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Acoustic field in a quasi-spherical resonator: unified perturbation model

Cécile Guianvarc’h,! Laurent Pitre,! Michel Bruneau,? and Anne-Marie Bruneau?
! Institut National de Métrologie, 61 rue du Landy 93210 La Plaine Saint Denis, France.”

?Laboratoire d’Acoustique de I'Université du Maine UMR CNRS 6613, av. Olivier Messiaen 72085 Le Mans Cedex 9,

France.

(Dated: January 1, 2009)

Gas-filled quasi-spherical resonators are excellent tools for the measurement of thermophysical
properties of gas, and have also been retained for the determination of the Boltzmann constant
with a low uncertainty, which can be derived from measurements of both the speed of sound in a
noble gas and the volume of the resonator. To achieve this, a detailed modelling of the acoustic
field in quasi-spherical resonators are of importance. Several phenomena and perturbations must
be taken into account, including, among inertia and compressibility, heat conduction, viscosity,
the shape of the resonator, small irregularities on the wall, and so on. The aim of this paper is
to provide improvements to the current models of the acoustic field in such resonator. Namely,
the model given here takes into account all the different perturbing elements together in a unique
formalism, including the coupling between the different perturbing elements and the resulting
modal coupling in a consistent manner. The first results obtained from this analytical model on a
simple configuration show that the effect of modal coupling is small but should not be neglected
regarding the accuracy required here, even if several improvement could still be provided to this

new unified model.

PACS numbers: 43.20.-f, 43.20.Ks

I. INTRODUCTION

The International Committee for Weights and Mea-
sures (CIPM) recently recommended the redefinition of
the International System Units (SI), where the kelvin
would be linked to an exactly defined value of the Boltz-
mann constant!. The advantage would be that the defi-
nition of the kelvin would not depend on any temperature
nor on any method for its measurement. The value to be
chosen for the Boltzmann constant must be known with
a relative uncertainty of 1076. Gas-filled quasi-spherical
resonators are excellent tools for the determination of the
Boltzmann constant, which can be derived from measure-
ments of both the speed of sound in a noble gas and the
volume of the resonator. The choice of a quasi-spherical
shape for the shell allows us to have a high quality factor
for the acoustic resonances and non-degenerate electro-
magnetic modes.

Actually, an accurate design of the shell and a de-
tailed modelling of the acoustic field in spherical or quasi-
spherical resonators are of importance to measure ther-
mophysical properties of gas and the Boltzmann con-
stant. Several phenomena must be taken into account,
including inertia, compressibility, heat conduction and
shear viscosity (in the boundary layers and in the bulk
of the fluid), bulk viscosity, the real shape of the res-
onator (in fact quasi-spherical shape), the acoustic input
impedance of small acoustic elements flush-mounted on
the wall that are necessary for the measurements (tubes,
transducers), geometrical irregularities, roughness of the
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wall, shell motion due to external vibration sources and
to the coupling between the fluid and the shell. All these
phenomena, which act as perturbations to an idealized
acoustic fluid filling a perfect rigid spherical shell, need
to be taken into account to determine with a low uncer-
tainty their influence on the resonance properties of the
resonator, and then on the value obtained for the Boltz-
mann constant.

Groundbreaking experiments and a number of signifi-
cant theoretical studies have already been made by Mehl,
Moldover, Trusler et al.2”. In particular, they suggested
means to take into account several perturbations in the
cavity. It is worth noting that these perturbations are
taken into account separately, then neglecting the cou-
pling between them. These perturbations are the ther-
mal and viscous effects (in the boundary layers and the
bulk of the gas), the deformation of the cavity, the in-
fluence of small elements located on the wall of the res-
onator (tubes, slits, and transducers), the vibroacoustic
coupling between the fluid and the shell.

The aim of this paper is to suggest unified modelling
able to gather all the different types of perturbing factors
in an unique formalism, including the coupling between
the different perturbation factors (through the modal
coupling) neglected until now, which would be of inter-
est to have a better interpretations of the measurement
results in the quasi-spherical resonator. Here, the acous-
tic field is expressed by the coupling between Neumann
modes of an ideal, unperturbed resonator that bounds
outwardly the pertubated surface of the resonator (the
coupling being due to energy transfer between modes
induced by every perturbation). This model is then
used on the most simple experimental conditions: a per-
fectly spherical cavity, filled with a dissipative gas (ar-
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gon), with only a receiver and a transmitter microphone
flush-mounted on the wall. Assuming prefectly spherical
cavity in the application considered in the present paper
unables us to evaluate the effect of modal coupling, due
to the viscous and thermal effects in the bulk and in the
boundary layers (modeled at the lowest order), and to
the microphones.

