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Aousti �eld in a quasi-spherial resonator: uni�ed perturbation modelCéile Guianvar'h,1 Laurent Pitre,1 Mihel Bruneau,2 and Anne-Marie Bruneau21Institut National de Métrologie, 61 rue du Landy 93210 La Plaine Saint Denis, Frane.∗2Laboratoire d'Aoustique de l'Université du Maine UMR CNRS 6613, av. Olivier Messiaen 72085 Le Mans Cedex 9,Frane.(Dated: January 1, 2009)Gas-�lled quasi-spherial resonators are exellent tools for the measurement of thermophysialproperties of gas, and have also been retained for the determination of the Boltzmann onstantwith a low unertainty, whih an be derived from measurements of both the speed of sound in anoble gas and the volume of the resonator. To ahieve this, a detailed modelling of the aousti�eld in quasi-spherial resonators are of importane. Several phenomena and perturbations mustbe taken into aount, inluding, among inertia and ompressibility, heat ondution, visosity,the shape of the resonator, small irregularities on the wall, and so on. The aim of this paper isto provide improvements to the urrent models of the aousti �eld in suh resonator. Namely,the model given here takes into aount all the di�erent perturbing elements together in a uniqueformalism, inluding the oupling between the di�erent perturbing elements and the resultingmodal oupling in a onsistent manner. The �rst results obtained from this analytial model on asimple on�guration show that the e�et of modal oupling is small but should not be negletedregarding the auray required here, even if several improvement ould still be provided to thisnew uni�ed model.PACS numbers: 43.20.-f, 43.20.KsI. INTRODUCTIONThe International Committee for Weights and Mea-sures (CIPM) reently reommended the rede�nition ofthe International System Units (SI), where the kelvinwould be linked to an exatly de�ned value of the Boltz-mann onstant1. The advantage would be that the de�-nition of the kelvin would not depend on any temperaturenor on any method for its measurement. The value to behosen for the Boltzmann onstant must be known witha relative unertainty of 10−6. Gas-�lled quasi-spherialresonators are exellent tools for the determination of theBoltzmann onstant, whih an be derived from measure-ments of both the speed of sound in a noble gas and thevolume of the resonator. The hoie of a quasi-spherialshape for the shell allows us to have a high quality fatorfor the aousti resonanes and non-degenerate eletro-magneti modes.Atually, an aurate design of the shell and a de-tailed modelling of the aousti �eld in spherial or quasi-spherial resonators are of importane to measure ther-mophysial properties of gas and the Boltzmann on-stant. Several phenomena must be taken into aount,inluding inertia, ompressibility, heat ondution andshear visosity (in the boundary layers and in the bulkof the �uid), bulk visosity, the real shape of the res-onator (in fat quasi-spherial shape), the aousti inputimpedane of small aousti elements �ush-mounted onthe wall that are neessary for the measurements (tubes,transduers), geometrial irregularities, roughness of the
∗Eletroni address: eile.guianvarh�nam.fr

wall, shell motion due to external vibration soures andto the oupling between the �uid and the shell. All thesephenomena, whih at as perturbations to an idealizedaousti �uid �lling a perfet rigid spherial shell, needto be taken into aount to determine with a low uner-tainty their in�uene on the resonane properties of theresonator, and then on the value obtained for the Boltz-mann onstant.Groundbreaking experiments and a number of signi�-ant theoretial studies have already been made by Mehl,Moldover, Trusler et al.2�7. In partiular, they suggestedmeans to take into aount several perturbations in theavity. It is worth noting that these perturbations aretaken into aount separately, then negleting the ou-pling between them. These perturbations are the ther-mal and visous e�ets (in the boundary layers and thebulk of the gas), the deformation of the avity, the in-�uene of small elements loated on the wall of the res-onator (tubes, slits, and transduers), the vibroaoustioupling between the �uid and the shell.The aim of this paper is to suggest uni�ed modellingable to gather all the di�erent types of perturbing fatorsin an unique formalism, inluding the oupling betweenthe di�erent perturbation fators (through the modaloupling) negleted until now, whih would be of inter-est to have a better interpretations of the measurementresults in the quasi-spherial resonator. Here, the aous-ti �eld is expressed by the oupling between Neumannmodes of an ideal, unperturbed resonator that boundsoutwardly the pertubated surfae of the resonator (theoupling being due to energy transfer between modesindued by every perturbation). This model is thenused on the most simple experimental onditions: a per-fetly spherial avity, �lled with a dissipative gas (ar-Aousti �eld in a quasi-spherial resonator 1



