI 2020-0.95 12.1 7.6 6.8 0.2 1.3 3.6

Table 6: Comparative analysis results.

https://github.com/PADS-UPC/RL-align/tree/master/data/originals/M-models
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
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IWS alignment A B P P D E P E L K O G H I E I M F I
A B P P ≫ E P ≫ ≫ ≫ ≫ ≫ ≫ ≫ ≫ ≫ ≫ ≫ ≫

OCC-W1 alignment A B P ≫ ≫ P ≫ ≫ D ≫ E ≫ P ≫ E ≫ L ≫ ≫ K O ≫ ≫ G H I ≫ ≫ ≫ E ≫ ≫ ≫ ≫ ≫ ≫ ≫ I ≫ ≫ ≫ M ≫ ≫ F I
A B P 𝜏 𝜏 P 𝜏 𝜏 D 𝜏 E 𝜏 P 𝜏 E 𝜏 L 𝜏 𝜏 K O 𝜏 𝜏 G H I 𝜏 𝜏 𝜏 E 𝜏 𝜏 𝜏 𝜏 𝜏 𝜏 𝜏 I 𝜏 𝜏 𝜏 M 𝜏 𝜏 ≫ I

Table 7: Example of a trace’s prefix-alignment from BPI 2012 log with IM 0.2 threshold.

IWS outperformed OCC-W1 in terms of cost, and only had an error
rate of 1.08x and 1.14x compared to optimal alignments.

In terms of execution time, the results are strongly in favor of
IWS. In almost all cases, IWS was able to process an event in less
than one millisecond, while OCC-W1 was able to process an event
in less than a millisecond only for the dataset M8. The M8 dataset
also exhibited the smallest difference in terms of execution time,
as IWS finished execution 3.5x faster than OCC-W1. For M2, M4,
and M9 datasets, IWS computed the result in only a fraction of the
time compared to the OCC-W1 execution time. This is especially
interesting in terms of dataset M4, where IWS outperformed OCC-
W1 by both – producing alignments that were more optimal and
finding these alignments more than 14.4x faster. For the datasets
M3, M5, and M7, IWS computed alignments in 10-14 seconds, while
the OCC algorithms were unable to output a result within 1 hour.
This indicates an execution time difference of potentially more than
three orders of magnitude.

Looking at the real-life datasets, the results were a bit more var-
ied in terms of cost. IWS displayed an inferior cost performance
for the BPI 2012 dataset, where the model was discovered with an
IM threshold setting of 0.2. Here, IWS reported a cost 35.9x higher
than OCC-W1 and 81.3x higher than optimal alignments, which
would indicate an unreasonably high error. The reason for such
poor performance is discussed in the next section. Some other poor
results were for BPI 2012 with IM 0.5, and BPI 2017 with IM 0.2.
However, for more than half of the datasets, the cost error was com-
parable between IWS and OCC-W1. In fact, for five datasets, IWS
outperformed OCC-W1 by producing more optimal alignments; for
BPI 2017 with IM 0.5, the cost difference between IWS and optimal
alignments was only 1.01x.

In terms of execution time, IWS is the fastest across all datasets.
The smallest difference is for BPI 2012 with IM setting 0.8, where
IWS finished 4.6x faster than OCC-W1 and 19.5x faster than optimal
alignments. The biggest execution time difference was for BPI 2012,
with IM setting 0.95. Interestingly, for this dataset, both IWS and
OCC-W1 had the same alignment cost, but IWS could compute the
alignments 24.5x faster than OCC-W1.

4.1.3 Discussion. The results indicate that IWS is, in most cases,
better suited for streaming conformance checking than the current
state of the art (OCC-W1). IWS beats OCC-W1 in computation time
and, in some cases, also in terms of finding more optimal prefix-
alignments. However, there were a few cases in the real-life datasets
where the cost error of IWS was very high compared to the state of
the art. Let us investigate the reason for this with some examples
from the BPI 2012 log.