The fundamental equations of acoustic propagation in
dissipative fluid are given in section II. In section III,
the solution of the fundamental problem (propagation
equation associated to the boundary conditions) for the
acoustic pressure in the quasi-spherical resonator is ex-
pressed as an expansion on the spherical eigenfunctions,
making use of the integral formulation. Finally in sec-
tion IV, results are given and discussed. These results
are obtained with this model applied on the most simple
experimental configuration which has been carried out in
1988 at the NIST?Z.

Il. FUNDAMENTAL EQUATIONS OF ACOUSTICS IN
DISSIPATIVE FLUID

The formalism used in the following lies on the works of
Kirchhoff, gathered later by Rayleigh®, Morse?, Pierce!°
and Bruneau'!. The presentation of the fundamental
equations of acoustics chosen here refers to those of
Bruneau.

The system considered is a quasi-spherical cavity be-
cause its shape retains certain advantages of spherical
acoustic resonators (high quality factor) while simplify-
ing the measurement of the resonator volume using mi-
crowave resonances (electromagnetic modes are not de-
generate for the shape chosen here). The variables de-
scribing the dynamic and thermodynamic states of the
fluid are the pressure variation p, the particle velocity v,
the density variation p’, the entropy variation o, and the
temperature variation 7. The parameters which specify
the properties and the nature of the fluid are the val-
ues of the density pg, the static pressure Py, the shear
viscosity coefficient p, the bulk viscosity coefficient 7,
the coefficient of thermal conductivity A, the specific
heat coefficient at constant pressure and constant vol-
ume per unit of mass Cp and Cy respectively, the spe-
cific heat ratio v, and the increase in pressure per unit in-
crease in temperature at constant density 3 = (9P/0T)y
(By = apoct = 1/V(OV/OT)p, o being the volume ther-
mal expansivity and ¢ the adiabatic speed of sound). A
complete set of linearized homogeneous equations gov-
erning small amplitude disturbances of the fluid includes
the following;:

e the Navier—Stokes equation

1 00 1 - - -
s + —— grad p = ¥, grad div 7 — £/, rot rot 7, (1)
Co ot PoCo

where the characteristic lengths ¢, and £/, are de-
fined as follows,

1 4
l, = (—u—i—n) and (', = K ,
poco \ 3 P0oCo

e the conservation of mass equation, taking into ac-
count the thermodynamic law expressing the den-
sity variation as function of the independent vari-
ables p and T,

.. 0 3y —
poCOdIVU+CO ot (p BT)—Oa (2)

e the Fourier equation for heat conduction, taking
into account the thermodynamic law expressing the
entropy variation as function of the independent
variables p and T,

10 -1 10
LA DR e R
ﬂ'}/ Co 815
the operator A being the laplacian, where the char-
acteristic length /5, is defined as

A

o pocoCp

These equations (1), (2) and (3), associated to the
boundary conditions, describe the acoustic field in the
quasi-spherical cavity. The purpose of the following sec-
tion is to find the propagation equations for the acoustic
pressure, the temperature variation, and the particle ve-
locity.

Ill. THE HARMONIC FIELD IN A QUASI-SPHERICAL
CAVITY

In this section a standard analytic procedure is devel-
oped whereby the acoustic field inside the cavity bounded
by perturbed surface (irregular enclosure, domain D, sur-
face S) is expressed as a sum over the eigenmodes (Neu-
mann) of a cavity having separable geometry (regular en-
closure, domain D,., surface S,) that bounds outwardly
the perturbed enclosure considered (Figure 1).

The resulting acoustic modelling presented in section
II1.B thus includes in a coherent manner all types of per-
turbation in the resonator (quasi-spherical shape, dissi-
pation in the bulk of the fluid, acoustic elements on the
wall) and the resulting modal coupling.

A. The boundary problem with sources
The acoustic pressure in the perturbed enclosure (do-
main D bounded by surfaces S) is governed by the set

of equations, including the propagation equation with
harmonic source term f(7) on the right hand side and
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Sphere
(regular enclosure)
Dy, Sr

Quasi-sphere
(irregular enclosure)
D, s

Figure 1. Sphere and quasi-sphere with irregular boundary
conditions.

the boundary conditions with harmonic boundary source
term o(7) on the right hand side, which takes the follow-
ing form:

(A + ki)P(F) = _f(F) ’ in Da (43“)
5 + k0|9 = o). ons. )
0

where the symbol an implies a normal derivative out-
wardly directed, ko = w/co is the adiabatic wavenumber,
ko the acoustic wavenumber including the dissipation in
the bulk of the fluid (appendix A), and the parameter
B(7) is the specific admittance of the wall. The spe-
cific admittance §(7) can include the viscous and thermal
boundary layer effects, and any kind of discontinuitie and
perturbation on the wall of the resonator (tubes, slits,
transducers, roughness...). For the problem considered,
there is no source in the domain D, then the term f(7)
is zero.