gon), with only a reeiver and a transmitter mirophone�ush-mounted on the wall. Assuming prefetly spherialavity in the appliation onsidered in the present paperunables us to evaluate the e�et of modal oupling, dueto the visous and thermal e�ets in the bulk and in theboundary layers (modeled at the lowest order), and tothe mirophones.The fundamental equations of aousti propagation indissipative �uid are given in setion II. In setion III,the solution of the fundamental problem (propagationequation assoiated to the boundary onditions) for theaousti pressure in the quasi-spherial resonator is ex-pressed as an expansion on the spherial eigenfuntions,making use of the integral formulation. Finally in se-tion IV, results are given and disussed. These resultsare obtained with this model applied on the most simpleexperimental on�guration whih has been arried out in1988 at the NIST2.II. FUNDAMENTAL EQUATIONS OF ACOUSTICS INDISSIPATIVE FLUIDThe formalism used in the following lies on the works ofKirhho�, gathered later by Rayleigh8, Morse9, Piere10and Bruneau11. The presentation of the fundamentalequations of aoustis hosen here refers to those ofBruneau.The system onsidered is a quasi-spherial avity be-ause its shape retains ertain advantages of spherialaousti resonators (high quality fator) while simplify-ing the measurement of the resonator volume using mi-rowave resonanes (eletromagneti modes are not de-generate for the shape hosen here). The variables de-sribing the dynami and thermodynami states of the�uid are the pressure variation p, the partile veloity ~v,the density variation ρ′, the entropy variation σ, and thetemperature variation τ . The parameters whih speifythe properties and the nature of the �uid are the val-ues of the density ρ0, the stati pressure P0, the shearvisosity oe�ient µ, the bulk visosity oe�ient η,the oe�ient of thermal ondutivity λ, the spei�heat oe�ient at onstant pressure and onstant vol-ume per unit of mass CP and CV respetively, the spe-i� heat ratio γ, and the inrease in pressure per unit in-rease in temperature at onstant density β̂ = (∂P/∂T )V(β̂γ = αρ0c
2
0 = 1/V (∂V/∂T )P , α being the volume ther-mal expansivity and c0 the adiabati speed of sound). Aomplete set of linearized homogeneous equations gov-erning small amplitude disturbanes of the �uid inludesthe following:

• the Navier�Stokes equation
1

c0

∂ ~v

∂t
+

1

ρ0c0
~grad p = ℓv ~grad div ~v− ℓ ′v ~rot ~rot ~v , (1)

where the harateristi lengths ℓv and ℓ ′v are de-�ned as follows,
ℓv =

1

ρ0c0

(

4

3
µ+ η

) and ℓ ′v =
µ

ρ0c0
,

• the onservation of mass equation, taking into a-ount the thermodynami law expressing the den-sity variation as funtion of the independent vari-ables p and τ ,
ρ0c0 div ~v +

γ

c0

∂

∂t
(p− β̂τ) = 0 , (2)

• the Fourier equation for heat ondution, takinginto aount the thermodynami law expressing theentropy variation as funtion of the independentvariables p and τ ,
(

1

c0

∂

∂t
− ℓh ∆

)

τ =
γ − 1

β̂γ

1

c0

∂ p

∂t
, (3)the operator ∆ being the laplaian, where the har-ateristi length ℓh is de�ned as

ℓh =
λ

ρ0c0CP

.These equations (1), (2) and (3), assoiated to theboundary onditions, desribe the aousti �eld in thequasi-spherial avity. The purpose of the following se-tion is to �nd the propagation equations for the aoustipressure, the temperature variation, and the partile ve-loity.III. THE HARMONIC FIELD IN A QUASI-SPHERICALCAVITYIn this setion a standard analyti proedure is devel-oped whereby the aousti �eld inside the avity boundedby perturbed surfae (irregular enlosure, domainD, sur-fae S) is expressed as a sum over the eigenmodes (Neu-mann) of a avity having separable geometry (regular en-losure, domain Dr, surfae Sr) that bounds outwardlythe perturbed enlosure onsidered (Figure 1).The resulting aousti modelling presented in setionIII.B thus inludes in a oherent manner all types of per-turbation in the resonator (quasi-spherial shape, dissi-pation in the bulk of the �uid, aousti elements on thewall) and the resulting modal oupling.A. The boundary problem with souresThe aousti pressure in the perturbed enlosure (do-main D bounded by surfaes S) is governed by the setof equations, inluding the propagation equation withharmoni soure term f(~r) on the right hand side andAousti �eld in a quasi-spherial resonator 2
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Sphere(regular enlosure)

(irregular enlosure)
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Figure 1. Sphere and quasi-sphere with irregular boundaryonditions.the boundary onditions with harmoni boundary soureterm σ(~r) on the right hand side, whih takes the follow-ing form:
(∆ + k2

a)p(~r) = −f(~r) , in D , (4a)
[

∂

∂n
+ j k0β(~r)

]

p(~r) = σ(~r) , on S , (4b)where the symbol ∂
∂n

implies a normal derivative out-wardly direted, k0 = ω/c0 is the adiabati wavenumber,
ka the aousti wavenumber inluding the dissipation inthe bulk of the �uid (appendix A), and the parameter
β(~r) is the spei� admittane of the wall. The spe-i� admittane β(~r) an inlude the visous and thermalboundary layer e�ets, and any kind of disontinuitie andperturbation on the wall of the resonator (tubes, slits,transduers, roughness...). For the problem onsidered,there is no soure in the domain D, then the term f(~r)is zero.B. The assoiated eigenvalues problemThe modal wave funtions of an ideal spherial avity(domain Dr bounded by a surfae Sr), whih enloses theperturbed enlosure, are solutions of the homogeneousHelmholtz equation subjet to the Neumann boundaryondition at the wall, namely

