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A
ousti
 �eld in a quasi-spheri
al resonator: uni�ed perturbation modelCé
ile Guianvar
'h,1 Laurent Pitre,1 Mi
hel Bruneau,2 and Anne-Marie Bruneau21Institut National de Métrologie, 61 rue du Landy 93210 La Plaine Saint Denis, Fran
e.∗2Laboratoire d'A
oustique de l'Université du Maine UMR CNRS 6613, av. Olivier Messiaen 72085 Le Mans Cedex 9,Fran
e.(Dated: January 1, 2009)Gas-�lled quasi-spheri
al resonators are ex
ellent tools for the measurement of thermophysi
alproperties of gas, and have also been retained for the determination of the Boltzmann 
onstantwith a low un
ertainty, whi
h 
an be derived from measurements of both the speed of sound in anoble gas and the volume of the resonator. To a
hieve this, a detailed modelling of the a
ousti
�eld in quasi-spheri
al resonators are of importan
e. Several phenomena and perturbations mustbe taken into a

ount, in
luding, among inertia and 
ompressibility, heat 
ondu
tion, vis
osity,the shape of the resonator, small irregularities on the wall, and so on. The aim of this paper isto provide improvements to the 
urrent models of the a
ousti
 �eld in su
h resonator. Namely,the model given here takes into a

ount all the di�erent perturbing elements together in a uniqueformalism, in
luding the 
oupling between the di�erent perturbing elements and the resultingmodal 
oupling in a 
onsistent manner. The �rst results obtained from this analyti
al model on asimple 
on�guration show that the e�e
t of modal 
oupling is small but should not be negle
tedregarding the a

ura
y required here, even if several improvement 
ould still be provided to thisnew uni�ed model.PACS numbers: 43.20.-f, 43.20.KsI. INTRODUCTIONThe International Committee for Weights and Mea-sures (CIPM) re
ently re
ommended the rede�nition ofthe International System Units (SI), where the kelvinwould be linked to an exa
tly de�ned value of the Boltz-mann 
onstant1. The advantage would be that the de�-nition of the kelvin would not depend on any temperaturenor on any method for its measurement. The value to be
hosen for the Boltzmann 
onstant must be known witha relative un
ertainty of 10−6. Gas-�lled quasi-spheri
alresonators are ex
ellent tools for the determination of theBoltzmann 
onstant, whi
h 
an be derived from measure-ments of both the speed of sound in a noble gas and thevolume of the resonator. The 
hoi
e of a quasi-spheri
alshape for the shell allows us to have a high quality fa
torfor the a
ousti
 resonan
es and non-degenerate ele
tro-magneti
 modes.A
tually, an a

urate design of the shell and a de-tailed modelling of the a
ousti
 �eld in spheri
al or quasi-spheri
al resonators are of importan
e to measure ther-mophysi
al properties of gas and the Boltzmann 
on-stant. Several phenomena must be taken into a

ount,in
luding inertia, 
ompressibility, heat 
ondu
tion andshear vis
osity (in the boundary layers and in the bulkof the �uid), bulk vis
osity, the real shape of the res-onator (in fa
t quasi-spheri
al shape), the a
ousti
 inputimpedan
e of small a
ousti
 elements �ush-mounted onthe wall that are ne
essary for the measurements (tubes,transdu
ers), geometri
al irregularities, roughness of the
∗Ele
troni
 address: 
e
ile.guianvar
h�
nam.fr

wall, shell motion due to external vibration sour
es andto the 
oupling between the �uid and the shell. All thesephenomena, whi
h a
t as perturbations to an idealizeda
ousti
 �uid �lling a perfe
t rigid spheri
al shell, needto be taken into a

ount to determine with a low un
er-tainty their in�uen
e on the resonan
e properties of theresonator, and then on the value obtained for the Boltz-mann 
onstant.Groundbreaking experiments and a number of signi�-
ant theoreti
al studies have already been made by Mehl,Moldover, Trusler et al.2�7. In parti
ular, they suggestedmeans to take into a

ount several perturbations in the
avity. It is worth noting that these perturbations aretaken into a

ount separately, then negle
ting the 
ou-pling between them. These perturbations are the ther-mal and vis
ous e�e
ts (in the boundary layers and thebulk of the gas), the deformation of the 
avity, the in-�uen
e of small elements lo
ated on the wall of the res-onator (tubes, slits, and transdu
ers), the vibroa
ousti

oupling between the �uid and the shell.The aim of this paper is to suggest uni�ed modellingable to gather all the di�erent types of perturbing fa
torsin an unique formalism, in
luding the 
oupling betweenthe di�erent perturbation fa
tors (through the modal
oupling) negle
ted until now, whi
h would be of inter-est to have a better interpretations of the measurementresults in the quasi-spheri
al resonator. Here, the a
ous-ti
 �eld is expressed by the 
oupling between Neumannmodes of an ideal, unperturbed resonator that boundsoutwardly the pertubated surfa
e of the resonator (the
oupling being due to energy transfer between modesindu
ed by every perturbation). This model is thenused on the most simple experimental 
onditions: a per-fe
tly spheri
al 
avity, �lled with a dissipative gas (ar-A
ousti
 �eld in a quasi-spheri
al resonator 1