First of all, the Inductive Miner, used for discovering the WF-net
models, has a tendency to discover flower models[14], i.e. models
allowing any kind of behavior, if the noise threshold is set to a low
level. In such cases, the set of allowed behavior in the model is very
large. IWS is dependent on the existence of a trie, which in turn

is dependent on the existence of a proxy log – a set of behavior
extracted from the model. The more behavior the model allows for,
the more difficult it is to extract a representative proxy log.

One way to have a more representative proxy log would be to
increase the size of the proxy log. However, for flower models, this
may be infeasible. The WF-net model produced by IM for the BPI
2012 log with a 0.2 setting has 46 transitions, out of which 24 transi-
tions are labeled and 22 are silent. The first two labeled transitions
are fixed, but after that, due to the 𝜏 transitions, almost any of the 22
labeled transitions can occur. Due to loops, the following transition
can be any of the 22 labeled transitions, including the label itself.
Thus, with each new event, the possible behavior increases expo-
nentially. For a trace with ten events, assuming the first two events
are always sequential, there can be 2 + 228 = 54875873538 possible
variants. The BPI 2012 log has, on average, 33 events per trace.
A simulation method to extract a proxy log that would not find
deviations becomes impractical from a computational point of view.
Furthermore, it can be argued that exercising conformance check-
ing on a process model that allows any behavior has no intrinsic
value since any kind of behavior is conforming.

An example prefix-alignment of the BPI 2012 log is shown in
Table 7. The prefix alignment from the IWS algorithm is much
shorter because the trie does not contain 𝜏 transitions. The OCC-W1
prefix alignment has many model moves on 𝜏 transitions, allowing
it to find synchronous moves for almost every event in the trace.
By convention, the 𝜏 transitions are not penalized and have an
alignment cost of 0, as they are valid passages through the model.
However, it can be argued that while the OCC-W1 alignment has
a much lower cost – it has a cost of 1, compared to the IWS cost
of 13 – the alignment itself becomes hard to decipher due to the
many 𝜏 transitions and is hardly usable for an analyst trying to
pinpoint deviations. Thus, such an alignment provides little value
in a real-life setting. For reference, the worst cost error in the BPI
2012 log is for a trace with 170 events. IWS reports a cost of 164,
while OCC-W1 reports a cost of 2. However, in the prefix alignment,
OCC-W1 has 537 moves on 𝜏 transitions. In total, the output from

Model type Small Medium Large
Activities 16 153 471
Traces in proxy log 256 23409 25000
Trie nodes 841 713640 760343
Trie building time 1267 19934 101960
Computation time 833438 1244394 1541570
Idle time 2766562 2355606 2058430
Events 278063 365425 354602
Event Computation time 3.0 3.4 4.3

Table 8: Stress test: description of models and results. All
times are expressed in milliseconds (ms).
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OCC-W1 across the whole BPI 2012 log for the IM 0.2 model has
76172 𝜏 transitions across the 1000 sample traces.

In conclusion, IWS outperforms OCC-W1 in terms of computa-
tion time and is comparable or better in terms of cost error in most
cases. If the model allows for a large variety of behavior, e.g., when
dealing with flower models, then the cost difference between IWS
and OCC-W1 is prominent, and for such models, OCC-W1 is better
suited, especially if calculation time is not a constraint. Importantly,
however, it can be argued that the alignments produced by the
OCC-W1 for flower models are complex to grasp. Furthermore, com-
puting conformance for models which allow any kind of behavior
does not seem practical, as it is counterintuitive to the purpose of
conformance checking.

4.2 Stress test

IWSPLG2

Models

Model

Proxy log
Proxy trie

Event stream

Figure 9: Setup for stress testing. The gray rectangle shows
the artifacts produced by the PLG2 software.

In order to test the algorithm for speed and memory consump-
tion, the PLG2 software [6] was used to simulate three process
models of various sizes. PLG2 was further used to simulate a proxy
log from these models and to stream events to the socket while
adding some noise to the event stream so as to mimic discrepant
behavior. An overview of the approach can be seen in Figure 9. The
memory consumption was measured using the tool VisualVM [19].

A description of the process models generated by PLG2 and
the resulting tries is in Table 8. The number of unique activities
illustrates the complexity level of each of the models. The proxy
log sizes were determined by squaring the activity count, except
for the Large model, where the simulation was stopped at 25000
traces due to the long execution time of the simulation process.