(∆ + k2
m)ψt

m(~r) = 0 , in Dr , (5a)
∂

∂n
ψt

m(~r) = 0 , on Sr , (5b)where the subsript m stands for three quantum num-bers (ν, µ, η) and the supersript t (denoted either c or s)represents the two degenerate eigenfuntions whih de-pend on the azimuthal angle ϕ. The eigenfuntions ψt
mexpressed in the spherial oordinates (r, θ, ϕ) are

ψc
m(r, θ, ϕ) =

1

am

jν(kνηr)Pµν(cos θ) cosµϕ , (6a)
ψs

m(r, θ, ϕ) =
1

am

jν(kνηr)Pµν(cos θ) sinµϕ , (6b)

where the funtions Pµν are Legendre funtions, and theoe�ients am are normalization oe�ients (f. ap-pendix B).Expanding the pressure �eld p(~r) on the eigenfuntions
ψt′

p (~r), leads to
p(~r) =

∑

p,t′

ct
′

p ψ
t′

p (~r) . (7)Then, multiplying equation (4a) where f = 0, by theeigenfuntion ψt
m(~r), and integrating all over the domain

D, i.e.
∫∫∫

D

ψt
m(~r)(∆ + k2

a)p(~r) dD = 0 , (8)solution of the posed problem for the aousti pressure�eld is subsequently ahieved with the help of Green'sintegral theorem whih states
∫∫∫

D

p(~r)∆ψt
m(~r) dD −

∫∫∫

D

ψt
m(~r)∆p(~r) dD

=

∫∫

S

p(~r)
∂

∂n
ψt

m(~r) dS −
∫∫

S

ψt
m(~r)

∂

∂n
p(~r) dS . (9)The expression of ∆ψt

m and ∂
∂n ψ

t
m being required tosatisfy equations (5a) and (5b) respetively, and the so-lutions p being expressed by equation (7), equation (9)gives straightforwardly the following equation

∑

p,t′

ct
′

p

[

(k2
m − k2

a)N tt′

mp +Att′

mp + Ett′

mp

]

= St
m , (10)where

N tt′

mp =

∫∫∫

D

ψt′

p (~r)ψt
m(~r) dD , (11a)

Att′

mp =

∫∫

S

ψt′

p (~r)
∂

∂n
ψt

m(~r) dS , (11b)
Ett′

mp =

∫∫

S

j k0β(~r)ψt′

p (~r)ψt
m(~r) dS , (11)

St
m =

∫∫

S

σ(~r)ψt
m(~r) dS , (11d)whih is equivalent to the matrix equation, using the no-tation [k2N ] for the matrix whose elements are k2

mN
tt′

mp,
(

[k2N ] − k2
a[N ] + [A] + [E]

)

[C] = [S] . (12)The matrix [N ] expresses the in�uene on the aousti�eld of the depth of the deformation: the radial oor-dinate of the avity depends on the angles θ and ϕ inspherial oordinates (the e�et expressed by the matrix
[N ] an be alled �bulk� or �global�12 modal oupling,orresponding to energy transfer between the mode la-belled m and the mode labelled p). The matrix [A] ex-presses the in�uene on the aousti �eld of the slope ofthe deformation: the normal to the wall of the resonatorAousti �eld in a quasi-spherial resonator 3



depends on θ and ϕ too. The matrix [E] expresses thee�ets on the aousti �eld of the perturbations on thewall, taking also into aount the shape of the resonator(the e�ets expressed by the matries [A] and [E] an bealled �boundary� or �loal�12 modal oupling, also orre-sponding to energy transfer between the mode labelledmand the mode labelled p). The vetor [S] expresses thee�et of the aousti soure set on the wall of the res-onator. Finally, the matrix [k2N ] − k2
a[N ] + [A] + [E] inequation (12) involves oupling terms between the di�er-ent modes (in the ross produts ψt′

p (~r)ψt
m(~r), weighed ornot by the admittane β, and ψt′

p (~r) ∂
∂n

ψt
m(~r)), whereasthe right hand side involves the modes reated by thesoure.The eigenvalues of the matrix in the left hand side ofequation (12) inludes then together all the perturba-tions we would take into aount in the alulation ofthe resonane harateristis (resonane frequenies andhalf-widths) of the avity: the e�et of the deformationis inluded in the matries [N ] and [A], and all theperturbing fators on the wall of the avity are inludedin the spei� admittane β of the matrix [E] for thepassive aousti e�ets and elements (boundary layere�ets, tubes, transduers, irregularities, roughness, vi-broaousti oupling between the �uid and the shell, ...)and in the matrix [S] for the ative aousti e�ets andelements (aousti soure, shell motion due to externalvibration soures).Remark.� In previous works by Mehl3,4, using thegeneral formalism of Morse and Feshbah13 and fousingonly on the e�ets of the small deformations of the avity(quasi-spherial shape) from the regular shape (perfetspherial shape), all the other perturbations on the wallof the resonator being taken into aount by other means,the terms Emp and Sm in equation (10) are then zero,whih leads to, negleting terms N tt′

