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Abstract
Starting from fundamental hydrodynamics and thermodynamics equations for thermo-viscous

fluids, a new modeling procedure, which is suitable to describe acoustic propagation in gas mixtures,

is presented. The model revises the boundary conditions which are appropriate to describe the

condensation-evaporation processes taking place on a solid wall when one component of the mixture

approaches saturation conditions. The general analytical solutions of these basic equations now

give a unified description of acoustic propagation in an infinite, semi-infinite or finite medium,

throughout and beyond the boundary layers. The solutions account for the coupling between

acoustic propagation and heat and concentration diffusion processes, including precondensation on

the walls. The validity of the model and its predictive capability have been tested by a comparison

with the description available in the literature of two particular systems (precondensation of propane

and acoustic attenuation in a duct filled with an air-water vapor saturated mixture). The results of

this comparison are discussed to clarify the relevance of the various physical phenomena that are

involved in these processes. The model proposed here might be useful to develop methods for the

acoustic determination of the thermodynamic and transport properties of gas mixtures as well as

for practical applications involving gas and gas-vapor mixtures like thermoacoustics and acoustics

in wet granular or porous media.

PACS numbers: 43.20.+g, 64.70.F-, 89.90.+n
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I. INTRODUCTION

During the last three decades, important research work was carried out to improve the

description of acoustic fields in binary gas mixtures, pure saturated vapors, and gas-saturated

vapor mixtures.

On one hand, the analysis of mixture separation phenomena inside the boundary layers

(experimentally observed in thermoacoustic engines) led Swift et al. (1999–2002) to suggest

analytical models of acoustic fields coupled to heat and concentration diffusion processes in

thermoacoustic cores filled with binary gas mixtures [1–3]. More recently, the experimental

work of Gavioso et al. (2010), aiming at an accurate measurement of the acoustic fields in a

resonant cavity filled with with a binary inert gas mixture, indicated the need for advanced

acoustic modeling in the bulk of the gas as well as in the boundary layers [4]. In 2012, two

of us (C. G. and M. B.) provided a more general and unified analytic procedure whereby the

acoustic field in binary gas mixtures can be expressed, throughout and beyond boundary

layers, from coupled solutions for the propagative and diffusive fields [5].

On the other hand, the results of accurate speed of sound measurements in cavities filled

with a pure saturated vapor (i.e. a gas in static pressure and temperature conditions close to

the vapor-liquid equilibrium), led several authors [6-8] to point out and address (Mehl and

Moldover in 1982) the significant influence of precondensation effects taking place on the

walls of the cavity [6–8]. Indeed, due to the difference between the intermolecular potential

in the bulk of the gas and at the vapor-solid interface, an adsorbed liquid film can exist in

a thermodynamic equilibrium state, even when the thermodynamic state of the vapor lies

below the liquid-gas phase transition line in the phase space (P, T ) diagram. The thickness of

the liquid film coating the wall is determined by the pressure and temperature of the vapor.

Therefore, pressure and temperature variations due to the acoustic cycle, being coupled to

heat diffusion processes in the boundary layers, result in liquid-vapor phase changes on the

walls, whose effects on the acoustic field involve the liquid film rate of change, the latent

heat of vaporization, and the balance of the heat flows at the liquid-vapor interface, as

suggested in the analytical model first developed by Mehl and Moldover [7], which predicts

the enhancement of the acoustic admittance of a solid wall coated with a liquid film.

Finally, both Mao (1998) and Raspet et al. (1999–2002) observed experimentally the

relevant influence of humidity on the acoustic attenuation in porous materials and the func-
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tional properties of thermoacoustic engines. Following these observations, several attempts

were made to improve the existing theory to provide a better understanding of the boundary

water evaporation-condensation effects on the acoustic propagation in ducts filled with an

air-water vapor mixture [9–13]. These attempts correctly include heat and concentration

diffusion processes throughout the boundary layers and their coupling to phase changes on

the walls. However, in these models the thickness of the interfacial film is assumed to be

null, and the influence of the liquid film rate of change is neglected even though it could be

significant, as previously demonstrated [7].

To sum up, previous work has either considered the coupling between heat and concen-

tration diffusion processes in binary mixtures, or the description of the physical processes

which determine precondensation in a pure vapor. The quest for a unified coherent acoustic

description of all these phenomena was the initial motivation of this work, which deals with

acoustic wave propagation in gas-vapor saturated mixtures, in infinite, semi-infinite or finite

medium, throughout and beyond the boundary layers. Here, the evaporation-condensation

processes take place only on the walls, which are permanently coated with a liquid film of

variable thickness.

This study is extensively analytical and relies on a standard formulation based on the

classical equations of acoustics in thermo-viscous fluids and the formalism developed by

Landau and Lifshitz for binary gas mixtures [14] (§ II).

In § III, the acoustic behavior of the gas-vapor mixture near the boundaries is modeled as

follows: i. the coupling between the thermal diffusion and the concentration diffusion inside

the boundary layers is described using the formulation first suggested by Swift and Spoor [1]

and later revised in Ref. [5], ii. the effect of the heat flows related to the vaporization latent

heat of the precondensed liquid film and the state of equilibrium of this liquid film are

introduced as suggested by Mehl and Moldover [7], and iii. in addition to the classic non-

slip conditions on the walls, we make use of the boundary conditions first presented by

Mao [9] and later by Raspet et al. [10–13] to describe the mass transfers between the vapor

and the wet wall. However, we do not use quasi-isothermal boundary conditions as they

do not suitably account for the latent heat associated with the condensation-evaporation

processes.

Within this rather convoluted framework, complete and tractable solutions expressing

the variation of temperature, concentration and particle velocity are derived in § IV. These
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solutions are used in § V to deal with two specific acoustic problems, namely the reflection

off the liquid coated wall and the propagation of quasi-plane waves in cylindrical waveguides.

Finally, in § VI, we apply our extended acoustic model and discuss its impact for two

particular cases previously considered in the literature, i.e. a determination of the acoustic

admittance of the boundary layer in nearly saturated propane and the acoustic attenuation

within a duct filled with a mixture of air and saturated water vapor.

II. LINEARIZED FUNDAMENTAL EQUATIONS

The variables describing the dynamic and thermodynamic states of the binary mixture

and each of its components (the subscript index i = 1, 2 refers to the gas and the saturated

vapor respectively) are: the pressure variations p and pi, the particle velocities v and vi,

the mass density variations ρ′ and ρ′i, the mass fraction variation of the gas c (i.e. 1− c for
the vapor), and the temperature variation τ of the mixture.