gon), with only a re
eiver and a transmitter mi
rophone�ush-mounted on the wall. Assuming prefe
tly spheri
al
avity in the appli
ation 
onsidered in the present paperunables us to evaluate the e�e
t of modal 
oupling, dueto the vis
ous and thermal e�e
ts in the bulk and in theboundary layers (modeled at the lowest order), and tothe mi
rophones.The fundamental equations of a
ousti
 propagation indissipative �uid are given in se
tion II. In se
tion III,the solution of the fundamental problem (propagationequation asso
iated to the boundary 
onditions) for thea
ousti
 pressure in the quasi-spheri
al resonator is ex-pressed as an expansion on the spheri
al eigenfun
tions,making use of the integral formulation. Finally in se
-tion IV, results are given and dis
ussed. These resultsare obtained with this model applied on the most simpleexperimental 
on�guration whi
h has been 
arried out in1988 at the NIST2.II. FUNDAMENTAL EQUATIONS OF ACOUSTICS INDISSIPATIVE FLUIDThe formalism used in the following lies on the works ofKir
hho�, gathered later by Rayleigh8, Morse9, Pier
e10and Bruneau11. The presentation of the fundamentalequations of a
ousti
s 
hosen here refers to those ofBruneau.The system 
onsidered is a quasi-spheri
al 
avity be-
ause its shape retains 
ertain advantages of spheri
ala
ousti
 resonators (high quality fa
tor) while simplify-ing the measurement of the resonator volume using mi-
rowave resonan
es (ele
tromagneti
 modes are not de-generate for the shape 
hosen here). The variables de-s
ribing the dynami
 and thermodynami
 states of the�uid are the pressure variation p, the parti
le velo
ity ~v,the density variation ρ′, the entropy variation σ, and thetemperature variation τ . The parameters whi
h spe
ifythe properties and the nature of the �uid are the val-ues of the density ρ0, the stati
 pressure P0, the shearvis
osity 
oe�
ient µ, the bulk vis
osity 
oe�
ient η,the 
oe�
ient of thermal 
ondu
tivity λ, the spe
i�
heat 
oe�
ient at 
onstant pressure and 
onstant vol-ume per unit of mass CP and CV respe
tively, the spe-
i�
 heat ratio γ, and the in
rease in pressure per unit in-
rease in temperature at 
onstant density β̂ = (∂P/∂T )V(β̂γ = αρ0c
2
0 = 1/V (∂V/∂T )P , α being the volume ther-mal expansivity and c0 the adiabati
 speed of sound). A
omplete set of linearized homogeneous equations gov-erning small amplitude disturban
es of the �uid in
ludesthe following:

• the Navier�Stokes equation
1

c0

∂ ~v

∂t
+

1

ρ0c0
~grad p = ℓv ~grad div ~v− ℓ ′v ~rot ~rot ~v , (1)

where the 
hara
teristi
 lengths ℓv and ℓ ′v are de-�ned as follows,
ℓv =

1

ρ0c0

(

4

3
µ+ η

) and ℓ ′v =
µ

ρ0c0
,

• the 
onservation of mass equation, taking into a
-
ount the thermodynami
 law expressing the den-sity variation as fun
tion of the independent vari-ables p and τ ,
ρ0c0 div ~v +

γ

c0

∂

∂t
(p− β̂τ) = 0 , (2)

• the Fourier equation for heat 
ondu
tion, takinginto a

ount the thermodynami
 law expressing theentropy variation as fun
tion of the independentvariables p and τ ,
(

1

c0

∂

∂t
− ℓh ∆

)

τ =
γ − 1

β̂γ

1

c0

∂ p

∂t
, (3)the operator ∆ being the lapla
ian, where the 
har-a
teristi
 length ℓh is de�ned as

ℓh =
λ

ρ0c0CP

.These equations (1), (2) and (3), asso
iated to theboundary 
onditions, des
ribe the a
ousti
 �eld in thequasi-spheri
al 
avity. The purpose of the following se
-tion is to �nd the propagation equations for the a
ousti
pressure, the temperature variation, and the parti
le ve-lo
ity.III. THE HARMONIC FIELD IN A QUASI-SPHERICALCAVITYIn this se
tion a standard analyti
 pro
edure is devel-oped whereby the a
ousti
 �eld inside the 
avity boundedby perturbed surfa
e (irregular en
losure, domainD, sur-fa
e S) is expressed as a sum over the eigenmodes (Neu-mann) of a 
avity having separable geometry (regular en-
losure, domain Dr, surfa
e Sr) that bounds outwardlythe perturbed en
losure 
onsidered (Figure 1).The resulting a
ousti
 modelling presented in se
tionIII.B thus in
ludes in a 
oherent manner all types of per-turbation in the resonator (quasi-spheri
al shape, dissi-pation in the bulk of the �uid, a
ousti
 elements on thewall) and the resulting modal 
oupling.A. The boundary problem with sour
esThe a
ousti
 pressure in the perturbed en
losure (do-main D bounded by surfa
es S) is governed by the setof equations, in
luding the propagation equation withharmoni
 sour
e term f(~r) on the right hand side andA
ousti
 �eld in a quasi-spheri
al resonator 2



Quasi-sphere
Sphere(regular en
losure)

(irregular en
losure)
D, S

Dr , Sr

Figure 1. Sphere and quasi-sphere with irregular boundary
onditions.the boundary 
onditions with harmoni
 boundary sour
eterm σ(~r) on the right hand side, whi
h takes the follow-ing form:
(∆ + k2

a)p(~r) = −f(~r) , in D , (4a)
[

∂

∂n
+ j k0β(~r)