mp for m 6= p and
t 6= t′ as made by Mehl3 (eq. 8),

[

(k2
a − k2

m)N tt
mm −Att

mm

]

ctm =
∑

p6=m,t6=t′

ct
′

pA
tt′

mp .The oe�ients ctm are then given by
ctm =

∑

p6=m,t6=t′

Att′

mpc
t′

p

(k2
a − k2

m)N tt
mm −Att

mm

, (13)and the di�erene (k2
a − k2

m) by
k2

a − k2
m =

1

N tt
mmc

t
m

∑

p6=m,t6=t′

Att′

mpc
t′

p +
Att

mm

N tt
mm

,

that is
k2

a − k2
m =

Att
mm

N tt
mm

+
1

N tt
mmc

t
m

∑

p6=m,t6=t′

Att′

mp

∑

q 6=p,t′′ 6=t′

At′t′′

pq ct
′′

q

(k2
a − k2

p)N t′t′

pp −At′t′

pp

, (14)then, negleting the non-diagonal terms in the sum over
q and assuming that (k2

a − k2
p)N t′t′

pp >> At′t′

pp and Att′

mp =

At′t
pm,
k2

a − k2
m ≈ Att

mm

N tt
mm

+
∑

p6=m,t6=t′

Att′

mp

2

(k2
a − k2

p)N t′t′

pp N tt
mm

. (15)In this expression (15) of the frequeny shifts due tothe deformation of the avity, derived from Morse andFeshbah formalism13, the oupling terms N tt′

mp (m 6= pand t 6= t′) are negleted (the bulk modal oupling is ne-gleted, assuming quasi-orthogonality) whereas the terms
Att′

mp are kept, i.e. the boundary oupling is taken intoaount (due to the boundary slope). Furthermore, inthese previous works, the symmetry of the matrix [A] isassumed but not demonstrated in the general ase on-sidered (every shape of the avity). It is the aim of theremainder of the paper to keep all the oupling terms thatwas not taken into aount in previous works in order toknow more aurately the in�uene of eah one.IV. APPLICATION: ACOUSTIC FIELD IN A SPHERICALRESONATORThe ase studied here is the spherial avity used at theNIST to measure the gas onstant2. This spherial avity(mean radius R = 8.890143× 10−2m) �lled with a dissi-pative gas (argon) with a reeiving mirophone (spei�admittane βr, surfae ∆Sr) and a transmitting miro-phone (sound soure, vibration veloity Vσ, surfae∆Sσ).The dissipation in the bulk of the �uid is taken into a-ount in the omplex wavenumber ka. The bounday layere�ets are expressed in term of spei� admittane βvh atthe lowest order (order 1/2 of the harateristi lengths
ℓh and ℓ ′v ). This spei� admittane is uniform on thetotal area of the wall S.The shell motion an be taken into aount in the ma-tries E and S in an appropriate manner for the deter-mination of the Boltzmann onstant only if the spatialrepartition of this shell motion is known or modelled witha great auray. Previous works14 allow us to deter-mine the in�uene of the shell motion on the aoustiresonane frequenies of a spherial avity with a sim-ple shape. However, regarding the omplexity of the realshape of the resonator's shell, it doesn't seem possible, atshort or mid-term, to arry out a vibroaoustial modelwith the auray required for this appliation. Then,urrently, the aoustial measurements are limited to theAousti �eld in a quasi-spherial resonator 4



frequeny ranges for whih the e�et of the shell motionis not signi�ant in the experimental results (this orre-sponds to frequenies far from the strutural resonanefrequenies of the shell). The shell motion is thus ne-gleted here in the global modelling of the aousti �eld.For the perfet sphere onsidered below, the domain Dand the surfae S are the same as the regular domain Drand surfae Sr respetively. There is no modal ouplingdue to the deformation of the domain and the enlosure.As a onsequene, the matrix [N ] is the identity and [A]is zero. Modal oupling in suh ase is then due to dis-sipation and perturbations on the wall of the avity only(matrix [E]). The integral equation (10) leads then to
∑

p,t′

ct
′

p

[

(k2
m − k2

a)δmpδtt′ + Ett′

mp

]

= St
m , (16)

γν,η being the ηth root of the �rst derivative of the spher-ial Bessel funtion jν , and where (eq. 11,d)
St

m =

∫∫

S

σ(~r)ψt
m(~r) dS , (17a)

Ett′

mp =

∫∫

S

j k0β(~r)ψt′

p (~r)ψt
m(~r) dS . (17b)The small surfaes ∆Sr and ∆Sσ are muh smallerthan the total area S, and su�iently small to assumethat the assoiated spei� admittanes, veloity andeigenfuntions are uniform on them, giving for equations(17a,b)

