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MATHEMATICAL ANALYSIS OF THE MOTION OF A PISTON IN A FLUID

WITH DENSITY DEPENDENT VISCOSITY

VAIBHAV KUMAR JENA, DEBAYAN MAITY∗, AND ABU SUFIAN

Abstract. We study a free boundary value problem modelling the motion of a piston in a viscous
compressible fluid. The fluid is modelled by 1D compressible Navier-Stokes equations with possibly
degenerate viscosity coefficient, and the motion of the piston is described by Newton’s second law.
We show that the initial boundary value problem has a unique global in time solution, and we also
determine the large time behaviour of the system. Finally, we show how our methodology may be
adapted to the motion of several pistons.

1. Introduction and main results

In this article, we study the motion of a piston (point particle) inside a cylinder containing a
viscous compressible fluid, with a density dependent viscosity. The fluid is modelled by the one-
dimensional compressible Navier-Stokes equations, while the motion of the piston is described by
Newton’s second law. We assume that the problem is posed in a bounded domain (−1, 1) and we
denote by h(t) the position of the piston at instant t. The domain occupied by fluid at instant t is
denoted by Fh(t) := (−1, 1) \ {h(t)}. With the above notations, the coupled motion of the piston
and of the fluid is given by :

ρ̃t + (ρ̃ũ)x = 0,
(
t > 0, x ∈ Fh(t)

)
, (1.1)

ρ̃ (ũt + ũũx)− (µ(ρ̃)ũx)x + (ρ̃γ)x = 0,
(
t > 0, x ∈ Fh(t)

)
, (1.2)

ũ(t, h(t)) = ḣ(t), (t > 0), (1.3)

mḧ(t) = [µ(ρ̃)ũx − ρ̃γ ] (t, h(t)), (t > 0), (1.4)

with initial conditions {
h(0) = h0, ḣ(0) = `0,

ũ(0, x) = ũ0(x), ρ̃(0, x) = ρ̃0(x), (x ∈ Fh0),
(1.5)

and boundary conditions

ũ(t, 1) = 0, ũ(t,−1) = 0, (t > 0). (1.6)

In the above equations, γ > 1 is a constant, ρ̃(t, x) denotes the density, and ũ(t, x) denotes the
velocity of the fluid (both in Eulerian coordinates). The positive constant m stands for the mass of
the piston. The symbol [f ](x) denotes the jump of a function at the point x, i.e.,

[f ](x) := f(x+)− f(x−).

In general, the viscosity coefficient µ(ρ̃) in (1.2) is assumed to be a positive constant. In this
article, we assume that µ(ρ̃) depends on the density field ρ̃. More precisely, we consider the viscosity
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of the form

µ(ρ̃) = ρ̃θ, 0 < θ <
1

2
. (1.7)

Remark 1.1. Note that, in (1.6), we have homogeneous boundary condition for the velocity field,
which means that there is no inflow or outflow of fluid from the cylinder. In particular, we do not
need to impose any boundary condition for the density field.

For many years, the initial boundary value problem (1.1)–(1.6), at least when the viscosity coeffi-
cient is a positive constant, has piqued the interest of many researchers. Let us briefly review some
relevant results from the literature. As far as we know, the problem was first studied by Shelukhin
[22, 23], in a functional setup more regular than the ones which appear below. Later, Maity, Taka-
hashi and Tucsnak [17] proved global in time existence and uniqueness of strong solutions in the
same functional framework as ours using a monolithic approach. In fact, they studied the problem
with inflow boundary conditions. We also mention the work of Shelukhin [24], which addresses the
piston problem where the viscous gas and the piston are supposed to be heat conducting. The
adiabatic piston problem was studied by Feireisl et. al. [7]. For the existence of weak solutions
we refer to the articles by Plotnikov and Soko lowski [20] and Lequeurre [15]. We also refer to the
article by Antman and Wilber [1], where the authors study the asymptotic problem as the ratio of
the mass of fluid and that of the piston approaches zero.