B. The associated eigenvalues problem

The modal wave functions of an ideal spherical cavity
(domain D, bounded by a surface S,), which encloses the
perturbed enclosure, are solutions of the homogeneous
Helmholtz equation subject to the Neumann boundary
condition at the wall, namely

(A4 k), (7)) =0, in Dy, (5a)
0
% ’l/]fn (77) = 0, on ST s (5b)

where the subscript m stands for three quantum num-
bers (v, 1,m) and the superscript ¢ (denoted either ¢ or s)
represents the two degenerate eigenfunctions which de-
pend on the azimuthal angle ¢. The eigenfunctions !,
expressed in the spherical coordinates (r, 0, ) are

1 .
T/an (T, 97 90) = a_ ]V(kvnr)P,uu (COS 9) COS U , (6&)

1 .
Uy (r, 0, ¢) = a—Ju(kunT)PW(COS 0)sinpp,  (6b)

where the functions P, are Legendre functions, and the
coefficients a,, are normalization coefficients (cf. ap-
pendix B).

Expanding the pressure field p(7) on the eigenfunctions
1/)5 (7), leads to

p(F) =D byl (7). (7)

Then, multiplying equation (4a) where f = 0, by the
eigenfunction ¢! (7), and integrating all over the domain
D,ie.

i [ ut (A + k() 4D = 0. (8)

solution of the posed problem for the acoustic pressure
field is subsequently achieved with the help of Green’s
integral theorem which states

/ / /D p(F)AGL (7) dD — / / /D UL, () Ap(F) dD
— [[ st as - [[ vt as. o)

The expression of Ay! and %wfn being required to

satisfy equations (5a) and (5b) respectively, and the so-
lutions p being expressed by equation (7), equation (9)
gives straightforwardly the following equation

A [(kfn KN AT LBV =St (10)

where
N = [[[ s @e@an. o
aty = [[ g vnmas. aw)
Bty = [ [ ks @vh@mas. (o
Stu= [[ oot as. (114)

which is equivalent to the matrix equation, using the no-
tation [k*N] for the matrix whose elements are k7, N/ |

(E*N] = kNI + [A]+ [E]) [C] = [S].  (12)

The matrix [N] expresses the influence on the acoustic
field of the depth of the deformation: the radial coor-
dinate of the cavity depends on the angles § and ¢ in
spherical coordinates (the effect expressed by the matrix
[N] can be called “bulk” or “global’!? modal coupling,
corresponding to energy transfer between the mode la-
belled m and the mode labelled p). The matrix [A] ex-
presses the influence on the acoustic field of the slope of
the deformation: the normal to the wall of the resonator
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depends on 6 and ¢ too. The matrix [E] expresses the
effects on the acoustic field of the perturbations on the
wall, taking also into account the shape of the resonator
(the effects expressed by the matrices [A] and [E] can be
called “boundary” or “local”*? modal coupling, also corre-
sponding to energy transfer between the mode labelled m
and the mode labelled p). The vector [S] expresses the
effect of the acoustic source set on the wall of the res-
onator. Finally, the matrix [k?N] — k2[N] + [A] + [E] in
equation (12) involves coupling terms between the differ-
ent modes (in the cross products ¥% (7t (7), weighed or

not by the admittance 3, and Q/Jg (f’)% Pt (7)), whereas
the right hand side involves the modes created by the
source.

The eigenvalues of the matrix in the left hand side of
equation (12) includes then together all the perturba-
tions we would take into account in the calculation of
the resonance characteristics (resonance frequencies and
half-widths) of the cavity: the effect of the deformation
is included in the matrices [N] and [4], and all the
perturbing factors on the wall of the cavity are included
in the specific admittance [ of the matrix [E] for the
passive acoustic effects and elements (boundary layer
effects, tubes, transducers, irregularities, roughness, vi-
broacoustic coupling between the fluid and the shell, ...)
and in the matrix [S] for the active acoustic effects and
elements (acoustic source, shell motion due to external
vibration sources).