The parameters specifying the state of the mixture are the total and partial static pres-

sures P0 and Pi, and the mass densities ρ0 and ρi of the mixture and of each component

respectively and the static temperature T0.

Finally, the parameters specifying the nature of the mixture are the adiabatic speed

of sound a0, the static mass and mole fractions C0 and x of the gas (1 − C0 and 1 − x

respectively for the vapor), the number of moles per unit volume of the mixture and each

component n and ni, the molar masses M and Mi, the heat capacity ratios of the mixture

and each component γ and γi, the heat capacities at constant pressure per unit of mass

of the mixture and each component CP and CPi, the pressure and thermal diffusion ratios

kP = x(1 − x)(M2 −M1)/M and kT respectively, the mutual diffusion coefficient D, the

increase in pressure per unit increase in temperature at constant density β̂, the shear and

bulk viscosity coefficients µ and η respectively, and the thermal conductivity λh of the

mixture.

The set of linear equations governing acoustic fields in a gas-vapor mixture are [5, 9, 10,

14].

• Navier-Stokes equation for the mixture

1

a0

∂ v

∂t
= − 1

ρ0a0
∇p+ `v∇(∇ · v)− ` ′v∇ ∧∇ ∧ v , (1)
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where `v = (4µ/3 + η)/(ρ0a0) and ` ′v = µ/(ρ0a0).

• Mass conservation equations

∂ ρ′i
∂t

+ ρi∇ · vi = 0 , (2a)

∂ ρ′

∂t
+ ρ0∇ · v = 0 , (2b)

where ρ0v = ρ1v1 + ρ2v2.

• Equation describing the mutual diffusion of the mixture components, involving the

concentration flux density i, defined as the density flow rate through the unit surface

per unit time due to the diffusion process of component 1 of concentration C (−i for
component 2 of concentration (1− C)):

i = −ρ0a0`D
M1M2

M2

[
M2

M1M2

∇c+
kP
P0

∇p+
kT
T0

∇τ

]
(3a)

with M = xM1 + (1 − x)M2, and `D = D/a0, the concentration flux density being

also related to the particle velocities v1 and v2 by

i = −ρ0x(1− x)
M1M2

M2
(v2 − v1) (3b)

and to the expression of the mass fraction field variation c by, neglecting the second

order term ρ0v ·∇c,
∂ c

∂t
≈ − 1

ρ0
∇ · i . (3c)

The fundamental equations may be more conveniently expressed by introducing the

variable b defined as:

∂ b

∂t
=

M2

M1M2

∂ c

∂t
= − M2

M1M2

1

ρ0
∇ · i . (4)

• Entropy continuity for the mixture,(
1

a0

∂

∂t
− `h ∆

)
τ =

γ − 1

γβ̂

1

a0

∂

∂t
[p+ P0αT b] , (5)

where `h = λh/(ρ0a0CP ), and αT = kT/[x(1− x)].

The last term, which involves the normalized mass fraction variation b, arises from the

expressions of both the concentration flux density i (having the same dimension as an

heat flux, see eq. 3a) and the heat flux [14, eq. 58.12]:

q =

[
kT

(
∂ g

∂C

)
P,T

− T0
(
∂ g

∂T

)
P,C

+ g

]
i− λh∇τ (6)
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where g = g1/M1− g2/M2 and gi are the chemical potentials of the mixture and of the

component i respectively.

• Equation of state of the mixture (ideal gas, Dalton’s law)

1

ρ0

∂ ρ′

∂t
=

1

P0

∂ p

∂t
− 1

T0

∂ τ

∂t
− αP

M2

M1M2

∂ c

∂t
, (7)

where αP = kP/[x(1− x)].

Therefore, the set of fundamental equations needed to describe harmonic motion ex-

pressed as ejω t (angular frequency ω, adiabatic wavenumber k0 = ω/a0), involving the

variables p, v, τ and b, takes the following form [5]:

v = − 1

jω ρ0
∇p+

`v
jk0

∇(∇.v) +
1

k2v
∇ ∧∇ ∧ v , (8a)

∇ · v = −jω γ
ρ0a20

(p− β̂τ) + jω αP b (8b)(
1 +

1

k2h
∆

)
τ =

γ − 1

γβ̂
(p+ P0αT b) , (8c)(

1 +
1

k2D
∆

)
b = − γ

ρ0a20

1

k2D
(kP∆p+ β̂kT∆τ) , (8d)

where the wavenumbers, defined as

k2v = −jk0
` ′v

, k2h = −jk0
`h

, k2D = −jk0
`D

, (8e)

are respectively related to the shear displacement (significant only within the viscous bound-

ary layer), the thermal diffusion process, and the mutual diffusion process.

In the following, we make the limiting assumption that the evaporation-condensation

process may be neglected within the bulk of the fluid, as there the nucleation energy is

much higher than close to the wall of the enclosure. Therefore, the appropriate description

for the acoustic field is that given in Ref. [5]. Coherently with the approximations made

above, terms of order higher than one of the characteristic lengths are neglected below (i.e.

order two of the penetration depths δv,h,D =
√

2/|kv,h,D|).

III. EQUATIONS INSIDE BOUNDARY LAYERS, BOUNDARY CONDITIONS

We consider a rigid solid wall, assumed to be locally plane, which is coated with a liquid

film of variable thickness (Fig. 1). The coordinate normal to the wall inwardly directed is
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denoted u, with u = d at the interface between the liquid and the gas mixture and u = 0 on

the solid wall; the coordinate tangent to the wall is denoted w with components w1, w2 on

the wall. To simplify the description of the small amplitude acoustic disturbance within the

boundary layer and the corresponding formulation, we assume the validity of the following

approximations: (a) the component normal to the wall vu of the acoustic velocity is much

lower than the tangential components vwi (mostly within the boundary layers), (b) the

spatial variation of the acoustic velocity, and the temperature and concentration variations

are much higher in the normal direction u than in the tangential directions (w1, w2).

τℓ

u

Solid wall

Liquid film

0

d

(w1, w2)

vw

τ

Gas-vapor mixture

ḋ

v vu

τS

Figure 1. Temperature and particle velocity fields in a gas-vapor mixture close to a solid wall coated

with a liquid film.

Under these assumptions, the normal and tangential components of Navier-Stokes equa-

tion (8a) lead to the following relations, using expression (8b) for ∇.v and assuming that

τ ≈ (γ − 1)/(γβ̂)p in the higher order terms,

jω ρ0vu = −(1 + jk0`v )
∂ p

∂u
+ jk0`v ρ0a

2
0αP

∂ b

∂u
, (9a)(

1 +
1

k2v

∂ 2

∂u2

)
vw = −1 + jk0`v

jω ρ0
∇wp+ `v a0αP∇wb , (9b)

∇w being the del operator in coordinate system (w1, w2) (Fig. 1).