The aforementioned results concern the existence and long-time behavior of the initial boundary
value problem. There are few results also available for the Cauchy problem. We refer to the articles
by Vázquez and Zuazua [25, 26] for results on the piston problem where the fluid is modelled by
the viscous Burgers’ equation. They showed that the piston escapes to the spatial infinity as time
goes to infinity. Koike [12, 14, 13] studied the Cauchy problem for compressible fluid with constant
viscosity. In contrast to the viscous Burgers’ case, it was shown that the piston stabilizes to a finite
distance as time approaches infinity.

The piston problem was also studied from a control theoretic point of view. For instance, the
works of Liu, Takahashi and Tucsnak [16], Ĉındea et. al. [4] and Ramaswamy, Roy and Takahashi
[21] address the control problem for a piston in a fluid modelled by the viscous Burgers’ equation.
An optimal control problem for the compressible piston problem with constant viscosity was studied
in [20]. Karafyllis and Krstic [11] studied the global feedback stabilisation of a system consisting of
a viscous compressible fluid between two moving pistons, with density dependent viscosity.

Another set of references relevant to our work is the motion of a rigid body in a viscous com-
pressible fluid, which is set up in R3. In this context, we refer to articles by Boulakia and Guerrero
[2], Feireisl [6], Hiber and Murata [10], Haak et. al. [8], and the references therein.

In this work, we extend the results of [22, 23, 17] to the case where viscosity depends on density,
possibly in degenerate manner (see(1.7)). We prove global in time existence in the functional
framework same as [17]. Moreover, we also determine the large time behaviour of the system.
There are several results regarding global existence of one dimensional compressible fluid, without
any piston, with viscosity depending on density of the form µ(ρ̃) = ρ̃θ. The first result was due to
Mellet and Vasseur [19] where they considered the case 0 < θ < 1

2 . Subsequently, the case θ > 1
2

has been studied by Haspot [9], Constantin et. al. [5] and Burtea and Haspot [3]. In this paper we
consider the case 0 < θ < 1

2 , and we combine the approach of [19] together with [23, 17]. We follow
a standard multiplier approach, to pass from local in time existence to global in time existence. The
main step is to show that, for all time, the piston remains away from the extremities of the cylinder
and the density is bonded below by some positive constant. We also show that our methodology also
adapts to the case of several pistons. Similar to the single piston case for the several piston problem,
we obtain the global (in time) existence of solution and we determine the large time behaviour of
the system. For the Cauchy problem this has been studied by Koike [13] in the constant viscosity
case.
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Now we will present our main results. For this purpose, we wil first provide the definition of
solution to system (1.1)-(1.7). We look for solutions (h, ρ̃, ũ) to system (1.1)-(1.7) satisfying

h ∈ H2(0, T ), −1 < h(t) < 1 for all t ∈ [0, T ],

ρ̃ ∈ C([0, T ];H1(Fh(·))) ∩H1(0, T ;L2(Fh(·))), (1.8)

ρ̃(t, x) > 0 for all t ∈ [0, T ], x ∈ Fh(t),
ũ ∈ L2(0, T ;H2(Fh(·))) ∩H1(0, T ;L2(Fh(·))) ∩ C([0, T ];H1

0 (−1, 1)).

We introduce below the concept of strong solution of (1.1)-(1.7), to be used in the remaining
part of this work.

Definition 1.2. A triplet (h, ρ̃, ũ) is said to be a strong solution to the problem (1.1)-(1.7) on the
interval [0, T ] when it satisfies (1.8), equations (1.1) and (1.2) a.e. in (0, T )× Fh(·), equation (1.4)
a.e. in (0, T), equations (1.3) and (1.6) in the sense of traces, and the initial conditions stated in
(1.5).