REMARK.— In previous works by Mehl®#, using the
general formalism of Morse and Feshbach!'® and focusing
only on the effects of the small deformations of the cavity
(quasi-spherical shape) from the regular shape (perfect
spherical shape), all the other perturbations on the wall
of the resonator being taken into account by other means,
the terms E,,, and S,, in equation (10) are then zero,
which leads to, neglecting terms Nf?lf; for m # p and
t # t' as made by Mehl® (eq. 8),

toqtt!
cp Amp -

[(1{32 - kfn)Nﬁm - Afﬁum] Cfn = Z
pFEM AL

The coefficients ¢!, are then given by

't
Z AmpCp

pFEM, AL
Cfn N (kg - k?n)Nfrim - A?ntzm 7 (13)

and the difference (k2 — k2,) by

2 2 1 ot Al
tt t mm
ki — ki, = N o . E Ampcp + Nt
mm

MMEM oty £t/

that is
tt
k2 _ k/,2 _ Amm
- tt
a m Nmm

t/t// t//
1 Z qu Cq
T gFEp Y
tw Z );Ytlp 2 24 A7t t! t't ( 4)
Nonme (kafkp)Npp 7App

MIMEM oty o)

then, neglecting the non—diagona} terms in the sum over
q and assuming that (k2 — k2)N}" >> ALl and Alf =

t't
At
r 2
Att Att
R DY mp . (15)
a m 2 2\ nrt't) nrtt
Noom, [ ———»" (ka — k:p)Npp N,

In this expression (15) of the frequency shifts due to
the deformation of the cavity, derived from Morse and
Feshbach formalism'®, the coupling terms N,ﬁ’; (m #p
and t # t') are neglected (the bulk modal coupling is ne-
glected, assuming quasi-orthogonality) whereas the terms
Aff;p are kept, i.e. the boundary coupling is taken into
account (due to the boundary slope). Furthermore, in
these previous works, the symmetry of the matrix [A] is
assumed but not demonstrated in the general case con-
sidered (every shape of the cavity). It is the aim of the
remainder of the paper to keep all the coupling terms that
was not taken into account in previous works in order to
know more accurately the influence of each one.

IV. APPLICATION: ACOUSTIC FIELD IN A SPHERICAL
RESONATOR

The case studied here is the spherical cavity used at the
NIST to measure the gas constant?. This spherical cavity
(mean radius R = 8.890143 x 10~2m) filled with a dissi-
pative gas (argon) with a receiving microphone (specific
admittance [, surface AS,) and a transmitting micro-
phone (sound source, vibration velocity V,, surface AS,).
The dissipation in the bulk of the fluid is taken into ac-
count in the complex wavenumber k,. The bounday layer
effects are expressed in term of specific admittance (3, at
the lowest order (order 1/2 of the characteristic lengths
¢, and ¢',). This specific admittance is uniform on the
total area of the wall S.

The shell motion can be taken into account in the ma-
trices £ and S in an appropriate manner for the deter-
mination of the Boltzmann constant only if the spatial
repartition of this shell motion is known or modelled with
a great accuracy. Previous works' allow us to deter-
mine the influence of the shell motion on the acoustic
resonance frequencies of a spherical cavity with a sim-
ple shape. However, regarding the complexity of the real
shape of the resonator’s shell, it doesn’t seem possible, at
short or mid-term, to carry out a vibroacoustical model
with the accuracy required for this application. Then,
currently, the acoustical measurements are limited to the
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frequency ranges for which the effect of the shell motion
is not significant in the experimental results (this corre-
sponds to frequencies far from the structural resonance
frequencies of the shell). The shell motion is thus ne-
glected here in the global modelling of the acoustic field.
For the perfect sphere considered below, the domain D
and the surface S are the same as the regular domain D,
and surface S,. respectively. There is no modal coupling
due to the deformation of the domain and the enclosure.
As a consequence, the matrix [N] is the identity and [A]
is zero. Modal coupling in such case is then due to dis-
sipation and perturbations on the wall of the cavity only
(matrix [E]). The integral equation (10) leads then to

DA [(kfn — kS mpbi + Bl =51 (16)
Dt
Yv,n being the nth root of the first derivative of the spher-
ical Bessel function j,, and where (eq. 11c,d)

St [[ oot as.
g, | /S ko B(FEL (F)ut, (7) d.