We can note that by substituting the expressions obtained in the following for ∂
∂u
vu and

∂ 2

∂u2
b (sections IV.B and D) into the derivative of equation (9a) with respect to the variable

u, we get the propagation equation that governs the pressure variation p.

The tangential particle velocity, the temperature and concentration variations, and the
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normal particle velocity, are then governed by the set of equations:

∂

∂u
vu + ∇w · vw = −jω γ

ρ0a20
(p− β̂τ) + jω αP b , (10a)(

1 +
1

k2v

∂ 2

∂u2

)
vw = −1 + jk0`v

jω ρ0
∇wp+ `v a0αP∇wb , (10b)(

1 +
1

k2h
∆

)
τ =

γ − 1

γβ̂
(p+ P0αT b) , (10c)(

1 +
1

k2D
∆

)
b = − γ

ρ0a20

1

k2D
(kP∆p+ β̂kT∆τ) . (10d)

The general solutions of these equations are subjected to the following boundary condi-

tions at the interface u = d between the liquid film and the gas mixture.

1. The tangential components vwi of the particle velocity of the mixture vanish

(non-slip condition):

vw(d) = 0 . (11)

2. On the surface u = d of the liquid film, the normal component of the gas particle velocity

v1u must be equal to the velocity ḋ = ∂d/∂t of the interface between the liquid and the

gas-vapor saturated mixture:

v1u(d) = ḋ . (12a)

The thickness of the liquid film is equal to d, and ḋ is related to the u-component of the

vapor particle velocity v2u(d) by

ρ`ḋ = −ρ2v2u(d) , (12b)

ρ` being the density of the liquid. Then, the relation ρ0v = ρ1v1 + ρ2v2 expressed at

u = d, leads to the following relationship between the normal component of the particle

velocity and the vibration velocity of the liquid film, under the reasonable assumption

that ρ` >> ρ1,

ρ0vu(d) = (ρ1 − ρ`)ḋ ≈ −ρ`ḋ . (12c)

The particle velocity vu(d) is related to the first derivative of the acoustic pressure with

respect to the u-coordinate (9a), leading to

∂ p

∂u

∣∣∣∣
d

≈ jω ρ`ḋ , (12d)
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to the lowest order of the characteristic lengths. This result shows that the spatial

variation of the acoustic pressure in the direction normal to the wall is non zero, due to

the thickness variations of the liquid film.

Also, the concentration density flux is non zero at the liquid-gas mixture interface, since

it is related to the vibration velocity of the liquid film ḋ. Making use of relations (12a,b,c)

in expressions (3a,b) of the concentration flux density, allows us to write, assuming

that ρ`/ρ2 >> 1:

iu(d) = x
M1

M
ρ`ḋ

= −ρ0D
M1M2

M2

[
∂ b

∂u
+
kP
P0

∂ p

∂u
+
kT
T0

∂ τ

∂u

]
d

, (13)

and finally, at the lowest order of the characteristic lengths,

x
M

M2

ρ`
ρ0

ḋ

a0
= −`D

[
∂ b

∂u
+

β̂γ

ρ0a20
kT
∂ τ

∂u

]
d

. (14)

Note that, when ḋ vanishes (no liquid film on the wall) this boundary condition takes the

form [1, 5]:
∂ b

∂u

∣∣∣∣
d

= − β̂γ

ρ0a20
kT

∂ τ

∂u

∣∣∣∣
d

.

3. Even though the temperature variation τ on the wall is much lower than the adiabatic

temperature variation in the bulk of the fluid, the usual isothermal boundary condition

τ(d) = 0 does no longer hold, as it would imply that the temperature variations due

to the latent heat of vaporization and condensation are negligible. As emphasized in

the literature [7], although this latent heat is convected in the liquid layer and the wall,

the balance of heat flow at the liquid-vapor interface implies that a slight non-negligible

temperature variation occurs on the liquid boundary.

Assuming the conservation of heat flux at the interface between the wall and the liquid film

(u = 0) and the temperature continuity at both interfaces wall-liquid film and liquid film-

gas mixture (u = d), the equations describing the spatial dependence of the temperature

waves, created at the liquid/gas mixture interface u = d (by the energy source due to the

latent heat), in the wall and in the liquid respectively, are given by

τS(u) =
τ(d)

cos k`d+ jΘ sin k`d
ejkSu , u < 0 , (15a)

τ`(u) = τ(d)
cos k`u+ jΘ sin k`u

cos k`d+ jΘ sin k`d
, 0 < u < d , (15b)
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where kS,` = (1− j)
√
ωρS,`CS,`/(2λS,`) are the complex propagation constants of thermal

waves in the wall and the liquid respectively, λS,` being the thermal conductivities, CS,`

the heat capacities, and ρS,` the densities of the wall and the liquid respectively, and

where Θ =
√
ρSCSλS/(ρ`C`λ`).

Thanks to the following expression, which would strictly hold for an ideal gas [14, eq.

58.10]: (
∂ g

∂c

)
P,T

=
P0

kP

(
∂ (1/ρ)

∂c

)
P,T

=
P0

ρ0

M2

M1M2

1

x(1− x)
,

the normal component of the heat flux (6) can be written as

qu(d) =

[
P0

ρ0

αTM
2

M1M2

+ g − T0
(
∂ g

∂T

)
P,C

]
iu(d)− λh

∂ τ

∂u

∣∣∣∣
d

.

The first term of qu(d) indicates the contribution to the concentration of the heat flux

associated to the temperature gradient. This is usually assumed to be much larger than

the effects associated to the chemical potentials, namely −T0(∂g/∂T )P,C and g. Thus

one can write here

qu(d) ≈ αT
P0

ρ0

M2

M1M2

iu(d)− λh
∂ τ

∂u

∣∣∣∣
d

. (16)

Then, the energy balance for heat flow at the liquid-gas mixture interface u = d takes

the following form (L being the latent heat of vapor per unit mass of liquid, provided at

u = d):

ρ`Lḋ ≈ αT
P0

ρ0

M2

M1M2

iu(d)− λh
∂ τ

∂u

∣∣∣∣
d

+ λ`
∂ τ`
∂u

∣∣∣∣
d

,

or, accounting for the first expression (13) and expression (15b) of iu and τ` respectively,

γ − 1

γβ̂

(
ρ0L

P0

− xαT
M

M2

)
P0
ρ`
ρ0

ḋ

a0
= jkh`h Λτ(d)− `h

∂ τ

∂u

∣∣∣∣
d

, (17a)

where

Λ =

√
ρ`C`λ`
ρ0CPλh

j tan k`d+ Θ

1 + jΘ tan k`d
. (17b)

The boundary condition in eq. (17a,b) is more realistic than that used by Slaton et al.