We are now in a position to state the global existence result

Theorem 1.3. Let us assume that µ satisfies (1.7) for some θ ∈
(

0,
1

2

)
, h0 ∈ (−1, 1), `0 ∈ R, and

(ρ̃0, ũ0) belongs to H1(Fh0)×H1
0 (−1, 1) and satisfy

ũ0(h0) = `0, ρ̃0(x) > 0 for x ∈ [−1, 1] \ {h0}.
Then, for any T > 0 the system (1.1)-(1.7) admits a unique strong solution on [0, T ], in the sense
of Definition 1.2.

Our next goal is to determine the large time behaviour of the global solution. More precisely, we
show that the global solution converges to the equilibrium. First of all, a simple calculation gives,
for the global solution to the system (1.1)-(1.7), we have the mass conservation, i.e.,

ML :=

∫ h(t)

−1
ρ̃(t, x) dx =

∫ h0

−1
ρ̃0(x) dx, MR :=

∫ 1

h(t)
ρ̃(t, x) dx =

∫ 1

h0

ρ̃0(x) dx, (t > 0). (1.9)

Lemma 1.4. Let (h∞, ρ∞, u∞) be an equilibrium solution to the system (1.1)-(1.7). Then

h∞ =
ML −MR

ML +MR
, ρ∞ =

1

2
(ML +MR) , u∞ = 0,

where ML and MR are defined in (1.9).

Proof. From (1.1), (1.2), and (1.6), we first infer that

u∞ = 0, ρ∞ =

{
ρ∞,L, x ∈ (−1, h∞),

ρ∞,R, x ∈ (h∞, 1),

where ρ∞,L and ρ∞,R are positive constants. Then using the equation of piston (1.4), we get
ρ∞ = ρ∞,L = ρ∞,R. From (1.9), we deduce that

ML = (1 + h∞)ρ∞, MR = (1− h∞)ρ∞,

from which we conclude the proof of the lemma. �

We have the following result concerning the large time behaviour of the system:

Theorem 1.5. The global strong solution (h, ρ̃, ũ) to the system (1.1)-(1.7), satisfies the following

‖ρ̃(t, ·)− ρ∞‖H1(Fh(t)) + ‖ũ(t, ·)‖H1(−1,1) + |h(t)− h∞| → 0, as t→∞,

where ρ∞ and h∞ are given in Lemma 1.4.
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The rest of the article is organised as follows. In Section 2, we transform system (1.1)-(1.6) into
mass Lagrangian coordinates, and present the main results in the transformed coordinate. We also
present the local in time existence in this section. In Section 3, we prove the global in time existence
of solutions, and in Section 4, we address the large time behaviour of the solution. In Section 5,
we explain how the results can be extended to case of several piston. Finally, in Section 6 we make
some comments about related open problems.

2. Change of coordinates

In this section, we rewrite the system in a fixed domain using Lagrangian mass change of coordi-
nates. One of the advantages of this change of coordinates is that the position of the piston becomes
fixed, see for instance [17, 7]. In Lagrangian mass coordinate, we replace the physical variable x by
the signed mass of the fluid between h(t) and x. More precisely, we set

y = X(t, x), X(t, x) =

∫ x

h(t)
ρ̃(t, η) dη (t > 0, x ∈ [−1, 1]). (2.1)

Then using (1.1) and (1.9),

X(t,−1) = −r−, X(t, 1) = r+, and X(t, h(t)) = 0, (t > 0), (2.2)

where

r− = ML =

∫ h0

−1
ρ̃0(η)dη, r+ = MR =

∫ 1

h0

ρ̃0(η)dη. (2.3)

Assume that ρ̃(t, ·) is sufficiently regular, positive and bounded away from zero. Then one can easily
verify that X defined in (2.1) is a C1-diffeomorphism from [−1, 1] to [−r−, r+]. For every t > 0, we

denote by Y (t, ·) = [X(t, ·)]−1, the inverse of X(t, ·). In what follows, we set

F := (−r−, r+) \ {0}, F− = (−r−, 0), F+ = (0, r+). (2.4)

We consider the following change of variables

ρ(t, y) = ρ̃ (t, Y (t, y)) , u(t, y) = ũ (t, Y (t, y)) , (t > 0, y ∈ F). (2.5)