The small surfaces AS, and AS, are much smaller
than the total area S, and sufficiently small to assume
that the associated specific admittances, velocity and
eigenfunctions are uniform on them, giving for equations
(17a,b)

(17a)

(17b)

an = O'wfn(Ra 005 Pa)ASy (18a)

and
Ey, =""E, + "By,
= o | Bun (@} 16k + BrAS,(Wh 1h,)e] . (18b)

where the notation <1/)5|1/}fn>i stands for the integral of

the product of the eigenfunctions 1/)5 and ! over the
surface either S or AS;.

The contributions in the modal coupling of the bound-
ary layer effects (acting on the whole surface S of the
wall) and of each small element flush-mounted on the
wall are calculated in sections IV.A and IV.B respec-
tively, when the resonator is excited by a local sound
source, which influence (terms S,,) is calculated in sec-
tion IV.C. The coordinates 6 and ¢ of the small ele-
ments flush-mounted on the wall are given in Table I,
corresponding to the design of the cavity used at INM.

A. Viscous and thermal boundary layer effects
The specific admittance on the surface S due to the

viscous and the thermal boundary layer effects have the
form!! (at the order 1/2 of the characteristic lengths):

1+ k2
mz%M[(l—g) 0y + (v — 1)1 |,

ka
(19)

bi | @i
Transmitting microphone| 0
Receiving microphone w/2|3m /4

Table I. 8 and ¢ coordinates of the small elements flush-
mounted on the wall of the resonator.

where the wavenumber k, is related to the radial and
azimuthal wavenumbers k, and k,, by k2 = k2 + k2. In
the expression of this admittance, which acts as a small
correction on the acoustic field, the complex wavenum-
ber kg, including the dissipation in the bulk of the fluid
(§ A), is replaced by the adiabatic wavenumber kg, the
dissipation in the bulk being much smaller than in the
boundary layers.

The term (1 — k2/k2) is related to the incidence of the
acoustic wave on the wall, which depends on the acous-
tic modes that occur in the cavity. Then, because of the
modal coupling in the cavity, while the acoustic source
generates an acoustic field at the angular frequency w,
different acoustic modes are excited at this angular fre-
quency in the cavity. The specific admittance associated
to each acoustic mode in equation (19) is then a function
of the wavenumber kg = w/cp, and of the factor related
to this mode, namely

6vh = 61/77
1+ viv+1) - B
7 Vo - Uy + (=10 | . (20)

On another hand, the integral (1/15 |t Vs on the whole
surface S is here given by

(Wp [h)s =
[ [ eimoonimos
R?sinf df dy,
that gives straigthforwardly (because of the orthogonal-
ity of the Legendre’s functions and of functions sin and

cos), for the influence of the viscous and thermal bound-
ary layers in the resonator:

”th;i;o =j kongzw S0, (21)
\71/77\71/7]’

Juy being the norm of the function j,(k,,r) (cf. ap-
pendix B).
B. Receiving microphone flush-mounted on the wall

On the small surface AS,., the integral (z/);/h/)fn}T re-
duces to

W8 1LY = Db (R, Oy, 00 )0L (R, Oy, omic) AS,.,  (22)
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that gives, for the coordinates 0, = 7/2 and ¢, = 37 /4
(Table T), making use of the relations k,,R = .,

tt’ :
"Epnp = ko

Asrﬂrju ('Yvn)jv/ (’YV’H/)

(3mp/4)¢" (3mp /4),  (23)

the function ¢! standing for either cos or sin.

The expression chosen here for the specific admittance
B, of the receiving microphone is the expression used in
the study done at the NIST?:

m¥p

P, (cos 0,) Py, (cos ,)¢"

Br = jw pocoX , (24)

x being the compliance per unit area of the membrane
of the microphone (nominal value of 1.5 x 10719).

C. Sound source

The influence of the source on the acoustic field is ex-
pressed by (eq. 18a)

Srtn = U‘/’fn(R, 907 CPU)ASU ’ (25)

where 0 = jwpoV,, V, being the vibration velocity of
the source, that gives

St = ikopocoVaASel, (R, 05, ¢p0) . (26)

The sound source being an electrostatic microphone
(used as a transmitter), the volume velocity V,AS, of
the sound source is then derived from the following trans-
duction equation

Mpa'i - Y(Tp(Ra 90; 900) + ASO'VO' 5 (27)

where M,, and Y, are respectively the pressure sensitiv-
ity and the acoustic admittance of the microphone, and
i the electric current through the microphone. Making
use of equations (27) and (7) in equation (26) gives

S, = jkopocoMyoitt, (R 05, 00) — Y ch 7Bl (28a)

with
TEY = jkopocoYe (W5 [05,) (28b)

and
(Wh kYo = Uk, (R, 00, 0o )0 (R, 05, 0o )AS, . (28¢)

The influence of the source in the acoustic field is then
composed of an active part linked to the electrical ex-
citation applied on the microphone, and a reactive part
due to the acoustic input admittance of the microphone
flush-mounted on the wall.