St
m = σψt

m(R, θσ, ϕσ)∆Sσ , (18a)and
Ett′

mp = vhEtt′

mp + rEtt′

mp

= j k0

[

βvh〈ψt′

p |ψt
m〉S + βr∆Sr〈ψt′

p |ψt
m〉c

]

, (18b)where the notation 〈ψt′

p |ψt
m〉i stands for the integral ofthe produt of the eigenfuntions ψt′

p and ψt
m over thesurfae either S or ∆Si.The ontributions in the modal oupling of the bound-ary layer e�ets (ating on the whole surfae S of thewall) and of eah small element �ush-mounted on thewall are alulated in setions IV.A and IV.B respe-tively, when the resonator is exited by a loal soundsoure, whih in�uene (terms Sm) is alulated in se-tion IV.C. The oordinates θ and ϕ of the small ele-ments �ush-mounted on the wall are given in Table I,orresponding to the design of the avity used at INM.A. Visous and thermal boundary layer e�etsThe spei� admittane on the surfae S due to thevisous and the thermal boundary layer e�ets have theform11 (at the order 1/2 of the harateristi lengths):

βvh ≈ 1 + j√
2

√

k0

[(

1 − k2
r

k2
a

)

√

ℓ ′v + (γ − 1)
√

ℓh

]

,(19)

θi ϕiTransmitting mirophone π 0Reeiving mirophone π/2 3π/4Table I. θ and ϕ oordinates of the small elements �ush-mounted on the wall of the resonator.where the wavenumber ka is related to the radial andazimuthal wavenumbers kr and kw by k2
a = k2

r + k2
w. Inthe expression of this admittane, whih ats as a smallorretion on the aousti �eld, the omplex wavenum-ber ka, inluding the dissipation in the bulk of the �uid(� A), is replaed by the adiabati wavenumber k0, thedissipation in the bulk being muh smaller than in theboundary layers.The term (1− k2

r/k
2
a) is related to the inidene of theaousti wave on the wall, whih depends on the aous-ti modes that our in the avity. Then, beause of themodal oupling in the avity, while the aousti souregenerates an aousti �eld at the angular frequeny ω,di�erent aousti modes are exited at this angular fre-queny in the avity. The spei� admittane assoiatedto eah aousti mode in equation (19) is then a funtionof the wavenumber k0 = ω/c0, and of the fator relatedto this mode, namely

βvh = βνη

≈ 1 + j√
2

√

k0

[

ν(ν + 1)

γ2
νη

√

ℓ ′v + (γ − 1)
√

ℓh

]

. (20)On another hand, the integral 〈ψt′

p |ψt
m〉S on the wholesurfae S is here given by

〈ψt′

p |ψt
m〉S =

∫ 2π

0

∫ π

0

ψt′

p (R, θ, ϕ)ψt
m(R, θ, ϕ)

R2 sin θ dθ dϕ ,that gives straigthforwardly (beause of the orthogonal-ity of the Legendre's funtions and of funtions sin and
cos), for the in�uene of the visous and thermal bound-ary layers in the resonator:

vhEtt′

mp = j k0βνηR
2 jν(γνη)jν(γνη′)

JνηJνη′

δνν′δµµ′δtt′ , (21)
Jνη being the norm of the funtion jν(kνηr) (f. ap-pendix B).B. Reeiving mirophone �ush-mounted on the wallOn the small surfae ∆Sr, the integral 〈ψt′

p |ψt
m〉r re-dues to

〈ψt′

p |ψt
m〉r = ψt

m(R, θr, ϕr)ψ
t′

p (R, θr, ϕmic)∆Sr , (22)Aousti �eld in a quasi-spherial resonator 5



that gives, for the oordinates θr = π/2 and ϕr = 3π/4(Table I), making use of the relations kνηR = γνη,
rEtt′

mp = j k0

1

amap

∆Srβrjν(γνη)jν′(γν′η′)

Pνµ(cos θr)Pν′µ′(cos θr)φ
t(3πµ/4)φt′(3πµ′/4) , (23)the funtion φt standing for either cos or sin.The expression hosen here for the spei� admittane

βr of the reeiving mirophone is the expression used inthe study done at the NIST2:
βr = jω ρ0c0χ , (24)

χ being the ompliane per unit area of the membraneof the mirophone (nominal value of 1.5 × 10−10).C. Sound soureThe in�uene of the soure on the aousti �eld is ex-pressed by (eq. 18a)
St

m = σψt
m(R, θσ, ϕσ)∆Sσ , (25)where σ = jω ρ0Vσ, Vσ being the vibration veloity ofthe soure, that gives

St
m = j k0ρ0c0Vσ∆Sσψ

t
m(R, θσ, ϕσ) . (26)The sound soure being an eletrostati mirophone(used as a transmitter), the volume veloity Vσ∆Sσ ofthe sound soure is then derived from the following trans-dution equation