[12, eq. 3] as it accounts for the coupling of the non zero concentration flux density at

the liquid-gas interface with the heat flux generated by thermodiffusion effects within the

gas mixture.
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4. The boundary conditions that involve the normal component of the gas particle velocity

(2. above) and the temperature variation (3. above) depend on the time derivative ḋ of

the liquid film thickness d. Therefore, we need to express ḋ as a function of the variables

of interest here, namely p, τ , and b. We achieve this by expressing the thermodynamical

equilibrium of the condensation liquid film by an equation of state relating d to the partial

pressure of the vapor P2 = (1−x)P = P (1−C)M/M2 and the temperature T of the gas

mixture. The following approximate form was used by Mehl and Moldover:

ln[Ps(T )/P2] ≈ (d0/d)ν , (18)

which considers the saturated vapor pressure Ps(T ) of the vapor, with d0 being here

approximately equal to 1 nm, and ν varying between 3 and 4 depending on the thickness

of the liquid film [7].

The validity of this approximate equation is limited by the assumption that the solid wall

is perfectly smooth. However, in practice, this condition is hardly reached and, to our

knowledge, there is no work available to account for the influence of the roughness of the

wall on the molecular interactions between the vapor and the wall surface, and then on

precondensation.

Making use of eq. (18), the velocity ḋ of the liquid-gas mixture interface (u = d) is given

by the following differential expression

ḋ =

(
∂ d

∂P

)
T,C

∂ p

∂t
+

(
∂ d

∂T

)
P,C

∂ τ

∂t
+

(
∂ d

∂C

)
T,P

∂ c

∂t
,

and can be written as

ḋ

d
=

jω

ν ln(Ps/P2)

[
p(d)

P0

− T0
Ps

dPs
dT

τ(d)

T0
− b(d)

1− x

]
. (19)

It is worth noting that the couple of equations (18) and (19) express the evaporation-

condensation process on the interface between the liquid film and the mixture during

each acoustic cycle.

The last expression can be rearranged as follows:

ρ`
ρ0

ḋ

a0
=
jk0d`
P0

[
p(d)− β̂hsτ(d)− P0

1− xb(d)

]
, (20)

12



where d` = (ρ`/ρ0)d/[ν ln(Ps/P2)] and hs = (T0/Ps)(dPs/dT ). The latent heat L and the

slope dPs/dT , related together in a first approximation (through the ideal gas law) by

the Clausius-Clapeyron’s law, are numerically expressed separately herein.

Let us notice that this result is somewhat equivalent to those suggested by Slaton et al.

[12, eq. 9], if ḋ/d is assumed to be negligible or P2 equal to Ps (which cannot be achieved

in practice, and is not consistent with the phase change hypothesis).

Therefore, the velocity ḋ is removed, first from equations (17) and (20), and second

from equations (20) and (14), leading to two relationships used below. Then we make use of

equation (10c) to remove the variable b, and finally, a lengthy but straightforward calculation

leads to the two following boundary conditions:

αT

[
jkhΛτ(d)− ∂ τ

∂u

∣∣∣∣
d

]
=

jk0δ`
`h (1− x)

[
M2

M
h0 − xαT

]
Ξ , (21a)

(1 + ε)
∂ τ

∂u

∣∣∣∣
d

+
1

k2h

∂ 3τ

∂u3

∣∣∣∣
d

= − jk0δ`x

`D (1− x)
Ξ , (21b)

where

h0 =
Lρ0
P0

, δ` =
M

M2

d` , ε =
γ − 1

γ
x(1− x)α2

T , (21c)

and

Ξ =
γ − 1

γβ̂
[1 + (1− x)αT ]p(d)−

[
1 +

γ − 1

γ
hsαT (1− x)

]
τ(d)− 1

k2h

∂ 2τ

∂u2

∣∣∣∣
d

. (21d)

Without condensation-evaporation, both the thickness of the liquid film d and its velocity

ḋ vanish. As a consequence, the concentration flux density also vanishes at the boundary, and

the coefficient Λ simplifies to the ratio
√
ρSCSλS/(ρ0CPλh), where λS is much higher than

λh (the quantities khτ and ∂τ/∂u|d being of the same order of magnitude). The boundary

conditions (21a,b) respectively become

τ(d) = 0 , and (1 + ε)
∂ τ

∂u

∣∣∣∣
d

+
1

k2h

∂ 3τ

∂u3

∣∣∣∣
d

= 0 ,

which are equivalent to those given in references [1, 5].

Alternatively, for the case of a pure vapor (x = 0), the variable b and the concentration

flux density i vanish. Then, as expected, the second boundary condition (21b) also vanishes,

and the first boundary condition (21a) leads to

jkhΛτ(d)− ∂ τ

∂u

∣∣∣∣
d

=
jk0d`h0
`h

γ − 1

γβ̂
[p(d)− β̂hsτ(d)] .

Finally, for the study of gas-vapor mixtures, we are left with three boundary conditions

(11), (21a), and (21b).
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IV. SOLUTIONS

A. Solutions for the temperature variation

We apply the operator
(

1 + 1
k2D

∆
)
on the diffusion equation (10c) and we use equation

(10d), which leads to the following equation for τ[
1 +

(
1

k2h
+

1 + ε

k2D

)
∆ +

1

k2hk
2
D

∆∆

]
τ ≈ γ − 1

γβ̂

[
1 +

1

k2D
(1− αTkP )∆

]
p . (22)

Equation (22) may be more conveniently rearranged to highlight the coupling between

temperature and concentration variations inside the boundary layers. The appropriate form

of the operator on the left hand side is a “product” of two spatial second order operator [1]:(
1 +

1

k2hD
∆

)(
1 +

1

k2Dh
∆

)
τ ≈ γ − 1

γβ̂

[
1 +

1

k2D
(1− αTkP )∆

]
p , (23)

where
1

k2hD,Dh
= −A±

√
Γ

2jk0
= −`hD,Dh

jk0
, (24)

with A = `h + (1 + ε)`D and Γ = (`h − `D )2 + 2ε`D [`h + `D (1 + ε/2)].