The expressions (23) and (28a-c) of the effects of small
elements flush-mounted on the wall of the cavity shows
that these effects are strongly dependant on the relative
position of these elements on the wall (neglected in the
previous works).

D. Results
1. Effect of modal coupling on the acoustic pressure

The theoretical effect of modal coupling on the bulk
behaviour of the acoustic pressure in a spherical cavity
filled with argon gas, at the triple point of water for dif-
ferent static pressures is shown on figures 2 to 5, rep-
resenting the cartographic projection of the amplitude
of the acoustic pressure on the wall of the cavity, with
respect to the spherical coordinates ¢ and 6, when the
transmitting microphone generates a harmonic signal at
the resonance frequency of a radial mode. The cavity
has only a transmitting and a receiving microphone on
its wall.

0 1
A [

pir4 g

E

108 &

~

g =

z )

~ 107 <

= S

106 &

5pi/4 3pi/2 7pil4

pi/d pi/2 3pii4  pi
¢ / rad

Figure 2. Acoustic pressure on the wall of a spherical cavity
at the resonance frequency of the (0,2) radial mode, at the
static pressure 25 kPa.

These almost qualitative representations in the lower
static pressure range, on figures 2 and 3, show that the
acoustic field is quasi-axisymmetric around the axis of the
transmitting microphone because the influence of the re-
ceiving microphone is minimum. The maxima at 6 = 7
and 6 = 0 are due to the transmitting microphone. The
other deviations from a uniform acoustic pressure, that
should be observed at the resonance frequency of a radial
mode, are due to the influence of the viscous and thermal
effects on non radial modes which are immediately close
to the radial mode expected. Then, the (0,2) mode is
mostly perturbed by the (3,1) mode, and the (0,5) mode
by the (12,1) mode, all of them without azimuthal com-
ponents because of the axisymmetry of the system for
such low static pressures.

In the higher static pressure range, the viscous and
thermal effects are less important, then the deviations
from a uniform acoustic pressure on the wall of the cav-
ity due to modal coupling are smaller, which can be seen
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=
’0.6&
10.5
—
—-— .0.4
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¢ / rad

Figure 3. Acoustic pressure on the wall of a spherical cavity
at the resonance frequency of the (0,5) radial mode, at the
static pressure 25 kPa.

on figures 4 and 5. The impedance of the receiving mi-
crophone decreases, and then its influence on the acoustic
pressure in the cavity increases (but remains small), gen-
erating also azimuthal modes by modal coupling.

Such maps of the acoustic field on the wall of the cavity
could be used to support the design of an acoustic res-
onator for the determination of the Boltzmann constant,
or for acoustic thermometry. Indeed, they show us the
optimal places on the wall for the measurement devices
to maximize the signal to noise ratio and reduce the per-
turbations effects. For example here, the best place for
the receiving microphone would be in front of the trans-
mitting microphone (maximum of acoustic pressure for
all the acoustic modes and static pressures of interest,
axisymmetric acoustic system).

Moreover, the particular results presented in this sec-
tion show that to elucidate the individual physical phe-
nomena in the formalism, it is necessary to consider sep-
arately the physical phenomena involved and to do sim-
plifying assumptions.

2. Influence of modal coupling on the acoustic resonance
properties of the cavity

For the determination of the Boltzmann constant, the
value of k is derived from the extrapolation at zero
pressure of the speed of sound determined from mea-
surements of the acoustic resonance frequencies of ra-
dial modes in the cavity, on which are applied correction
terms calculated from the model of the acoustic field in
the cavity. The comparison between the experimental
and theoretical half-widths allows us to check the valid-
ity of the model used to calculate the corrections to be
applied on the resonance frequencies.

10.99

pi/4
10.98

pif2 1097
10.96
3pi/4 ] 1095

I0.94

0 / rad
[p(R,0,9)|/|Pmaz]|

pi/f4 pi/2 3pi/d  pi  5pi/d 3pif2 7pi/4
¢ / rad

Figure 4. Acoustic pressure on the wall of a spherical cavity
at the resonance frequency of the (0,2) radial mode, at the
static pressure 500 kPa.
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Figure 5. Acoustic pressure on the wall of a spherical cavity
at the resonance frequency of the (0,5) radial mode, at the
static pressure 500 kPa.