In particular,

ρ̃(t, x) = ρ (t,X(t, x)) , ũ(t, x) = u (t,X(t, x)) , (t > 0, x ∈ Fh(t)). (2.6)

According to [17, 7], using the above change of variables, the system (1.1)-(1.6) can be written as

ρt + ρ2uy = 0, (t > 0, y ∈ F), (2.7)

ut − (ρµ(ρ)uy)y + (ργ)y = 0, (t > 0, y ∈ F), (2.8)

u(t, 0) = ḣ(t), (t > 0), (2.9)

mḧ(t) = [ρµ(ρ)uy − ργ ] (t, 0), (t > 0), (2.10)

u(t,−r−) = u(t, r+) = 0, (t > 0), (2.11)

ρ(0, y) = ρ0(y), u(0, y) = u0(y), (y ∈ F), (2.12)

h(0) = h0, ḣ(0) = `0, (2.13)

where

ρ0(y) = ρ̃0(Y (0, y)), u0(y) = ũ0(Y (0, y)), (y ∈ F). (2.14)

From the definition of X in (2.1), the following lemma is obvious.

Lemma 2.1. Let (h0, `0, ρ̃0, ũ0) satisfy the hypothesis of Theorem 1.3. Then (ρ0, u0) defined by
(2.14) satisfies

ρ0 ∈ H1(F), u0 ∈ H1
0 (−r−, r+), u0(0) = `0, ρ0(y) > 0, for y ∈ F . (2.15)
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We give the definition of strong solution of the system (2.7)–(2.14).

Definition 2.2. A triplet (h, ρ, u) is said to be a strong solution to the system (2.7)–(2.14) on the
interval [0, T ] when it satisfies

h ∈ H2(0, T ), −1 < h(t) < 1 for all t ∈ [0, T ],

ρ ∈ C([0, T ];H1(F)) ∩H1(0, T ;L2(F)),

ρ(t, y) > 0, for all t ∈ [0, T ], y ∈ F ,
u ∈ L2(0, T ;H2(F)) ∩H1(0, T ;L2(F)) ∩ C([0, T ];H1

0 (−r−, r+)),

equations (2.7) and (2.8) a.e. in (0, T )×F , equation (2.10) a.e. in (0, T), equations (2.9) and (2.11)
in the sense of traces, and the initial conditions stated in (2.12), (2.13).

Using the above change of variables Theorem 1.3 and Theorem 1.5 can be rephrased as follows.

Theorem 2.3. Let us assume that µ satisfies (1.7) for some θ ∈
(

0,
1

2

)
, h0 ∈ (−1, 1), `0 ∈ R, and

(ρ0, u0) satisfy (2.15). Then, for any T > 0 the system (2.7)–(2.14) admits a unique strong solution
on [0, T ], in the sense of Definition 2.2.

Theorem 2.4. The global strong solution (h, ρ, u) to the system (2.7)-(2.13), satisfies the following

‖ρ(t, ·)− ρ∞‖H1(F) + ‖u(t, ·)‖H1(−r−,r+) + |h(t)− h∞| → 0, as t→∞,
where ρ∞ and h∞ are given in Theorem 1.5.

The remaining part of this paper is devoted towards the proof of Theorem 2.3 and Theorem 2.4.
The proof of Theorem 2.3 relies on a classical argument. We first show that the system (2.7)–(2.14)
admits a unique local in time solution. Next we show that the solution can be continued for all
time. Regarding the local in time existence, we have the following result.

Theorem 2.5. Let us assume that µ satisfies (1.7) for some θ > 0. Let C > 0 be such that

‖u0‖H1
0 (−r−,r+) + ‖ρ0‖H1(F) 6 C,

1

C
6 ρ0(y) 6 C (y ∈ F),

−1 +
1

C
6 h0 6 1− 1

C
.

Then, then there exists a T depending only on C, such that the system (2.7)–(2.13) admits a unique
strong solution on [0, T ] in the sense of Definition 2.2.