]

p(~r) = σ(~r) , on S , (4b)where the symbol ∂
∂n

implies a normal derivative out-wardly dire
ted, k0 = ω/c0 is the adiabati
 wavenumber,
ka the a
ousti
 wavenumber in
luding the dissipation inthe bulk of the �uid (appendix A), and the parameter
β(~r) is the spe
i�
 admittan
e of the wall. The spe-
i�
 admittan
e β(~r) 
an in
lude the vis
ous and thermalboundary layer e�e
ts, and any kind of dis
ontinuitie andperturbation on the wall of the resonator (tubes, slits,transdu
ers, roughness...). For the problem 
onsidered,there is no sour
e in the domain D, then the term f(~r)is zero.B. The asso
iated eigenvalues problemThe modal wave fun
tions of an ideal spheri
al 
avity(domain Dr bounded by a surfa
e Sr), whi
h en
loses theperturbed en
losure, are solutions of the homogeneousHelmholtz equation subje
t to the Neumann boundary
ondition at the wall, namely

(∆ + k2
m)ψt

m(~r) = 0 , in Dr , (5a)
∂

∂n
ψt

m(~r) = 0 , on Sr , (5b)where the subs
ript m stands for three quantum num-bers (ν, µ, η) and the supers
ript t (denoted either c or s)represents the two degenerate eigenfun
tions whi
h de-pend on the azimuthal angle ϕ. The eigenfun
tions ψt
mexpressed in the spheri
al 
oordinates (r, θ, ϕ) are

ψc
m(r, θ, ϕ) =

1

am

jν(kνηr)Pµν(cos θ) cosµϕ , (6a)
ψs

m(r, θ, ϕ) =
1

am

jν(kνηr)Pµν(cos θ) sinµϕ , (6b)

where the fun
tions Pµν are Legendre fun
tions, and the
oe�
ients am are normalization 
oe�
ients (
f. ap-pendix B).Expanding the pressure �eld p(~r) on the eigenfun
tions
ψt′

p (~r), leads to
p(~r) =

∑

p,t′

ct
′

p ψ
t′

p (~r) . (7)Then, multiplying equation (4a) where f = 0, by theeigenfun
tion ψt
m(~r), and integrating all over the domain

D, i.e.
∫∫∫

D

ψt
m(~r)(∆ + k2

a)p(~r) dD = 0 , (8)solution of the posed problem for the a
ousti
 pressure�eld is subsequently a
hieved with the help of Green'sintegral theorem whi
h states
∫∫∫

D

p(~r)∆ψt
m(~r) dD −

∫∫∫

D

ψt
m(~r)∆p(~r) dD

=

∫∫

S

p(~r)
∂

∂n
ψt

m(~r) dS −
∫∫

S

ψt
m(~r)

∂

∂n
p(~r) dS . (9)The expression of ∆ψt

m and ∂
∂n ψ

t
m being required tosatisfy equations (5a) and (5b) respe
tively, and the so-lutions p being expressed by equation (7), equation (9)gives straightforwardly the following equation

∑

p,t′

ct
′

p

[

(k2
m − k2

a)N tt′

mp +Att′

mp + Ett′

mp

]

= St
m , (10)where

N tt′

mp =

∫∫∫

D

ψt′

p (~r)ψt
m(~r) dD , (11a)

Att′

mp =

∫∫

S

ψt′

p (~r)
∂

∂n
ψt

m(~r) dS , (11b)
Ett′

mp =

∫∫

S

j k0β(~r)ψt′

p (~r)ψt
m(~r) dS , (11
)

St
m =

∫∫

S

σ(~r)ψt
m(~r) dS , (11d)whi
h is equivalent to the matrix equation, using the no-tation [k2N ] for the matrix whose elements are k2

mN
tt′

mp,
(

[k2N ] − k2
a[N ] + [A] + [E]

)

[C] = [S] . (12)The matrix [N ] expresses the in�uen
e on the a
ousti
�eld of the depth of the deformation: the radial 
oor-dinate of the 
avity depends on the angles θ and ϕ inspheri
al 
oordinates (the e�e
t expressed by the matrix
[N ] 
an be 
alled �bulk� or �global�12 modal 
oupling,
orresponding to energy transfer between the mode la-belled m and the mode labelled p). The matrix [A] ex-presses the in�uen
e on the a
ousti
 �eld of the slope ofthe deformation: the normal to the wall of the resonatorA
ousti
 �eld in a quasi-spheri
al resonator 3



depends on θ and ϕ too. The matrix [E] expresses thee�e
ts on the a
ousti
 �eld of the perturbations on thewall, taking also into a

ount the shape of the resonator(the e�e
ts expressed by the matri
es [A] and [E] 
an be
alled �boundary� or �lo
al�12 modal 
oupling, also 
orre-sponding to energy transfer between the mode labelledmand the mode labelled p). The ve
tor [S] expresses thee�e
t of the a
ousti
 sour
e set on the wall of the res-onator. Finally, the matrix [k2N ] − k2
a[N ] + [A] + [E] inequation (12) involves 
oupling terms between the di�er-ent modes (in the 
ross produ
ts ψt′

p (~r)ψt
m(~r), weighed ornot by the admittan
e β, and ψt′

p (~r) ∂
∂n

ψt
m(~r)), whereasthe right hand side involves the modes 
reated by thesour
e.The eigenvalues of the matrix in the left hand side ofequation (12) in
ludes then together all the perturba-tions we would take into a

ount in the 
al
ulation ofthe resonan
e 
hara
teristi
s (resonan
e frequen
ies andhalf-widths) of the 
avity: the e�e
t of the deformationis in
luded in the matri
es [N ] and [A], and all theperturbing fa
tors on the wall of the 
avity are in
ludedin the spe
i�
 admittan
e β of the matrix [E] for thepassive a
ousti
 e�e
ts and elements (boundary layere�e
ts, tubes, transdu
ers, irregularities, roughness, vi-broa
ousti
 