Mpσi = Yσp(R, θσ, ϕσ) + ∆SσVσ , (27)whereMpσ and Yσ are respetively the pressure sensitiv-ity and the aousti admittane of the mirophone, and
i the eletri urrent through the mirophone. Makinguse of equations (27) and (7) in equation (26) gives
St

m = j k0ρ0c0Mpσiψ
t
m(R, θσ, ϕσ) −

∑

p,t′

ct
′

p
σEtt′

mp , (28a)with
σEtt′

mp = j k0ρ0c0Yσ〈ψt′

p |ψt
m〉σ (28b)and

〈ψt′

p |ψt
m〉σ = ψt

m(R, θσ, ϕσ)ψt′

p (R, θσ, ϕσ)∆Sσ . (28)The in�uene of the soure in the aousti �eld is thenomposed of an ative part linked to the eletrial ex-itation applied on the mirophone, and a reative partdue to the aousti input admittane of the mirophone�ush-mounted on the wall.The expressions (23) and (28a-) of the e�ets of smallelements �ush-mounted on the wall of the avity showsthat these e�ets are strongly dependant on the relativeposition of these elements on the wall (negleted in theprevious works).

D. Results1. E�et of modal oupling on the aousti pressureThe theoretial e�et of modal oupling on the bulkbehaviour of the aousti pressure in a spherial avity�lled with argon gas, at the triple point of water for dif-ferent stati pressures is shown on �gures 2 to 5, rep-resenting the artographi projetion of the amplitudeof the aousti pressure on the wall of the avity, withrespet to the spherial oordinates ϕ and θ, when thetransmitting mirophone generates a harmoni signal atthe resonane frequeny of a radial mode. The avityhas only a transmitting and a reeiving mirophone onits wall.
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Figure 2. Aousti pressure on the wall of a spherial avityat the resonane frequeny of the (0,2) radial mode, at thestati pressure 25 kPa.These almost qualitative representations in the lowerstati pressure range, on �gures 2 and 3, show that theaousti �eld is quasi-axisymmetri around the axis of thetransmitting mirophone beause the in�uene of the re-eiving mirophone is minimum. The maxima at θ = πand θ = 0 are due to the transmitting mirophone. Theother deviations from a uniform aousti pressure, thatshould be observed at the resonane frequeny of a radialmode, are due to the in�uene of the visous and thermale�ets on non radial modes whih are immediately loseto the radial mode expeted. Then, the (0,2) mode ismostly perturbed by the (3,1) mode, and the (0,5) modeby the (12,1) mode, all of them without azimuthal om-ponents beause of the axisymmetry of the system forsuh low stati pressures.In the higher stati pressure range, the visous andthermal e�ets are less important, then the deviationsfrom a uniform aousti pressure on the wall of the av-ity due to modal oupling are smaller, whih an be seenAousti �eld in a quasi-spherial resonator 6
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Figure 3. Aousti pressure on the wall of a spherial avityat the resonane frequeny of the (0,5) radial mode, at thestati pressure 25 kPa.on �gures 4 and 5. The impedane of the reeiving mi-rophone dereases, and then its in�uene on the aoustipressure in the avity inreases (but remains small), gen-erating also azimuthal modes by modal oupling.Suh maps of the aousti �eld on the wall of the avityould be used to support the design of an aousti res-onator for the determination of the Boltzmann onstant,or for aousti thermometry. Indeed, they show us theoptimal plaes on the wall for the measurement deviesto maximize the signal to noise ratio and redue the per-turbations e�ets. For example here, the best plae forthe reeiving mirophone would be in front of the trans-mitting mirophone (maximum of aousti pressure forall the aousti modes and stati pressures of interest,axisymmetri aousti system).Moreover, the partiular results presented in this se-tion show that to eluidate the individual physial phe-nomena in the formalism, it is neessary to onsider sep-arately the physial phenomena involved and to do sim-plifying assumptions.2. In�uene of modal oupling on the aousti resonaneproperties of the avityFor the determination of the Boltzmann onstant, thevalue of k is derived from the extrapolation at zeropressure of the speed of sound determined from mea-surements of the aousti resonane frequenies of ra-dial modes in the avity, on whih are applied orretionterms alulated from the model of the aousti �eld inthe avity. The omparison between the experimentaland theoretial half-widths allows us to hek the valid-ity of the model used to alulate the orretions to beapplied on the resonane frequenies.
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Figure 4. Aousti pressure on the wall of a spherial avityat the resonane frequeny of the (0,2) radial mode, at thestati pressure 500 kPa.
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Figure 5. Aousti pressure on the wall of a spherial avityat the resonane frequeny of the (0,5) radial mode, at thestati pressure 500 kPa.The global model presented here allows us to alulatethe aousti frequeny response of the resonator. Fittinga resonant funtion (lorenzian funtion) with this alu-lated transfer funtion around the resonane frequeny ofan aousti mode gives us the resonane frequeny andthe half-width of this mode aording to the global ana-lytial model.Sine the global formalism presented here inludesmodal oupling (non-diagonal terms in the matries), adiret analyti expression of the perturbations e�ets onthe resonane properties of the avity annot be derivedAousti �eld in a quasi-spherial resonator 7