The proof of the above result relies on maximal regularity result of a monolithic linear system
and the Banach fixed point theorem. We refer to the proof of [17, Theorem 3.1] for a detailed
presentation of the method (see also [18]). Indeed the proof of Theorem 2.5 can be directly adapted
from that of [17, Theorem 3.1], with some slight modifications. Since the calculations are almost
identical and too much of a repetition, we omit the details here.

3. Global in time existence and uniqueness

In this section, we are going to prove Theorem 2.3. More precisely, we are going to show that
the local solution constructed in Theorem 2.5 can be extended to a solution defined on [0, T ] for
any 0 < T < ∞. Throughout this section, we assume that (h0, `0, ρ0, u0) satisfy the hypothesis of
(2.15), and (h, ρ, u) is the maximal strong solution to the system (2.7)-(2.13) associated with this
initial data. This solution is defined on some time interval [0, τ), where τ > 0.

Throughout this section, C will be a positive constant independent of τ. The constants may vary
from line to line.
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The proof is divided into several parts. First, we obtain the standard energy estimate as well as
a modified energy-type estimate, inspired by [19], for the system (2.7)-(2.13). Then we will show
that the piston remains away from the extremities of the cylinder. Next, we will prove the required
estimates on the density field. The most important step is to show that the density remains bounded
away from zero. Finally, we will obtain the regularity estimates on the velocity field, ensuring that
the strong solution can be extended to any given time interval.

In what follows, to simplify the presentation, we set

J := ‖u0‖2H1
0 (−r−,r+) + ‖ρ0‖2H1(F) +

∥∥∥∥ 1

ρ0

∥∥∥∥2
H1(F)

+m|`0|2.

3.1. Energy estimates. In this section, we will prove energy estimates satisfied by the solution
to the system (2.7)-(2.13). We start with the following result which follows easily from the change
of coordinates defined in (2.1).

Lemma 3.1. For t > 0, we have∫
F+

1

ρ(t, y)
dy = 1− h(t) and

∫
F−

1

ρ(t, y)
dy = 1 + h(t). (3.1)

Proof. Let us prove the first identity. The second one can be proved in a similar manner. Using
(2.1) and (2.6), we easily get ∫

F+

1

ρ(t, y)
dy =

∫ 1

h(t)
dx = 1− h(t). �

In view of the above lemma, we define the average function ρ̄ as follows

1

ρ̄(t, y)
=


1

r−

∫
F−

1

ρ(t, η)
dη =

1 + h(t)

r−
=

1 + h(t)

ML
, t > 0, y ∈ F−,

1

r+

∫
F+

1

ρ(t, η)
dη =

1− h(t)

r+
=

1− h(t)

MR
, t > 0, y ∈ F+.

(3.2)

We define the kinetic and potential energy of the system, respectively, by

Ek(t) :=
1

2

∫
F
|u(t, y)|2 dy +

m

2
|ḣ(t)|2, (3.3)

Ep(t) :=
1

γ − 1

∫
F

(
ργ−1(t, y)− ργ−1(t, y)

)
dy. (3.4)

We also define

P (t) :=
1

γ − 1

∫
F
ργ−1(t, y) dy =

1

γ − 1

[
(r+)γ

(1− h(t))γ−1
+

(r−)γ

(1 + h(t))γ−1

]
, (3.5)

so that

Ep(t) + P (t) =
1

γ − 1

∫
F
ργ−1(t, y) dy, (t > 0). (3.6)

Note that we have both Ek(t) > 0 and P (t) > 0. We now show that the potential energy Ep(t) is
also non-negative for any t > 0.

Lemma 3.2. The potential energy Ep(t) > 0, for any t > 0.