oupling between the �uid and the shell, ...)and in the matrix [S] for the a
tive a
ousti
 e�e
ts andelements (a
ousti
 sour
e, shell motion due to externalvibration sour
es).Remark.� In previous works by Mehl3,4, using thegeneral formalism of Morse and Feshba
h13 and fo
usingonly on the e�e
ts of the small deformations of the 
avity(quasi-spheri
al shape) from the regular shape (perfe
tspheri
al shape), all the other perturbations on the wallof the resonator being taken into a

ount by other means,the terms Emp and Sm in equation (10) are then zero,whi
h leads to, negle
ting terms N tt′

mp for m 6= p and
t 6= t′ as made by Mehl3 (eq. 8),

[

(k2
a − k2

m)N tt
mm −Att

mm

]

ctm =
∑

p6=m,t6=t′

ct
′

pA
tt′

mp .The 
oe�
ients ctm are then given by
ctm =

∑

p6=m,t6=t′

Att′

mpc
t′

p

(k2
a − k2

m)N tt
mm −Att

mm

, (13)and the di�eren
e (k2
a − k2

m) by
k2

a − k2
m =

1

N tt
mmc

t
m

∑

p6=m,t6=t′

Att′

mpc
t′

p +
Att

mm

N tt
mm

,

that is
k2

a − k2
m =

Att
mm

N tt
mm

+
1

N tt
mmc

t
m

∑

p6=m,t6=t′

Att′

mp

∑

q 6=p,t′′ 6=t′

At′t′′

pq ct
′′

q

(k2
a − k2

p)N t′t′

pp −At′t′

pp

, (14)then, negle
ting the non-diagonal terms in the sum over
q and assuming that (k2

a − k2
p)N t′t′

pp >> At′t′

pp and Att′

mp =

At′t
pm,
k2

a − k2
m ≈ Att

mm

N tt
mm

+
∑

p6=m,t6=t′

Att′

mp

2

(k2
a − k2

p)N t′t′

pp N tt
mm

. (15)In this expression (15) of the frequen
y shifts due tothe deformation of the 
avity, derived from Morse andFeshba
h formalism13, the 
oupling terms N tt′

mp (m 6= pand t 6= t′) are negle
ted (the bulk modal 
oupling is ne-gle
ted, assuming quasi-orthogonality) whereas the terms
Att′

mp are kept, i.e. the boundary 
oupling is taken intoa

ount (due to the boundary slope). Furthermore, inthese previous works, the symmetry of the matrix [A] isassumed but not demonstrated in the general 
ase 
on-sidered (every shape of the 
avity). It is the aim of theremainder of the paper to keep all the 
oupling terms thatwas not taken into a

ount in previous works in order toknow more a

urately the in�uen
e of ea
h one.IV. APPLICATION: ACOUSTIC FIELD IN A SPHERICALRESONATORThe 
ase studied here is the spheri
al 
avity used at theNIST to measure the gas 
onstant2. This spheri
al 
avity(mean radius R = 8.890143× 10−2m) �lled with a dissi-pative gas (argon) with a re
eiving mi
rophone (spe
i�
admittan
e βr, surfa
e ∆Sr) and a transmitting mi
ro-phone (sound sour
e, vibration velo
ity Vσ, surfa
e∆Sσ).The dissipation in the bulk of the �uid is taken into a
-
ount in the 
omplex wavenumber ka. The bounday layere�e
ts are expressed in term of spe
i�
 admittan
e βvh atthe lowest order (order 1/2 of the 
hara
teristi
 lengths
ℓh and ℓ ′v ). This spe
i�
 admittan
e is uniform on thetotal area of the wall S.The shell motion 
an be taken into a

ount in the ma-tri
es E and S in an appropriate manner for the deter-mination of the Boltzmann 
onstant only if the spatialrepartition of this shell motion is known or modelled witha great a

ura
y. Previous works14 allow us to deter-mine the in�uen
e of the shell motion on the a
ousti
resonan
e frequen
ies of a spheri
al 
avity with a sim-ple shape. However, regarding the 
omplexity of the realshape of the resonator's shell, it doesn't seem possible, atshort or mid-term, to 
arry out a vibroa
ousti
al modelwith the a

ura
y required for this appli
ation. Then,
urrently, the a
ousti
al measurements are limited to theA
ousti
 �eld in a quasi-spheri
al resonator 4



frequen
y ranges for whi
h the e�e
t of the shell motionis not signi�
ant in the experimental results (this 
orre-sponds to frequen
ies far from the stru
tural resonan
efrequen
ies of the shell). The shell motion is thus ne-gle
ted here in the global modelling of the a
ousti
 �eld.For the perfe
t sphere 
onsidered below, the domain Dand the surfa
e S are the same as the regular domain Drand surfa
e Sr respe
tively. There is no modal 
ouplingdue to the deformation of the domain and the en
losure.As a 
onsequen
e, the matrix [N ] is the identity and [A]is zero. Modal 
oupling in su
h 
ase is then due to dis-sipation and perturbations on the wall of the 
avity only(matrix [E]). The integral equation (10) leads then to
∑

p,t′

ct
′

p

[

(k2
m − k2

a)δmpδtt′ + Ett′

mp

]

= St
m , (16)

γν,η being the ηth root of the �rst derivative of the spher-i
al Bessel fun
tion jν , and where (eq. 11
,d)
St

m =

∫∫

S

σ(~r)ψt
m(~r) dS , (17a)

Ett′

mp =

∫∫

S

j k0β(~r)ψt′

p (~r)ψt
m(~r) dS . (17b)The small surfa
es ∆Sr and ∆Sσ are mu
h smallerthan the total area S, and su�
iently small to assumethat the asso
iated spe
i�
 admittan
es, velo
ity andeigenfun
tions are uniform on them, giving for equations(17a,b)