Then, the laplacian ∆ may be expressed as the sum ∆ = ∂2/∂u2+∆w. Thus, the particle

displacement along the direction which is tangent to the wall is nearly coincident with the

acoustic displacement (which implies ∆wτ ≈ (γ − 1)/(β̂γ)∆wp), and the terms of order

greater than one of the characteristic lengths `hD and `Dh are neglected. Finally, equation

(23) takes the following form [1, 5]:(
1 +

1

k2hD

∂ 2

∂u2

)(
1 +

1

k2Dh

∂ 2

∂u2

)
τ ≈ γ − 1

γβ̂
pτ , (25a)

with (∆p being identified with −k2ap)

pτ (w) ≈
[
1 +

k2a
k2D
x(1− x)αTα +

k2a
k2h

]
p , (25b)

where k2a = k20(1 + jk0`vhd ) is the acoustic wavenumber accounting for viscous, thermal and

mutual diffusion effects in the bulk and α = αT (γ − 1)/γ + αP .

Equations (25a,b) show that the temperature variation within the boundary layer is

determined by the superposition of two diffusion processes, labeled hD and Dh, due to

the complex interaction of concentration and thermal gradients. Note that the following

relations can be readily obtained

1

k2hD
+

1

k2Dh
=

1

k2h
+

1 + ε

k2D
, k2hDk

2
Dh = k2hk

2
D , (26)
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with the thicknesses of the boundary layers associated to these diffusion processes respec-

tively given by δhD =
√

2/|khD| and δDh =
√

2/|kDh|.
In equation (25a,b), the pressure variation p is assumed to be quasi-uniform along the u-

direction inside the boundary layers. The solution for the temperature variation τ , subjected

to the boundary conditions (21a,b), takes then the following form:

τ(u,w) =
γ − 1

β̂γ
pτ (w) [1− AτϕhD(u)−BτϕDh(u)]

=
γ − 1

β̂γ
pτ (w)[1− ψτ (u)] , (27)

where functions ϕX(u) (subscript X in the following stands for subscripts v, hD and Dh

indifferently) are the normalized solutions of the homogeneous equations associated to equa-

tion (25a,b), and the integration constants Aτ and Bτ are given by the boundary conditions

(21a,b).

Functions ϕX(u) and integration constants Aτ and Bτ depend on the geometry of the

wall surface and of the propagation domain (see examples in § V).

B. Expression of the concentration variation

We may solve equation (10c) to express the variation of the normalized concentration on

the wall, using the general form (27) for the temperature τ ,

b(u,w) =
p

P0

x(1− x)

[
k2a
k2D
α(1− ψτ (u))− 1

kT
ψb(u)

]
, (28)

with

ψb(u) = Aτ

[
1− `h

`hD

]
ϕhD(u) +Bτ

[
1− `h

`Dh

]
ϕDh(u) . (29)

C. Solutions for the tangential particle velocity

We next consider a simplified form of equation (10b), by neglecting the rightmost term

a0αP `v∇wb which would lead to a second order function of the characteristic lengths. Thus,

imposing the boundary condition (11), the particle velocity on the wall is given by

vw(u,w) ≈ − 1

jω ρ0
(1 + jk0`v )∇wp(w)[1− ϕv(u)] , (30)

where ϕv(u) is a solution of equation (10b) and depends on the particular geometry of the

wall surface and of the propagation domain.
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D. Relation between the particle velocity normal to the wall and the pressure

variation

Altogether, the solutions (27, 28, 30) which define the temperature and concentration

variations and the tangential particle velocity are used in equation (10a), leading to the

final relation between the normal component vu of the particle velocity v and the acoustic

pressure p, at the first order in the characteristic lengths:

jω ρ0
∂

∂u
vu = (1− ϕv(u))∆wp+ k20 [1− jk0`vhd

+ γ
kP
kT
ψb(u) + (γ − 1)ψτ (u) + jk0`v ϕv(u)+

jk0((γ − 1)`h + `D γx(1− x)α2)ψτ (u)
]
p , (31)

where `vhd = `v + (γ−1)`h +γx(1−x)α2`D accounts for the energy dissipation in the bulk

of the mixture.

Depending on the geometry of the solid boundary, the propagation domain, and accuracy

requirement, simplified versions of equation (31) may hold, as discussed below for two cases

of practical interest.

Finally, the pressure variation is governed by the second order differential equation ob-

tained from the derivative of equation (9a) with respect to the variable u, accounting for

the expression (31) of ∂
∂u
vu.

V. SPECIFIC APPLICATIONS

A. Reflection on a quasi-plane rigid wall

Within the boundary layers, the acoustic pressure p is nearly uniform. It is then appro-

priate here to identify ∆wp with −k2wp (∆w and kw being respectively the components of

the laplacian and of the acoustic wavenumber tangent to the wall) and to substitute the

following terms in equation (31) with their mean values∫ u

d

∂

∂y
vudy = vu(u)− vu(d) , (32a)∫ u

d

∆w[1− ϕv(y)]pdy ≈ −k2wp
(
δ −

∫ u

d

ϕv(y)dy

)
, (32b)
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δ = (u − d) having the same order of magnitude as the boundary layer thickness, and the

relative variations of the functions ϕX in the boundary layers being much larger than those

of p.

u

0

d

(w1, w2)

τℓ

ḋ
τ

δvhd

vw

vu
v

Boundary layers

Liquid film

τS

Figure 2. Quasi-plane rigid wall coated with a liquid film: temperature and particle velocity fields

within the boundary layers.

Considering the reflection on a wall in a semi-infinite domain (Fig. 2), we may express

the functions ϕX(u) as exponential functions e−jkX(u−d), which rapidly vanish when δ ≈ δX

(evanescent waves associated to diffusion processes from the wall), leading then to∫ u

d

ϕX(y)dy ≈ 1− j√
2

√
`X
k0
,

∂ ϕX
∂u

∣∣∣∣
d

=
1 + j√

2

√
k0
`X

.

Therefore, expressions (27), (28) and (30) of τ , b and vw are used in equation (31), then

we integrate it from d to u, and we use expression (20) of ḋ in relation (12c). It turns out,

lengthy but straightforwardly, that

− ρ0a0
vu
p
≈ 1 + j√

2

√
k0

[
k2w
k20

√
` ′v + (γ − 1)

√
`h

qhD

]
+
jk0δ` γ

qhD

[(
1− γ − 1

γ
h2

)
ζs
Λ

+
fhD√

`hD +
√
`Dh

]
, (33a)

where h2 = h0M2/M and ζs = 1− hs(γ − 1)/γ, and

qhD =

√
`h +

√
`D√

`hD +
√
`Dh

[
1 +

jkhδ`
Λ

(
γ − 1

γ
hsh2 + ζ

)]
+

1

Λ
+ jkhδ` ζ +

jkhδ`
√
`D xαT

Λ(
√
`hD +

√
`Dh )

γ − 1

γ
(xαT − h2 − hs) , (33b)

fhD =

(
1 +

γ − 1

γ
ζ

)
(
√
`h +

√
`D )− γ − 1

γ
xαT

(
1− γ − 1

γ
xαT

)√
`D , (33c)
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with ζ =
√
`h /`D x/(1− x).