The global model presented here allows us to calculate
the acoustic frequency response of the resonator. Fitting
a resonant function (lorenzian function) with this calcu-
lated transfer function around the resonance frequency of
an acoustic mode gives us the resonance frequency and
the half-width of this mode according to the global ana-
lytical model.

Since the global formalism presented here includes
modal coupling (non-diagonal terms in the matrices), a
direct analytic expression of the perturbations effects on
the resonance properties of the cavity cannot be derived
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from this global modelling without doing several simpli-
fying assumptions. Then, only a global and numerical
comparison between the current and previous theoretical
results is presented here. However, it is worth to notice
that neglecting the terms m # p in the matrix E in equa-
tion (16) leads finally to the analytical expressions of the
frequency shifts and half-widths determined in previous
works?6,

The effect of the acoustic perturbations in the cavity
and of the resulting modal coupling on the resonance
properties of radial modes from (0,2) to (0,6) as func-
tion of the static pressure is shown on figures 6 and 7.
The major perturbation in the cavity being the viscous
and thermal effects, the absolute value of the frequency
shifts and the half-widths both increase when the static
pressure and the quantum number of the modes decrease.
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-300
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Figure 6. Frequency shifts for radial modes from (0,2) to (0,6)
as function of the static pressure.

The comparison between the results obtained with
this unified model and the model used previously at the
NIST to determine the current value of the Boltzmann
constant? (Fig. 8 and 9) shows the discrepancies due to
the only modal coupling, the models used for each source
of perturbation being the same in both methods.

According to the curves on Fig. 8, the contribution of
modal coupling in the resonance frequencies of the radials
modes considered here is significant in the higher static
pressure range, but lower than 0.2 x 1076 in relative val-
ues in the lower static pressure range, and then should
not take a larger part in the extrapolation at zero static
pressure of the speed of sound. However, this contribu-
tion should not be neglected regarding the final uncer-
tainty required on the value of the Boltzmann constant.
Here, the effect of modal coupling on the values of the
resonance frequencies is nearly a linear function of the
static pressure and does not depend significantly on the
frequency. To interpret this, a few calculation on a sim-
plified expression of equation (16) (neglecting the viscous
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Figure 7. Theoretical half-widths for radial modes from (0,2)
to (0,6) as function of the static pressure.

and thermal effects) leads to express directly the effect
of modal coupling on the resonance frequencies as a term
proportional to poc2xAS, (x being the constant com-
pliance of the receiving microphone), which is a linear
function of the static pressure, and does not depend on
the frequency.

The differences between the half-widths (Fig. 9) cal-
culated from the two models confirm that the effect of
the modal coupling in the resonance properties of radial
modes should not be neglected in this spherical resonator.
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Figure 8. Differences between the frequency shifts calculated

according to actual and previous theories for radial modes
from (0,2) to (0,6) as function of the static pressure.

Finally, the comparison between the theoretical half-
widths calculated from the unified modelling of the acous-
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Figure 9. Differences between the half-widths calculated ac-
cording to actual and previous theories for radial modes from
(0,2) to (0,6) as function of the static pressure.

tic field and the half-widths measured twenty years ago
at the NIST? is shown on Fig. 10 with the respective ex-
perimental deviations, as function of the static pressure
for acoustic radial modes from (0,2) to (0,6). For static
pressures higher than 50 kPa, the discrepancies between
theory and experiment are larger than the experimental
deviations, showing that this model is not sufficient yet
to take into account all the phenomena that ocur in this
spherical cavity. In the lower static pressure range, the
experimental deviations are too large to conclude on the
agreement between the analytical and the experimental
results.
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Figure 10. Excess half-widths and experimental deviations
for radial modes from (0,2) to (0,6).

V. CONCLUSION

To sum up, the present paper provides some important
improvements to the modelling of the acoustic field in a
quasi-spherical cavity with irregular wall (§ III) because
the model given here allows us to take into account all
the different perturbing elements together: the viscous
and thermal effects in the boundary layers and in the
bulk of the gas, the shape of the cavity (quasi-spherical
shape), small elements located on the wall of the cavity
(ducts, acoustic transducers, small geometrical irregular-
ities), the roughness of the wall, the coupling between
the fluid and the shell. This unified model includes the
coupling between the different perturbing elements, de-
pending on the relative position of these elements on the
wall for the small local components, with respect to the
real shape of the cavity, and the resulting modal coupling
in a consistent manner.