The event streams were generated with the preset configuration
of having noise only on the control-flow, indicating that traces had
a 5% chance of missing activities. The streams were left running
for an hour, with IWS set to forget cases when the number of cases
in memory is over 10000.

The algorithm was successfully able to keep up with the stream.
For the event stream on the small model, the algorithm was idle for
3
4 of the time, signaling that higher throughput could have been
achieved. For medium and large models, the algorithm was idle for
2
3 and 4

7 of the time, respectively.
As expected, the experiments using the small model had the least

strain on the CPU and memory, with less than 5% of CPU utilized
by the Java application running the algorithm and memory usage
not exceeding 200 MB during the execution. The results for the
small model are depicted in Figure 10. The figure includes a run on
the same model with different algorithm and stream settings – a
higher noise level, indicating more discrepant behavior, and higher
decay time settings, forcing the algorithm to store more states in

memory. As can be seen empirically, the number of states and the
memory usage stabilizes and remains bounded due to the case limit
and the usage of decay time in the state buffer, while for the higher
noise and decay time, the sheer amount of states kept in memory
is higher.

Memory usage for medium and large models was much higher –
likely due to a higher amount of nodes in the medium and large tries
and longer traces, which lead to more states being kept in memory.
For the medium model, the memory usage was between 600-1600
MB, stabilizing at 900 MB with a slightly increasing upward trend,
while for the large model, the memory usage was between 1500-
2250 MB. The accompanying figures can be found in the repository
due to the space limitation of this article.

The CPU and memory usage results show that the IWS is usable
for online conformance checking for an extended period of time.
Notably, the current experiments incorporated only a simple case
bound to remove processed traces from memory. For more complex
options for handling the memory and limiting the cases, we refer
to [28]. Such case and state management techniques can be used
to extend the IWS algorithm. It would also be possible to set rules
that define when memory should be flushed to disk.

Ultimately, the algorithm displays very fast processing of event
streams with a low strain on memory. Thus, the algorithm would
be applicable for real-life streaming conformance checking.

5 CONCLUSION
This paper presents a new approximate approach (IWS) for online
conformance checking based on prefix alignments. IWS uses a trie
as the underlying structure for holding the model behavior as a
compacted proxy log. A State buffer is used as a way to keep track
of seen traces, decay time is used for releasing states from the buffer,
and look-ahead limit is used for optimizing possible model moves.

We compared IWS against the state-of-the-art solutions (OCC-
W*) using synthetic and real-life datasets. IWS outperformed OCC
in all instances in terms of computation time. In some cases, IWS
produced an output in 8-13 seconds, while OCC-W1 failed to finish
within an hour. At the same time, the IWS achieved comparable cost
error for over a quarter of the datasets and even achieved a lower
error cost than OCC-W1. IWS showed high error for process mod-
els with low precision – flower models. However, the alignments
produced by OCC-W1 for such models are hard to decipher. Fur-
thermore, conformance checking on models allowing any behavior
is arguably not sensible.

The algorithm seems suitable for streaming conformance check-
ing, but it has some limitations. For example, the trie can be expo-
nentially large depending on the specific process and the size of
the proxy log. Moreover, there is a high dependence on the quality
of the proxy log. While discovery algorithms can generalize on the
constructs such as parallelism and loops, a trie is merely a one-
to-one representation of the proxy log, potentially overfitting the
model behavior. Therefore, we plan to investigate generating the
trie directly from an existing process model for future work. Fur-
thermore, current research in streaming conformance checking has
not touched upon the possibility of stream imperfections. In real-
life settings, imperfections such as out-of-order events are likely to
occur. IWS, utilizing a discounted Decay Time, could be a solution
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Figure 10: Memory consumption, number of events, states, and cases within one hour of stress test.

to handle stream imperfections. Finally, we plan to leverage Stream
Processing engines, e.g., Beamline 6 built on Apache Flink, for im-
proving IWS even further and allowing the conformance checking
to utilize parallelism and to occur on distributed systems.
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