In a gas mixture or a pure gas without evaporation-condensation (d` = 0, or x = 1),

expressions (33a-c) coincide with the results previously obtained in [5, 15].

Equations (33a-c) show that the two components of the mixture do not symmetrically

contribute to the diffusion phenomena due to the combined effect of evaporation and con-

densation within the boundary and the variations of the film thickness (effects expressed by

the terms factor of d`).

On the other hand, for a pure saturated vapor (x = 0 and M = M2), expression (33a)

gives

−ρ0a0
vu
p
≈ 1 + j√

2

√
k0

[
k2w
k20

√
` ′v + (γ − 1)

√
`h
qh

]
+ βf , (34a)

where qh = 1 + [1 + jkhd`h0hs(γ − 1)/γ]/Λ, and

βf =
jk0d`γ

qh

[
1 +

(
1− γ − 1

γ
h0

)
ζs
Λ

]
. (34b)

Equation (34b) which expresses the specific acoustic admittance of the liquid film differs

from the result previously obtained by Mehl and Moldover [7, eq. 21]:

−ρ0a0
vu(d)

p
=
jk0d`γ

qh

(
1 +

ζs
Λ

)
, (34c)

as adapted to the notation used in this work. In fact, while both expressions account for the

acoustic effects of the variation of the film thickness, equations (34a,b) additionally take into

account the influence on the rate of evaporation and condensation due to thermal diffusion

in the boundary layers. The quantitative influence of this additional contribution is further

discussed below in § VIA.

B. Quasi-plane waves in cylindrical waveguides

We consider a waveguide with perfectly rigid walls (Fig. 3). By calculating the mean

value of equation (31) over the section S of the guide, we derive the wave equation which

governs the pressure variation of quasi-plane waves. To achieve this, we initially remark that

the mean value of the normal velocity vu over the waveguide section is null:

〈∂vu/∂u〉S = 0 .

Then, in equation (31), the mean values of the variables τ , b and vw are substituted by the

mean values of their respective expressions (27), (28) and (30). Here, the functions ϕX(u)
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vw

δvhd

Liquid film

(w1, w2)

u

p

u

Solid wall

Figure 3. Acoustic pressure and particle velocity fields across a section of a waveguide.

are a linear combination of calculable Bessel or trigonometric functions, depending on the

geometry of the waveguide. Finally, by denoting KX = 〈ϕX(u)〉S and V/A the volume to

surface ratio of the waveguide, we have

∂ ϕX
∂u

∣∣∣∣
d

=
V

A
k2XKX ,

and the mean value of equation (31) corresponds to the propagation equation

(∆w + k2w)p = 0 , (35)

where the terms of order greater than one of the characteristic lengths are neglected, and

the wavenumber kw takes the following form:

k2w
k20
≈ 1

1−Kv

{
1 +

`Dh − `hD
`D

KhDKDh

QhD

[
γ − 1− jkhδ` γ

Λ
ζs

(
γ − 1

γ
h2 + xαP

)]
−A
V

δ` γx

QhD

[
αPΞhD +

γ − 1

γ

(
ΞDh

1− x +
xαTM2

M
(KDh −KhD)

)]}
− jk0`vhd , (36a)

with

ΞhD =

(
1− `h

`Dh

)
KDh −

(
1− `h

`hD

)
KhD , (36b)

ΞDh =

(
1− `Dh

`D

)
KDh −

(
1− `hD

`D

)
KhD , (36c)
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and

QhD =

(
1 +

jkhδ`
Λ

γ − 1

γ
h2hs

)
ΞhD −

jkhδ` x

Λ(1− x)
ΞDh

+
`Dh − `hD

`D

(
A

V

δ`x

1− x +
jkhV

ΛA
KhDKDh

)
− jkhδ` x

Λ

γ − 1

γ
αT (h2 − hs)(KDh −KhD) ,

(36d)

We remark that the terms of order one of the characteristic lengths `v , `h , and `D are

included in the formalism, the bulk effects are included in the same model by the term `vhd .

For a gas mixture without evaporation-saturation (d` = 0), this expression is consistent

with the one obtained from the model presented in Ref. [5].

For the case of a pure saturated vapor, the wavenumber kw reduces to

k2w
k20
≈ 1

1−Kv

1 + (γ − 1)Kh
1− jkhd`h0ζs/Λ

1 + jkh

(
V

A
Kh +

γ − 1

γ
h0hsd`

)
/Λ

− jk0`vhd . (37)

VI. SPECIFIC RESULTS IN PURE VAPORS AND GAS-VAPOR MIXTURES

A. Reflection on a quasi-plane rigid wall in pure propane saturated vapor

As a first application of the model discussed above, we compare its prediction of the

acoustic admittance of a wall in contact with saturated propane with the theoretical results

obtained by Mehl and Moldover [7] to account for the observed anomalous decrease of the

speed of sound in precondensation conditions.

For this comparison T0=287.65 K and P0 is varied near the nominal saturation pressure

Ps=0.72 MPa so that 1.0×10−12 < (Ps−P0)/Ps < 0.6, with a corresponding variation (based

on the assumption that ν = 3 in eq. 18) of the thickness d of the condensed liquid film coating

the wall between 5 × 10−10 (a few molecular layers) and 1.0 × 10−5. The thermophysical

properties of propane used as input data in the model are the same tabulated (Tab. 1)

in Ref. [7] while the sensitive dependence on static pressure of the vapor density, speed of

sound and heat capacity were taken from the equation of state of propane of Younglove and

Ely [16].

For a normal incident wave (kw = 0), the expression of the total specific admittance de-

scribing the “classical” thermal effects in the boundary layers and the effects of the adsorbed
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liquid film on the acoustic field as previously modeled by Mehl and Moldover [7, eq. 21]

takes the following form (see eq. 34c):

jβMM
tot =

j − 1√
2

(γ − 1)
√
k0`h −

k0d`γ

qh

(
1 +

ζs
Λ

)
. (38)

The real and imaginary parts of the total acoustic admittance calculated using eq. 38

(dotted lines) are compared in Fig. 4 to the same quantities as predicted by equation (33)

in this work (solid lines), as functions of the liquid film thickness d (the equivalent relative

pressures scale is also represented on Fig. 4).

Also represented in Fig. 4 (dashed line) is the specific admittance

jβth = (j − 1)/
√

2(γ − 1)
√
k0`h , (39)

expressing the “classical” thermal effects in the boundary layers [15].