Proof. It is enough to prove for one side of the domain, say F+. Using the definition of ρ̄ given in
(3.2) and identity (3.1), we get∫

F+

(ργ−1 − ρ̄γ−1)dy =

∫
F+

(
ργ−1 − (r+)γ−1

(1− h(t))γ−1

)
dy =

∫
F+

ργ−1dy − r+(
1

r+

∫
F+

1

ρ
dy

)γ−1
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=

(
1

r+

∫
F+

1

ρ
dy

)γ−1( 1

r+

∫
F+

ργ−1dy

)
− 1

1

r+

(
1

r+

∫
F+

1

ρ
dy

)γ−1 .

Thus to show Ep(t) > 0 we need to show that

rγ+ 6

(∫
F+

1

ρ
dy

)γ−1(∫
F+

ργ−1dy

)
. (3.7)

Note that, for any α ∈ (0, 1]

r2+ =

(∫
F+

√
ρα

1√
ρα

dy

)2

6

(∫
F+

ραdy

)(∫
F+

1

ρα
dy

)
.

If γ− 1 = 1, then we take α = 1. If γ− 1 < 1, then we take α = γ− 1 and apply Hölder’s inequality

r2+ 6

(∫
F+

ργ−1dy

)(∫
F+

1

ργ−1
dy

)
6

(∫
F+

ργ−1dy

)(∫
F+

1

ρ
dy

)γ−1
r2−γ+ .

If γ − 1 > 1 we take α = 2, apply Hölder’s inequality to obtain

r2+ 6

(∫
F+

ρdy

)(∫
F+

1

ρ
dy

)
6

(∫
F+

ργ−1dy

) 1
γ−1
(∫
F+

1

ρ
dy

)
r
γ−2
γ−1

+ .

From the above inequalities we obtain (3.7) which completes the proof of the lemma. �

We have the following energy identity for system (2.7)-(2.13).

Proposition 3.3. Let µ(ρ) = ρθ for some θ > 0. Let us set

E(t) := Ek(t) + Ep(t) + P (t), (t > 0).

Then the function t 7→ E(t) is C1 on [0, T ], and for any t > 0 we have

Ė(t) = −
∫
F
ρ(t, y)µ (ρ(t, y))uy(t, y)2 dy, (t > 0). (3.8)

More precisely, for any t > 0

E(t) +

∫ t

0

∫
F
ρ(t, y)µ (ρ(t, y))uy(t, y)2 dyds = E(0). (3.9)

Proof. The fact that E is C1 on [0, T ] is a direct consequence of the regularity of the strong solution.
Moreover, using (3.6) and (2.7), we deduce

Ė(t) =

∫
F
uut dy +mḣ(t)ḧ(t) +

∫
F
ργ−2ρt dy =

∫
F
uut dy +mḣ(t)ḧ(t)−

∫
F
ργuy dy. (3.10)

Multiplying the momentum equation (2.8) with u, and integrating over F− with respect to y, we
have ∫

F−
utu dy −

∫
F−

ργuy dy = −
∫
F−

ρµ(ρ)u2y dy + (ρµ(ρ)uy − ργ)(t, 0−)ḣ(t).

Similarly, over the region F+, we have∫
F+

utu dy −
∫
F+

ργuy dy = −
∫
F+

ρµ(ρ)u2y dy − (ρµ(ρ)uy − ργ)(t, 0+)ḣ(t).

By adding the above two identities and using (2.10), we get∫
F
utudy −

∫
F
ργuydy = −

∫
F
ρµ(ρ)u2ydy − [ρµ(ρ)uy − ργ ] (t, 0)ḣ(t) = −

∫
F
ρµ(ρ)u2ydy −mḣ(t)ḧ(t).
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Combining the above with (3.10), we deduce (3.8). �

As a corollary of the above proposition we have the following energy estimate.

Corollary 3.4. There exists a positive constant C such that∫
F

(
1

2
u2 +

1

γ − 1
ργ−1

)
dy +

∫ t

0

∫
F
ρµ(ρ)u2y dyds+

m

2
ḣ2(t)

= E(0) =

∫
F

(
1

2
u0

2 +
1

γ − 1
ρ0
γ−1
)

dy +
m

2
`20 6 CJ , (t > 0).