St
m = σψt

m(R, θσ, ϕσ)∆Sσ , (18a)and
Ett′

mp = vhEtt′

mp + rEtt′

mp

= j k0

[

βvh〈ψt′

p |ψt
m〉S + βr∆Sr〈ψt′

p |ψt
m〉c

]

, (18b)where the notation 〈ψt′

p |ψt
m〉i stands for the integral ofthe produ
t of the eigenfun
tions ψt′

p and ψt
m over thesurfa
e either S or ∆Si.The 
ontributions in the modal 
oupling of the bound-ary layer e�e
ts (a
ting on the whole surfa
e S of thewall) and of ea
h small element �ush-mounted on thewall are 
al
ulated in se
tions IV.A and IV.B respe
-tively, when the resonator is ex
ited by a lo
al soundsour
e, whi
h in�uen
e (terms Sm) is 
al
ulated in se
-tion IV.C. The 
oordinates θ and ϕ of the small ele-ments �ush-mounted on the wall are given in Table I,
orresponding to the design of the 
avity used at INM.A. Vis
ous and thermal boundary layer e�e
tsThe spe
i�
 admittan
e on the surfa
e S due to thevis
ous and the thermal boundary layer e�e
ts have theform11 (at the order 1/2 of the 
hara
teristi
 lengths):

βvh ≈ 1 + j√
2

√

k0

[(

1 − k2
r

k2
a

)

√

ℓ ′v + (γ − 1)
√

ℓh

]

,(19)

θi ϕiTransmitting mi
rophone π 0Re
eiving mi
rophone π/2 3π/4Table I. θ and ϕ 
oordinates of the small elements �ush-mounted on the wall of the resonator.where the wavenumber ka is related to the radial andazimuthal wavenumbers kr and kw by k2
a = k2

r + k2
w. Inthe expression of this admittan
e, whi
h a
ts as a small
orre
tion on the a
ousti
 �eld, the 
omplex wavenum-ber ka, in
luding the dissipation in the bulk of the �uid(� A), is repla
ed by the adiabati
 wavenumber k0, thedissipation in the bulk being mu
h smaller than in theboundary layers.The term (1− k2

r/k
2
a) is related to the in
iden
e of thea
ousti
 wave on the wall, whi
h depends on the a
ous-ti
 modes that o

ur in the 
avity. Then, be
ause of themodal 
oupling in the 
avity, while the a
ousti
 sour
egenerates an a
ousti
 �eld at the angular frequen
y ω,di�erent a
ousti
 modes are ex
ited at this angular fre-quen
y in the 
avity. The spe
i�
 admittan
e asso
iatedto ea
h a
ousti
 mode in equation (19) is then a fun
tionof the wavenumber k0 = ω/c0, and of the fa
tor relatedto this mode, namely

βvh = βνη

≈ 1 + j√
2

√

k0

[

ν(ν + 1)

γ2
νη

√

ℓ ′v + (γ − 1)
√

ℓh

]

. (20)On another hand, the integral 〈ψt′

p |ψt
m〉S on the wholesurfa
e S is here given by

〈ψt′

p |ψt
m〉S =

∫ 2π

0

∫ π

0

ψt′

p (R, θ, ϕ)ψt
m(R, θ, ϕ)

R2 sin θ dθ dϕ ,that gives straigthforwardly (be
ause of the orthogonal-ity of the Legendre's fun
tions and of fun
tions sin and
cos), for the in�uen
e of the vis
ous and thermal bound-ary layers in the resonator:

vhEtt′

mp = j k0βνηR
2 jν(γνη)jν(γνη′)

JνηJνη′

δνν′δµµ′δtt′ , (21)
Jνη being the norm of the fun
tion jν(kνηr) (
f. ap-pendix B).B. Re
eiving mi
rophone �ush-mounted on the wallOn the small surfa
e ∆Sr, the integral 〈ψt′

p |ψt
m〉r re-du
es to

〈ψt′

p |ψt
m〉r = ψt

m(R, θr, ϕr)ψ
t′

p (R, θr, ϕmic)∆Sr , (22)A
ousti
 �eld in a quasi-spheri
al resonator 5



that gives, for the 
oordinates θr = π/2 and ϕr = 3π/4(Table I), making use of the relations kνηR = γνη,
rEtt′

mp = j k0

1

amap

∆Srβrjν(γνη)jν′(γν′η′)

Pνµ(cos θr)Pν′µ′(cos θr)φ
t(3πµ/4)φt′(3πµ′/4) , (23)the fun
tion φt standing for either cos or sin.The expression 
hosen here for the spe
i�
 admittan
e

βr of the re
eiving mi
rophone is the expression used inthe study done at the NIST2:
βr = jω ρ0c0χ , (24)

χ being the 
omplian
e per unit area of the membraneof the mi
rophone (nominal value of 1.5 × 10−10).C. Sound sour
eThe in�uen
e of the sour
e on the a
ousti
 �eld is ex-pressed by (eq. 18a)
St

m = σψt
m(R, θσ, ϕσ)∆Sσ , (25)where σ = jω ρ0Vσ, Vσ being the vibration velo
ity ofthe sour
e, that gives

St
m = j k0ρ0c0Vσ∆Sσψ

t
m(R, θσ, ϕσ) . (26)The sound sour
e being an ele
trostati
 mi
rophone(used as a transmitter), the volume velo
ity Vσ∆Sσ ofthe sound sour
e is then derived from the following trans-du
tion equation