from this global modelling without doing several simpli-fying assumptions. Then, only a global and numerialomparison between the urrent and previous theoretialresults is presented here. However, it is worth to notiethat negleting the terms m 6= p in the matrix E in equa-tion (16) leads �nally to the analytial expressions of thefrequeny shifts and half-widths determined in previousworks2,6.The e�et of the aousti perturbations in the avityand of the resulting modal oupling on the resonaneproperties of radial modes from (0,2) to (0,6) as fun-tion of the stati pressure is shown on �gures 6 and 7.The major perturbation in the avity being the visousand thermal e�ets, the absolute value of the frequenyshifts and the half-widths both inrease when the statipressure and the quantum number of the modes derease.
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Figure 6. Frequeny shifts for radial modes from (0,2) to (0,6)as funtion of the stati pressure.The omparison between the results obtained withthis uni�ed model and the model used previously at theNIST to determine the urrent value of the Boltzmannonstant2 (Fig. 8 and 9) shows the disrepanies due tothe only modal oupling, the models used for eah soureof perturbation being the same in both methods.Aording to the urves on Fig. 8, the ontribution ofmodal oupling in the resonane frequenies of the radialsmodes onsidered here is signi�ant in the higher statipressure range, but lower than 0.2× 10−6 in relative val-ues in the lower stati pressure range, and then shouldnot take a larger part in the extrapolation at zero statipressure of the speed of sound. However, this ontribu-tion should not be negleted regarding the �nal uner-tainty required on the value of the Boltzmann onstant.Here, the e�et of modal oupling on the values of theresonane frequenies is nearly a linear funtion of thestati pressure and does not depend signi�antly on thefrequeny. To interpret this, a few alulation on a sim-pli�ed expression of equation (16) (negleting the visous
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Figure 7. Theoretial half-widths for radial modes from (0,2)to (0,6) as funtion of the stati pressure.and thermal e�ets) leads to express diretly the e�etof modal oupling on the resonane frequenies as a termproportional to ρ0c
2
0χ∆Sr (χ being the onstant om-pliane of the reeiving mirophone), whih is a linearfuntion of the stati pressure, and does not depend onthe frequeny.The di�erenes between the half-widths (Fig. 9) al-ulated from the two models on�rm that the e�et ofthe modal oupling in the resonane properties of radialmodes should not be negleted in this spherial resonator.
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Figure 8. Di�erenes between the frequeny shifts alulatedaording to atual and previous theories for radial modesfrom (0,2) to (0,6) as funtion of the stati pressure.Finally, the omparison between the theoretial half-widths alulated from the uni�ed modelling of the aous-Aousti �eld in a quasi-spherial resonator 8
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Figure 9. Di�erenes between the half-widths alulated a-ording to atual and previous theories for radial modes from(0,2) to (0,6) as funtion of the stati pressure.ti �eld and the half-widths measured twenty years agoat the NIST2 is shown on Fig. 10 with the respetive ex-perimental deviations, as funtion of the stati pressurefor aousti radial modes from (0,2) to (0,6). For statipressures higher than 50 kPa, the disrepanies betweentheory and experiment are larger than the experimentaldeviations, showing that this model is not su�ient yetto take into aount all the phenomena that our in thisspherial avity. In the lower stati pressure range, theexperimental deviations are too large to onlude on theagreement between the analytial and the experimentalresults.
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Stati pressure / kPaFigure 10. Exess half-widths and experimental deviationsfor radial modes from (0,2) to (0,6).

V. CONCLUSIONTo sum up, the present paper provides some importantimprovements to the modelling of the aousti �eld in aquasi-spherial avity with irregular wall (� III) beausethe model given here allows us to take into aount allthe di�erent perturbing elements together: the visousand thermal e�ets in the boundary layers and in thebulk of the gas, the shape of the avity (quasi-spherialshape), small elements loated on the wall of the avity(duts, aousti transduers, small geometrial irregular-ities), the roughness of the wall, the oupling betweenthe �uid and the shell. This uni�ed model inludes theoupling between the di�erent perturbing elements, de-pending on the relative position of these elements on thewall for the small loal omponents, with respet to thereal shape of the avity, and the resulting modal ouplingin a onsistent manner.Regarding the �rst results obtained with this modelon the partiular ase of the spherial avity used at theNIST twenty years ago2, it seems that the ontributionof modal oupling in the resonane frequeny is small butshould not be negleted regarding the auray requiredhere. Moreover, the disrepanies between the theoretialand experimental half-widths show that several phenom-ena are still missing in this uni�ed model and should betaken into aount in the future.This work have to be arried out with the auratemodelling of eah small element loated on the wall ofthe avity, espeially the aousti transduers, thin slits(undesirable but unavoidable in pratie) whih ould bemodelled as loal roughness and the oupling between the�uid and the shell. All these perturbing elements wouldbe taken into aount in the global modelling suggestedhere in term of soure or spei� admittane on the wall.Another improvement would be the modelling of thevisous and thermal e�ets at a higher order, whih wouldavoid to separate the e�ets in the boundary layer andin the bulk, taking into aount low density gas e�ets(thermal jump, slip onditions), and to integrate it in theuni�ed modelling of the aousti �eld in the avity.Appendix A: ACOUSTIC PROPAGATION IN DISSIPATIVEFLUID1. Propagation equationsThe partile veloity �eld ~v an be written as the sumof a vortial veloity ~vv and a laminar veloity ~vl:
~v = ~vv + ~vl , (A1a)