Regarding the first results obtained with this model
on the particular case of the spherical cavity used at the
NIST twenty years ago?, it seems that the contribution
of modal coupling in the resonance frequency is small but
should not be neglected regarding the accuracy required
here. Moreover, the discrepancies between the theoretical
and experimental half-widths show that several phenom-
ena are still missing in this unified model and should be
taken into account in the future.

This work have to be carried out with the accurate
modelling of each small element located on the wall of
the cavity, especially the acoustic transducers, thin slits
(undesirable but unavoidable in practice) which could be
modelled as local roughness and the coupling between the
fluid and the shell. All these perturbing elements would
be taken into account in the global modelling suggested
here in term of source or specific admittance on the wall.

Another improvement would be the modelling of the
viscous and thermal effects at a higher order, which would
avoid to separate the effects in the boundary layer and
in the bulk, taking into account low density gas effects
(thermal jump, slip conditions), and to integrate it in the
unified modelling of the acoustic field in the cavity.

Appendix A: ACOUSTIC PROPAGATION IN DISSIPATIVE
FLUID
1. Propagation equations

The particle velocity field ¢ can be written as the sum
of a vortical velocity v, and a laminar velocity vj:

T=17Ty+1, (Ala)
rot 7 =0 and divd #0, (A1b)
divd, =0 and rotd, #0. (Alc)

Neglecting the coupling between the vortical and lam-
inar movements in the bulk of the fluid, Navier—Stokes
equation (1) is written as two equations, and then the
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fundamental equations (1) to (3) lead straightforwardly
to the propagation equations for p, 7, v; and ,.

The calculation of the propagation equation for the
temperature variation 7 is given in reference'! (§ 2.5.1),
neglecting the terms of order greater than the first or-
der of the viscous and thermal lenghts. The temperature
variation 7 can be written as the sum of an acoustic tem-
perature 7, and an entropic temperature 73, respectively
solutions of the two following equations:

1 0
— |1 A ~
( + lypp — @ at) :|Ta 0,

where Ly, = £, + (v — 1)l

24w (o-vie 2o

The pressure variation p = p, +pp and the laminar parti-
cle velocity o) = v, + U, satisfy the same equations (A2)
and (A3) than the temperature variation 7.

The propagation equation for the vortical particle ve-
locity is obtained making use of equations (Ala-c) in the
Navier-Stokes equation (1):

A
Co ot

[1 0?2 (A2)

2 o8

%Ak@:@ (A4)

2. General solutions

The solutions for the pressure variation p = p,+p, and
the particle velocity ¥; = v, + ¥} can be derived from the
solution for the temperature variation 7. Writing out
the solution 7 = 7, + 73, in equation (3), making use of
equations (A2) and (A3) leads to

18 10
o 2 (10— 2 ) g,
b 7—1< 03>T

)l 9 <<
o1 Th Pa -

(Aba)

pr =Bty — (A5b)

Writting out equations (Aba,b) in equation (1) and
making use of equations (A1), (A2) and (A3), gives for
the particle velocities v, and vj:

. 1 18 10\ " .
" a1 K—a) e jEmdre
(A6a)

h O~ /77_ 1 gh grﬁd Th - (A6b)

Equations (A2) to (A6b) can also be written for har-
monic motion e'“! making use of the three following

wavenumbers:
ki ~ Hfﬁ ~ k[l — jkolun ], (A7)
-t -0 -6 (4
o= —% . (A9)

Agsuming that p, >> pj, the acoustic pressure p,, de-
noted p in the present paper, is governed by the same
propagation equation (A2) as the acoustic temperature
variation 7,. This propagation equation should be as-
sociated to adapted boundary conditions to describe the
acoustic field in the cavity.

Appendix B: NORMALIZATION COEFFICIENTS
The normalization coefficients 7., of the spherical

bessel functions j,(k,.7) (eq. 21) are given by the or-
thonormality condition on the bessel functions:

R
Ty = [ il s dr.
0

yielding
R3
\71/277 = 7 ) (Bla)
for v =0 and n =1,
R viv+1
ﬁyh%ﬁb—%im (B1b)
vn

otherwise.

The normalization coefficients 7., of the spherical
bessel functions j,(k,.7) (eq. 6) are given by the or-
thonormality condition on the eigenfunctions ! (¥) in
the regular domain D,.:

=//mwmm2

leading to
o _ 4 3
Uy, = 3 TR’ (B2a)
for v =0 and n =1,
. vivr+1
a2, = (14 d,0)7R? [jl,(%,,)]2 [1 - %
71/77
1
(v +p) . (B2D)
21 (- p)

otherwise.
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