Mpσi = Yσp(R, θσ, ϕσ) + ∆SσVσ , (27)whereMpσ and Yσ are respe
tively the pressure sensitiv-ity and the a
ousti
 admittan
e of the mi
rophone, and
i the ele
tri
 
urrent through the mi
rophone. Makinguse of equations (27) and (7) in equation (26) gives
St

m = j k0ρ0c0Mpσiψ
t
m(R, θσ, ϕσ) −

∑

p,t′

ct
′

p
σEtt′

mp , (28a)with
σEtt′

mp = j k0ρ0c0Yσ〈ψt′

p |ψt
m〉σ (28b)and

〈ψt′

p |ψt
m〉σ = ψt

m(R, θσ, ϕσ)ψt′

p (R, θσ, ϕσ)∆Sσ . (28
)The in�uen
e of the sour
e in the a
ousti
 �eld is then
omposed of an a
tive part linked to the ele
tri
al ex-
itation applied on the mi
rophone, and a rea
tive partdue to the a
ousti
 input admittan
e of the mi
rophone�ush-mounted on the wall.The expressions (23) and (28a-
) of the e�e
ts of smallelements �ush-mounted on the wall of the 
avity showsthat these e�e
ts are strongly dependant on the relativeposition of these elements on the wall (negle
ted in theprevious works).

D. Results1. E�e
t of modal 
oupling on the a
ousti
 pressureThe theoreti
al e�e
t of modal 
oupling on the bulkbehaviour of the a
ousti
 pressure in a spheri
al 
avity�lled with argon gas, at the triple point of water for dif-ferent stati
 pressures is shown on �gures 2 to 5, rep-resenting the 
artographi
 proje
tion of the amplitudeof the a
ousti
 pressure on the wall of the 
avity, withrespe
t to the spheri
al 
oordinates ϕ and θ, when thetransmitting mi
rophone generates a harmoni
 signal atthe resonan
e frequen
y of a radial mode. The 
avityhas only a transmitting and a re
eiving mi
rophone onits wall.

ϕ / rad
θ

/rad

|p
(R

,θ
,ϕ

)|
/
|p

m
a

x
|

Figure 2. A
ousti
 pressure on the wall of a spheri
al 
avityat the resonan
e frequen
y of the (0,2) radial mode, at thestati
 pressure 25 kPa.These almost qualitative representations in the lowerstati
 pressure range, on �gures 2 and 3, show that thea
ousti
 �eld is quasi-axisymmetri
 around the axis of thetransmitting mi
rophone be
ause the in�uen
e of the re-
eiving mi
rophone is minimum. The maxima at θ = πand θ = 0 are due to the transmitting mi
rophone. Theother deviations from a uniform a
ousti
 pressure, thatshould be observed at the resonan
e frequen
y of a radialmode, are due to the in�uen
e of the vis
ous and thermale�e
ts on non radial modes whi
h are immediately 
loseto the radial mode expe
ted. Then, the (0,2) mode ismostly perturbed by the (3,1) mode, and the (0,5) modeby the (12,1) mode, all of them without azimuthal 
om-ponents be
ause of the axisymmetry of the system forsu
h low stati
 pressures.In the higher stati
 pressure range, the vis
ous andthermal e�e
ts are less important, then the deviationsfrom a uniform a
ousti
 pressure on the wall of the 
av-ity due to modal 
oupling are smaller, whi
h 
an be seenA
ousti
 �eld in a quasi-spheri
al resonator 6
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Figure 3. A
ousti
 pressure on the wall of a spheri
al 
avityat the resonan
e frequen
y of the (0,5) radial mode, at thestati
 pressure 25 kPa.on �gures 4 and 5. The impedan
e of the re
eiving mi-
rophone de
reases, and then its in�uen
e on the a
ousti
pressure in the 
avity in
reases (but remains small), gen-erating also azimuthal modes by modal 
oupling.Su
h maps of the a
ousti
 �eld on the wall of the 
avity
ould be used to support the design of an a
ousti
 res-onator for the determination of the Boltzmann 
onstant,or for a
ousti
 thermometry. Indeed, they show us theoptimal pla
es on the wall for the measurement devi
esto maximize the signal to noise ratio and redu
e the per-turbations e�e
ts. For example here, the best pla
e forthe re
eiving mi
rophone would be in front of the trans-mitting mi
rophone (maximum of a
ousti
 pressure forall the a
ousti
 modes and stati
 pressures of interest,axisymmetri
 a
ousti
 system).Moreover, the parti
ular results presented in this se
-tion show that to elu
idate the individual physi
al phe-nomena in the formalism, it is ne
essary to 
onsider sep-arately the physi
al phenomena involved and to do sim-plifying assumptions.2. In�uen
e of modal 
oupling on the a
ousti
 resonan
eproperties of the 
avityFor the determination of the Boltzmann 
onstant, thevalue of k is derived from the extrapolation at zeropressure of the speed of sound determined from mea-surements of the a
ousti
 resonan
e frequen
ies of ra-dial modes in the 
avity, on whi
h are applied 
orre
tionterms 
al
ulated from the model of the a
ousti
 �eld inthe 
avity. The 
omparison between the experimentaland theoreti
al half-widths allows us to 
he
k the valid-ity of the model used to 
al
ulate the 
orre
tions to beapplied on the resonan
e frequen
ies.
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Figure 4. A
ousti
 pressure on the wall of a spheri
al 
avityat the resonan
e frequen
y of the (0,2) radial mode, at thestati
 pressure 500 kPa.
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Figure 5. A
ousti
 pressure on the wall of a spheri
al 
avityat the resonan
e frequen
y of the (0,5) radial mode, at thestati
 pressure 500 kPa.The global model presented here allows us to 
al
ulatethe a
ousti
 frequen
y response of the resonator. Fittinga resonant fun
tion (lorenzian fun
tion) with this 
al
u-lated transfer fun
tion around the resonan
e frequen
y ofan a
ousti
 mode gives us the resonan
e frequen
y andthe half-width of this mode a