~rot ~vl = ~0 and div ~vl 6= 0 , (A1b)
div ~vv = 0 and ~rot ~vv 6= ~0 . (A1)Negleting the oupling between the vortial and lam-inar movements in the bulk of the �uid, Navier�Stokesequation (1) is written as two equations, and then theAousti �eld in a quasi-spherial resonator 9



fundamental equations (1) to (3) lead straightforwardlyto the propagation equations for p, τ , ~vl and ~vv.The alulation of the propagation equation for thetemperature variation τ is given in referene11 (� 2.5.1),negleting the terms of order greater than the �rst or-der of the visous and thermal lenghts. The temperaturevariation τ an be written as the sum of an aousti tem-perature τa and an entropi temperature τh, respetivelysolutions of the two following equations:
[

1

c20

∂ 2

∂t2
−

(

1 + ℓvh

1

c0

∂

∂t

)

∆

]

τa ≈ 0 , (A2)where ℓvh = ℓv + (γ − 1)ℓh ,
[

1

c0

∂

∂t
− ℓh ∆

(

1 + (γ − 1)(ℓv − ℓh )
1

c0

∂

∂t

)]

τh ≈ 0 .(A3)The pressure variation p = pa+ph and the laminar parti-le veloity ~vl = ~va + ~vh satisfy the same equations (A2)and (A3) than the temperature variation τ .The propagation equation for the vortial partile ve-loity is obtained making use of equations (A1a-) in theNavier�Stokes equation (1):
[

1

c0

∂

∂t
− ℓ ′v ∆

]

~vv = ~0 . (A4)2. General solutionsThe solutions for the pressure variation p = pa+ph andthe partile veloity ~vl = ~va +~vh an be derived from thesolution for the temperature variation τ . Writing outthe solution τ = τa + τh in equation (3), making use ofequations (A2) and (A3) leads to
pa ≈ γβ̂

γ − 1

(

1 − ℓh
1

c0

∂

∂t

)

τa , (A5a)
ph ≈ γβ̂(ℓv − ℓh )

1

c0

∂

∂t
τh << pa . (A5b)Writting out equations (A5a,b) in equation (1) andmaking use of equations (A1), (A2) and (A3), gives forthe partile veloities ~va and ~vh:

~va ≈ − 1

ρ0c0

γβ̂

γ − 1

[

(

1

c0

∂

∂t

)−1

+ (ℓv − ℓh )

]

~grad τa ,(A6a)
~vh ≈ γβ̂

γ − 1
ℓh ~grad τh . (A6b)Equations (A2) to (A6b) an also be written for har-moni motion ej ω t making use of the three following

wavenumbers:
k2

a ≈ k2
0

1 + j k0ℓvh

≈ k2
0 [1 − j k0ℓvh ] , (A7)

k2
h ≈ − j k0

ℓh
[1 − j k0(γ − 1)(ℓv − ℓh )] , (A8)

k2
v = − j k0

ℓ ′v
. (A9)Assuming that pa >> ph, the aousti pressure pa, de-noted p in the present paper, is governed by the samepropagation equation (A2) as the aousti temperaturevariation τa. This propagation equation should be as-soiated to adapted boundary onditions to desribe theaousti �eld in the avity.Appendix B: NORMALIZATION COEFFICIENTSThe normalization oe�ients Jνη of the spherialbessel funtions jν(kηνr) (eq. 21) are given by the or-thonormality ondition on the bessel funtions:

J 2
νη =

∫ R

0

[jν(kηνr)]
2
r2 dr ,yielding

J 2
νη =

R3

2
, (B1a)for ν = 0 and η = 1,

J 2
νη =

R3

2
[jν(γην)]

2

[

1 − ν(ν + 1)

γ2
νη

]

, (B1b)otherwise.The normalization oe�ients Jνη of the spherialbessel funtions jν(kηνr) (eq. 6) are given by the or-thonormality ondition on the eigenfuntions ψt
m(~r) inthe regular domain Dr:

a2
m =

∫∫∫

Dr

[

ψt
m(~r)

]2
d~r ,leading to

a2
m =

4

3
πR3 , (B2a)for ν = 0 and η = 1,

a2
m = (1 + δµ0)πR

3 [jν(γην)]
2

[

1 − ν(ν + 1)

γ2
νη

]

1

2ν + 1

(ν + µ)!

(ν − µ)!
, (B2b)otherwise.Aousti �eld in a quasi-spherial resonator 10
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