Remark 3.5. In Section 3.2, we will show that the above results are enough to show that the
piston remains away from the extremities of the cylinder for all time.

We now derive a modified energy type estimate for the system (2.7)-(2.13). This result is inspired
from [19, Lemma 3.2] and [23]. It will give additional information about ρ, namely L∞(L2) bound
of (ρθ)y, for θ > 0. This and the fact that piston remains aways from the extremities of the cylinder

gives us lower and upper bound of ρθ.

Proposition 3.6. Let µ(ρ) = ρθ for some θ > 0. Then there exists a positive constant C such that

1

2

∫
F

(
u+

1

θ
(ρθ)y

)2

dy + γ

∫ t

0

∫
F
ρθ+γ−2(ρy)

2 dyds+
1

2m

(
mḣ(t) +

1

θ

[
ρθ
]

(t, 0)

)2

+

∫ t

0

1

mθ

[
ρθ
]

(s, 0) [ργ ] (s, 0)ds 6 CJ , (t > 0). (3.11)

Proof. Let ϕ : R→ R be such that

ϕ′(ρ) =
µ(ρ)

ρ
. (3.12)

For instance, we may take ϕ(ρ) as

ϕ(ρ) :=

∫ ρ

0

µ(σ)

σ
dσ =

ρθ

θ
. (3.13)

We multiply (2.8) by (ϕ(ρ))y = ϕ′(ρ)ρy and integrate over F− :∫
F−

ut(ϕ(ρ))y dy =

∫
F−

(ρµ(ρ)uy)y(ϕ(ρ))y dy −
∫
F−

(ργ)y(ϕ(ρ))y dy. (3.14)

Using the equation for density (2.7), we can write the first term in the right hand side of the above
equation as∫

F−
(ρµ(ρ)uy)y(ϕ(ρ))y dy =

(3.12)

∫
F−

(ϕ′(ρ)ρ2uy)y(ϕ(ρ))y dy =
(2.7)
−
∫
F−

(ϕ′(ρ)ρt)y(ϕ(ρ))y dy

= −
∫
F−

(ϕ(ρ))ty(ϕ(ρ))y dy = − d

dt

∫
F−

((ϕ(ρ))y)
2

2
dy.

Substituting the above in (3.14), we get∫
F−

ut(ϕ(ρ))y dy = − d

dt

∫
F−

((ϕ(ρ))y)
2

2
dy −

∫
F−

(ργ)y(ϕ(ρ))y dy. (3.15)

On the other hand, note that we also have

d

dt

∫
F−

u(ϕ(ρ))y dy =

∫
F−

ut(ϕ(ρ))y dy +

∫
F−

u(ϕ(ρ))yt dy. (3.16)

For the second term in the right hand side of (3.16), we see that
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F−

u(ϕ(ρ))yt dy =

∫
F−

u(ϕ′(ρ)ρt)y dy =
(2.7)
−
∫
F−

u(ϕ′(ρ)ρ2uy)y dy = −
∫
F−

u(ρµ(ρ)uy)y dy

=

∫
F−

ρµ(ρ)u2y dy − (ρµ(ρ)uyu) (t, 0−) =
(2.11)

∫
F−

ρµ(ρ)u2ydy − (ρµ(ρ)uy)(t, 0
−)ḣ(t). (3.17)

Using (3.15) and (3.17) in (3.16), we obtain

d

dt

∫
F−

u(ϕ(ρ))y dy +
d

dt

∫
F−

((ϕ(ρ))y)
2

2
dy +

∫
F−

(ργ)y(ϕ(ρ))y dy

=

∫
F−

ρµ(ρ)u2y dy − (ρµ(ρ)uy)(t, 0
−)ḣ(t).

We obtain an analogous expression over the region F+:

d

dt

∫
F+

u(ϕ(ρ))y dy +
d

dt

∫
F+

((ϕ(ρ))y)
2

2
dy +

∫
F+

(ργ)y(ϕ(ρ))y dy

=

∫
F+

ρµ(ρ)u2y dy + (ρµ(ρ)uy)(t, 0
+)ḣ(t).