ording to the global ana-lyti
al model.Sin
e the global formalism presented here in
ludesmodal 
oupling (non-diagonal terms in the matri
es), adire
t analyti
 expression of the perturbations e�e
ts onthe resonan
e properties of the 
avity 
annot be derivedA
ousti
 �eld in a quasi-spheri
al resonator 7



from this global modelling without doing several simpli-fying assumptions. Then, only a global and numeri
al
omparison between the 
urrent and previous theoreti
alresults is presented here. However, it is worth to noti
ethat negle
ting the terms m 6= p in the matrix E in equa-tion (16) leads �nally to the analyti
al expressions of thefrequen
y shifts and half-widths determined in previousworks2,6.The e�e
t of the a
ousti
 perturbations in the 
avityand of the resulting modal 
oupling on the resonan
eproperties of radial modes from (0,2) to (0,6) as fun
-tion of the stati
 pressure is shown on �gures 6 and 7.The major perturbation in the 
avity being the vis
ousand thermal e�e
ts, the absolute value of the frequen
yshifts and the half-widths both in
rease when the stati
pressure and the quantum number of the modes de
rease.
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Figure 6. Frequen
y shifts for radial modes from (0,2) to (0,6)as fun
tion of the stati
 pressure.The 
omparison between the results obtained withthis uni�ed model and the model used previously at theNIST to determine the 
urrent value of the Boltzmann
onstant2 (Fig. 8 and 9) shows the dis
repan
ies due tothe only modal 
oupling, the models used for ea
h sour
eof perturbation being the same in both methods.A

ording to the 
urves on Fig. 8, the 
ontribution ofmodal 
oupling in the resonan
e frequen
ies of the radialsmodes 
onsidered here is signi�
ant in the higher stati
pressure range, but lower than 0.2× 10−6 in relative val-ues in the lower stati
 pressure range, and then shouldnot take a larger part in the extrapolation at zero stati
pressure of the speed of sound. However, this 
ontribu-tion should not be negle
ted regarding the �nal un
er-tainty required on the value of the Boltzmann 
onstant.Here, the e�e
t of modal 
oupling on the values of theresonan
e frequen
ies is nearly a linear fun
tion of thestati
 pressure and does not depend signi�
antly on thefrequen
y. To interpret this, a few 
al
ulation on a sim-pli�ed expression of equation (16) (negle
ting the vis
ous
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Figure 7. Theoreti
al half-widths for radial modes from (0,2)to (0,6) as fun
tion of the stati
 pressure.and thermal e�e
ts) leads to express dire
tly the e�e
tof modal 
oupling on the resonan
e frequen
ies as a termproportional to ρ0c
2
0χ∆Sr (χ being the 
onstant 
om-plian
e of the re
eiving mi
rophone), whi
h is a linearfun
tion of the stati
 pressure, and does not depend onthe frequen
y.The di�eren
es between the half-widths (Fig. 9) 
al-
ulated from the two models 
on�rm that the e�e
t ofthe modal 
oupling in the resonan
e properties of radialmodes should not be negle
ted in this spheri
al resonator.
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Figure 8. Di�eren
es between the frequen
y shifts 
al
ulateda

ording to a
tual and previous theories for radial modesfrom (0,2) to (0,6) as fun
tion of the stati
 pressure.Finally, the 
omparison between the theoreti
al half-widths 
al
ulated from the uni�ed modelling of the a
ous-A
ousti
 �eld in a quasi-spheri
al resonator 8
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Figure 9. Di�eren
es between the half-widths 
al
ulated a
-
ording to a
tual and previous theories for radial modes from(0,2) to (0,6) as fun
tion of the stati
 pressure.ti
 �eld and the half-widths measured twenty years agoat the NIST2 is shown on Fig. 10 with the respe
tive ex-perimental deviations, as fun
tion of the stati
 pressurefor a
ousti
 radial modes from (0,2) to (0,6). For stati
pressures higher than 50 kPa, the dis
repan
ies betweentheory and experiment are larger than the experimentaldeviations, showing that this model is not su�
ient yetto take into a

ount all the phenomena that o
ur in thisspheri
al 
avity. In the lower stati
 pressure range, theexperimental deviations are too large to 
on
lude on theagreement between the analyti
al and the experimentalresults.
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V. CONCLUSIONTo sum up, the present paper provides some importantimprovements to the modelling of the a
ousti
 �eld in aquasi-spheri
al 
avity with irregular wall (� III) be
ausethe model given here allows us to take into a

ount allthe di�erent perturbing elements together: the vis
ousand thermal e�e
ts in the boundary layers and in thebulk of the gas, the shape of the 
avity (quasi-spheri
alshape), small elements lo
ated on the wall of the 
avity(du
ts, a
ousti
 transdu
ers, small geometri
al irregular-ities), the roughness of the wall, the 
oupling betweenthe �uid and the shell. This uni�ed model in
ludes the
oupling between the di�erent perturbing elements, de-pending on the relative position of these elements on thewall for the small lo
al 
omponents, with respe
t to thereal shape of the 
avity, and the resulting modal 
ouplingin a 
onsistent manner.Regarding the �rst results obtained with this modelon the parti
ular 
ase of the spheri
al 
avity used at theNIST twenty years ago2, it seems that the 
ontributionof modal 
oupling in the resonan
e frequen
y is small butshould not be negle
ted regarding the a

ura
y requiredhere. Moreover, the dis
repan
ies between the theoreti
aland experimental half-widths show that several phenom-ena are still missing in this uni�ed model and should betaken into a