-Re(jβth)
-Re(jβtot)

Im(jβtot)

0.0001

0.001

0.01

0.1

10−9 10−8 10−7 10−6 10−5

0.6 10−6 10−9 10−12
(Ps − P0)/Ps

d (m)

10−3

Figure 4. Real and imaginary parts of the specific total admittances jβtot (eq. 33, solid lines) and

jβMM
tot (eq. 38, dotted lines), and thermal admittance jβth (eq. 39, dashed line, with equal real

and imaginary parts) of a plane rigid wall coated with a liquid film of depth d, in propane near

saturation for f=24 kHz.

When the thickness of the liquid film is at its minimum (i.e. d ≤ 10−9 m), the specific

admittance tends to the “classical” thermal admittance βth as expected. However, we shall

notice that the relative difference between the total specific admittance of the wall βtot and

its thermal admittance βth starts to be relevant from d = 10−9 and P0 ≈ 0.37Ps, since it is

here at least 10 % and could be even more when considering non smooth walls.
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For a “thin” liquid film, when 10−9 m ≤ d ≤ 10−8 m (i.e. 0.632 ≥ (Ps − P0)/Ps ≥ 10−3),

the expression of Λ in equation (17b) is reduced to its limit for small values of d because

the effect of thermal diffusion inside the liquid film is negligible. As a consequence, in this

range of static pressures, the expression of the total specific admittance βtot simplifies to

jβthin ≈
j − 1√

2
(γ − 1)

√
k0`h − k0d`γ , (40)

showing that precondensation effects within the boundary layer are purely reactive with

corresponding contributions to the total admittance of the boundary layer which have the

same order of magnitude.

Finally, for d ≥ 10−8 m (i.e. (Ps − P0)/Ps ≤ 10−3), namely for a "thick" liquid film, the

multiplying factors in the term including d` prevail, leading to, for the specific admittance

of the wall,

jβthick ≈
j − 1√

2

√
k0`h

Λγ

h0hs(γ − 1)/γ
. (41)

In equation (41), “classical” thermal effects may be neglected as they have the same order of

magnitude of the characteristic thermal length `h . In fact, the acoustic and thermal fields

within the boundary are governed by the combined effect of precondensation and thermal

diffusion, expressed by the hs and h0 factors.

The relative influence of the latter contribution, which is accounted for in this work but

not in reference [7], is evident in Fig. 5 which displays the relative differences of the specific

total admittance as predicted by these alternative models.

We next consider the relevance of the perturbing effect of boundary layer precondensa-

tion and thermal phenomena on the complex resonance frequencies measured in a spherical

acoustic cavity. As an example, the induced shift ∆f0n to the unperturbed resonance fre-

quency f0n and the corresponding contribution to the halfwidth g0n of the n-th radial mode

of the resonator used in reference [7] (radius R = 6.35 cm) to measure these effects in nearly

saturated propane is

(∆f0n + jg0n)/f0n = jβtot/z0n , (42)

z0n being the n-th zero of the spherical Bessel function of first order j0.

The model discussed above for the specific admittance βtot can be used to predict the

contribution of precondensation effects to the total energy loss that takes place within the

boundary layer of the resonator. When this is done, it is found that the contribution of
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Figure 5. Relative differences (per cent) between the real parts (solid line) and imaginary parts

(dotted line) of the specific total admittances jβtot (eq. 33) and jβMM
tot (eq. 38) in propane near

saturation for f=24 kHz.

precondensation to the halfwidth g0n of a radial mode can be as high as 4.5 × 10−3 when

scaled to the corresponding resonance frequency f0n.

Thus, the predictions of the theoretical model presented in this work may be subject

to accurate verification with this type of instrument, which has a demonstrated agreement

between experiment and theory in the order of a few parts per million [17]. When available,

these experimental data may lead to a more realistic equation describing the influence of

the wall surface roughness on the minimum pressure at which the presence of the liquid film

results detectable.

B. Attenuation in a cylindrical duct filled with a mixture of air and saturated

water vapor

In this section, we consider the acoustic propagation in a cylindrical duct of 1 mm in

diameter made of different materials and filled with an air-water vapor mixture. This case

has been previously considered by Raspet et al. [10, 12] to test their models of acoustic

propagation in wet porous materials. There, the composition and total static pressure of

the air-water vapor mixture vary as a function of the temperature with the partial pressure

of air P1 remaining constant at 101.325 kPa, and the partial pressure of water P2 being equal

to the vapor pressure Ps(T ). With this rule, when temperature T0 is varied from 0.1 ◦C to
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100 ◦C, the molar fraction of water vapor xw = 1− x varies between 6.0× 10−3 and 0.506,

and the static pressure of the mixture P0 = P1 + P2 from about 101.959 kPa to 202.74 kPa.

The thermophysical properties of air and water, which are needed as input data to model

acoustic propagation within the bulk of the mixture and in the boundary layer, are retrieved

from the following sources: the thermodynamic and transport properties of dry air from cor-

relations worked out by Lemmon and co-workers [18, 19]; the thermodynamic properties of

liquid and gaseous water, including the saturated vapor pressure, from the IAPWS equation

of state of Wagner and Pruß [20]; the transport properties of water from the correlation of

Kestin et al. [21]; the enhancement factor of humid air from the pioneer work of Hyland [22];

the density of humid air from a virial expansion truncated at second order using recent cor-

relations of the second virial coefficient of water [23] and the interaction virial coefficient of

the air-water system [24]; the speed of sound in the mixture, including relaxation effects,

using the method of Zuckerwar and references therein [25]; the transport properties of the

humid mixture, namely the diffusion coefficient, the thermal diffusion ratio, shear viscosity

and thermal conductivity, with the methods and the data discussed and tabulated for a

mixture of non-polar and polar components by Hirschfelder, Curtiss and Bird [26].

For the sake of the comparison between the acoustic models commented below, it should

be noted that the agreement of our estimate of the same mixture properties with those

reported by Raspet in Ref. [10] is in every case satisfactory, with the exception of the thermal

conductivity of gaseous water and the thermal diffusion ratio of the mixture, showing relative

differences up to 25 % and 50 % respectively, originated by the different estimate of the

thermal conductivity of water vapor.

Finally, the physical properties of the duct material (steel or cork) are the same tabulated

by Slaton et al. [12].

The quantity of interest here is the attenuation coefficient of the duct (as a function of

the temperature in the interval 0 ◦C to 100 ◦C, at 10 kHz), which is proportional to the

imaginary part of the wavenumber kw given by equation (36) in the present work, or by [12,

eq. 30] in the work of Slaton et al. respectively.

As shown in Figure 6, the theoretical duct attenuation obtained herein is comparable in

magnitude but shows a rather different trend from that of Slaton et al. [12, Fig. 2].

Regarding the case in which precondensation effects are neglected (i.e. no liquid film and

isothermal boundary conditions on the solid wall), according to the model presented here the
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Figure 6. Attenuation coefficient of a cylindrical duct (diameter 1 mm) filled with dry air (solid

line) or an air-water vapor mixture, in presence or absence of a boundary liquid film (dashed and

dotted lines respectively) at 10 kHz, as a function of the temperature.

effects of mutual diffusion on the attenuation are very small. Indeed, in this case, when we

use the well-known simple expression of kw in a duct filled with a thermo-viscous gas available

in Ref [5, 15] (mutual diffusion effects neglected), the final results for the duct attenuation

are very close to those shown on Fig. 6 (dotted line), which lead to approximately 4 m−1

at T=100 ◦C. These results are coherent with those found by Slaton et al. when the same

kind of expression is used to calculate the duct attenuation (case denoted “effective fluid” in

[12, Fig. 2]), even through the method used here for calculating the properties of humid air

differs from those used by Slaton et al.

However, still neglecting precondensation effects, Slaton et al. also found that taking

into account mutual diffusion effects in the gas-vapor mixture makes duct attenuation reach

nearly 9 m−1 at T=100 ◦C (case denoted “no temperature fluctuation” in [12, Fig. 2]). Also,

the model of Slaton et al. predicts total attenuation in the air-water vapor mixture which is

larger or smaller than those in dry air, depending on the material of the duct, whereas in the

present work, the predicted attenuation is always smaller in the mixture with respect to dry

air (see Fig. 7 and explanation below). These discrepancies reflect the different assumptions

made by the different models to justify their approximations of the boundary conditions.

In agreement with our previous model of mutual diffusion effects in binary gaseous mix-

tures away from saturation, the results in Fig. 6 show that mutual diffusion effects in the gas,

which do not involve the exchange of molecules between the gas and the liquid (expressed
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by the terms which contain the parameter δ` , eq. 36a) give a very small contribution to the

total attenuation (less than 0.1 %, at approximately 0 to 10 ◦C), which is coherent with our

previous results in binary gas mixtures (far from saturation) [5]. On the other hand, we can

see in Figure 6 that the thermal and concentration diffusion effects related to the liquid film

and to the phase changes on the boundaries are significant since they have here a relative

contribution up to 17 % at 100 ◦C.

It is worth noticing that for a “thick” film (i.e. d ≥ 10−8 m and (Ps − P2)/Ps ≤ 10−3),

the expression (36a-c) of the wavenumber kw is mostly governed by the terms which contain

the parameter δ` and reduces then to

k2w
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)
`Dh − `hD

`D

KhDKDh

QhD

−A
V

γx

QhD

[
αPΞhD +

γ − 1

γ

(
ΞDh

xw
+
xαTM2

M
(KDh −KhD)

)]}
,

with

QhD =
A

V

x

xw

`Dh − `hD
`D

+
jkh
Λ

[
γ − 1

γ
h2hsΞhD −

x

xw
ΞDh

]
.

cork

steel

3.5

4

4.5

5

5.5

6

6.5

0 20 40 60 80 100

d = 10−8 md = 10−5 m

R
e(
jk

w
)
(m

−
1
)

T (◦C)

Figure 7. Attenuation coefficient of a cylindrical duct (diameter 1 mm) of different materials,

steel (dotted line) or cork (dashed line), filled with an air-water saturated vapor mixture, with a

boundary liquid film of different thicknesses d (10−5 m in solid line and 10−8 m in dotted and

dashed lines), at 10 kHz, as functions of the temperature.

Slaton et al. noted important discrepancies between the results for acoustic attenuation

depending on the material comprising the duct [12]. On Figure 7, we also note this effect,

but with a rather different trend. So we next consider the influence of the solid material
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comprising the duct, choosing steel and cork to represent radically different physical prop-

erties. In spite of this difference, the calculated acoustic attenuation for these two materials

when the wall is coated with a 10−5 m depth liquid film displays negligible differences (rel-

atively less than 1.5× 10−6, with the solid line in Fig. 7 standing indifferently for a steel or

cork duct). For this case in fact, the thermal diffusion processes inside the liquid film and

the wall, as expressed by the boundary condition (21a) which involves Λ and Θ, takes place

almost completely within the “thick” liquid film, where the major part of the thermal wave

is dissipated.

On the contrary, if we consider a 10−8 m depth liquid film (i.e. for (Ps−P2)/Ps ≈ 10−3),

the thermal diffusion in the solid wall and its thermodynamic behavior are significant, and

the physical properties of the solid material have a great influence on the total acoustic

attenuation, as shown on Figure 7 (dashed and dotted lines). When we compare these

results with those calculated for a 10−5 m depth adsorbed liquid film (solid line), the relative

discrepancies in the behavior of the mixture are 4 % for the steel duct and 18 % for the cork

duct. Therefore, it is evident that a correct estimate of the thickness d of the liquid film

and of the quantity (Ps−P2)/Ps are necessary to a reliable calculation of the total acoustic

attenuation within the duct.

VII. CONCLUSION AND PROSPECTS

An analytical model for acoustic propagation has been worked out which accounts for the

coupled effects of heat and mutual diffusion processes and phase changes at the vapor liquid

interface coating a solid wall. The model is suited for application to a gaseous mixture when

the thermodynamic state of one of its constituents approaches saturation. Therefore, its

predictions should be useful to improve the description of acoustic phenomena encountered

in a variety of applications, including the metrology of the thermophysical properties of

gaseous mixtures, the estimate of acoustic attenuation in porous media and thermoacoustics.

As a preliminary test of the effectiveness of the model, it was used to predict salient

acoustic properties of two systems, which were previously described in the literature, namely

the variation of the boundary layer acoustic impedance of an acoustic resonator and the total

attenuation in a small duct coated with a liquid film. In both cases an overall satisfactory

agreement was found between the results presented here and those calculated with more
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simplified models, increasing confidence in the correctness of the derived solutions and their

implementation. Minor differences highlighted by this comparison were used to quantify the

relevance of diffusion processes.

So far, no experimental attempt was carried out to validate the prediction capability of

the model, and this is likely to be the subject of future investigation. Such experimental

activity might improve our knowledge of the acoustic effects of an adsorbed liquid film at low

pressure. Acoustic quasi-spherical resonators candidate as the most suitable experimental

technique for this aim because of the accuracy demonstrated in the determination of speed

of sound and boundary layer losses.
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