ount in the future.This work have to be 
arried out with the a

uratemodelling of ea
h small element lo
ated on the wall ofthe 
avity, espe
ially the a
ousti
 transdu
ers, thin slits(undesirable but unavoidable in pra
ti
e) whi
h 
ould bemodelled as lo
al roughness and the 
oupling between the�uid and the shell. All these perturbing elements wouldbe taken into a

ount in the global modelling suggestedhere in term of sour
e or spe
i�
 admittan
e on the wall.Another improvement would be the modelling of thevis
ous and thermal e�e
ts at a higher order, whi
h wouldavoid to separate the e�e
ts in the boundary layer andin the bulk, taking into a

ount low density gas e�e
ts(thermal jump, slip 
onditions), and to integrate it in theuni�ed modelling of the a
ousti
 �eld in the 
avity.Appendix A: ACOUSTIC PROPAGATION IN DISSIPATIVEFLUID1. Propagation equationsThe parti
le velo
ity �eld ~v 
an be written as the sumof a vorti
al velo
ity ~vv and a laminar velo
ity ~vl:
~v = ~vv + ~vl , (A1a)

~rot ~vl = ~0 and div ~vl 6= 0 , (A1b)
div ~vv = 0 and ~rot ~vv 6= ~0 . (A1
)Negle
ting the 
oupling between the vorti
al and lam-inar movements in the bulk of the �uid, Navier�Stokesequation (1) is written as two equations, and then theA
ousti
 �eld in a quasi-spheri
al resonator 9



fundamental equations (1) to (3) lead straightforwardlyto the propagation equations for p, τ , ~vl and ~vv.The 
al
ulation of the propagation equation for thetemperature variation τ is given in referen
e11 (� 2.5.1),negle
ting the terms of order greater than the �rst or-der of the vis
ous and thermal lenghts. The temperaturevariation τ 
an be written as the sum of an a
ousti
 tem-perature τa and an entropi
 temperature τh, respe
tivelysolutions of the two following equations:
[

1

c20

∂ 2

∂t2
−

(

1 + ℓvh

1

c0

∂

∂t

)

∆

]

τa ≈ 0 , (A2)where ℓvh = ℓv + (γ − 1)ℓh ,
[

1

c0

∂

∂t
− ℓh ∆

(

1 + (γ − 1)(ℓv − ℓh )
1

c0

∂

∂t

)]

τh ≈ 0 .(A3)The pressure variation p = pa+ph and the laminar parti-
le velo
ity ~vl = ~va + ~vh satisfy the same equations (A2)and (A3) than the temperature variation τ .The propagation equation for the vorti
al parti
le ve-lo
ity is obtained making use of equations (A1a-
) in theNavier�Stokes equation (1):
[

1

c0

∂

∂t
− ℓ ′v ∆

]

~vv = ~0 . (A4)2. General solutionsThe solutions for the pressure variation p = pa+ph andthe parti
le velo
ity ~vl = ~va +~vh 
an be derived from thesolution for the temperature variation τ . Writing outthe solution τ = τa + τh in equation (3), making use ofequations (A2) and (A3) leads to
pa ≈ γβ̂

γ − 1

(

1 − ℓh
1

c0

∂

∂t

)

τa , (A5a)
ph ≈ γβ̂(ℓv − ℓh )

1

c0

∂

∂t
τh << pa . (A5b)Writting out equations (A5a,b) in equation (1) andmaking use of equations (A1), (A2) and (A3), gives forthe parti
le velo
ities ~va and ~vh:

~va ≈ − 1

ρ0c0

γβ̂

γ − 1

[

(

1

c0

∂

∂t

)−1

+ (ℓv − ℓh )

]

~grad τa ,(A6a)
~vh ≈ γβ̂

γ − 1
ℓh ~grad τh . (A6b)Equations (A2) to (A6b) 
an also be written for har-moni
 motion ej ω t making use of the three following

wavenumbers:
k2

a ≈ k2
0

1 + j k0ℓvh

≈ k2
0 [1 − j k0ℓvh ] , (A7)

k2
h ≈ − j k0

ℓh
[1 − j k0(γ − 1)(ℓv − ℓh )] , (A8)

k2
v = − j k0

ℓ ′v
. (A9)Assuming that pa >> ph, the a
ousti
 pressure pa, de-noted p in the present paper, is governed by the samepropagation equation (A2) as the a
ousti
 temperaturevariation τa. This propagation equation should be as-so
iated to adapted boundary 
onditions to des
ribe thea
ousti
 �eld in the 
avity.Appendix B: NORMALIZATION COEFFICIENTSThe normalization 
oe�
ients Jνη of the spheri
albessel fun
tions jν(kηνr) (eq. 21) are given by the or-thonormality 
ondition on the bessel fun
tions:

J 2
νη =

∫ R

0

[jν(kηνr)]
2
r2 dr ,yielding

J 2
νη =

R3

2
, (B1a)for ν = 0 and η = 1,

J 2
νη =

R3

2
[jν(γην)]

2

[

1 − ν(ν + 1)

γ2
νη

]

, (B1b)otherwise.The normalization 
oe�
ients Jνη of the spheri
albessel fun
tions jν(kηνr) (eq. 6) are given by the or-thonormality 
ondition on the eigenfun
tions ψt
m(~r) inthe regular domain Dr:

a2
m =

∫∫∫

Dr

[

ψt
m(~r)

]2
d~r ,leading to

a2
m =

4

3
πR3 , (B2a)for ν = 0 and η = 1,

a2
m = (1 + δµ0)πR

3 [jν(γην)]
2

[

1 − ν(ν + 1)

γ2
νη

]

1

2ν + 1

(ν + µ)!

(ν − µ)!
, (B2b)otherwise.A
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