Combining the last two equations, we get

d

dt

∫
F
u(ϕ(ρ))y dy +

d

dt

∫
F

((ϕ(ρ))y)
2

2
dy +

∫
F

(ργ)y(ϕ(ρ))y dy

=

∫
F
ρµ(ρ)u2y dy + [ρµ(ρ)uy](t, 0)ḣ(t) =

(2.10)

∫
F
ρµ(ρ)u2y dy +mḧ(t)ḣ(t) + [ργ ](t, 0)ḣ(t).

This implies that

1

2

d

dt

∫
F

(u+ (ϕ(ρ))y)
2 dy +

∫
F

(ργ)y(ϕ(ρ))y dy =
(3.3)
Ėk(t) +

∫
F
ρµ(ρ)u2y dy + [ργ ](t, 0)ḣ(t). (3.18)

In the above expression, in view of Proposition 3.3, we have control over all the terms on the
right hand side, except the last one. To eliminate this term we modify the energy type function on
the left hand side. For convenience, we denote

ρ− = ρ(t, 0−), ρ+ = ρ(t, 0+).

We claim that
1

2m

d

dt

(
mḣ(t)− ϕ(ρ−) + ϕ(ρ+)

)2
= −ḣ(t)[ργ ](t, 0) +

1

mθ
(ρθ− − ρθ+)(ργ+ − ρ

γ
−). (3.19)

Proof of claim: First of all, using (2.7) we get

d

dt
ϕ(ρ±) = ϕ′(ρ±)ρt(t, 0

±) = −ρ±µ(ρ±)uy(t, 0
±).

Using the above expression we proceed as follows:

1

2m

d

dt

(
mḣ(t)− ϕ(ρ−) + ϕ(ρ+)

)2
=

1

m

(
mḣ(t)− ϕ(ρ−) + ϕ(ρ+)

)(
mḧ(t) + ρ−µ(ρ−)uy(t, 0

−)− ρ+µ(ρ+)uy(t, 0
+)
)

=
1

m

(
mḣ(t)− ϕ(ρ−) + ϕ(ρ+)

)(
mḧ(t)− [ρµ(ρ)uy](t, 0)

)
=

(2.10)
− 1

m

(
mḣ(t)− ϕ(ρ−) + ϕ(ρ+)

)
[ργ ](t, 0)

= −ḣ(t)[ργ ](t, 0) +
1

m
(ϕ(ρ−)− ϕ(ρ+))[ργ ](t, 0)
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=
(3.13)

−ḣ(t)[ργ ](t, 0) +
1

mθ
(ρθ− − ρθ+)(ργ+ − ρ

γ
−).

This completes the proof of (3.19). Combining (3.19) and (3.18), we deduce

1

2

d

dt

∫
F

(
u+ (ϕ(ρ))y

)2
dy +

∫
F

(ργ)y(ϕ(ρ))y dy +
1

2m

d

dt

(
mḣ(t)− ϕ(ρ−) + ϕ(ρ+)

)2
= Ėk(t) +

∫
F
ρµ(ρ)u2y dy +

1

mθ
(ρθ− − ρθ+)(ργ+ − ρ

γ
−).

Note that the last term in the above expression is always negative, since ρ−, ρ+ > 0 for all t > 0,
γ > 1 and θ > 0. Therefore

1

2

d

dt

∫
F

(
u+ (ϕ(ρ))y

)2
dy +

∫
F

(ργ)y(ϕ(ρ))y dy +
1

2m

d

dt

(
mḣ(t)− ϕ(ρ−) + ϕ(ρ+)

)2
+

1

mθ
(ρθ+ − ρθ−)(ργ+ − ρ

γ
−) 6 Ėk(t) +

∫
F
ρµ(ρ)u2y dy.

Integrating the above with respect to t, we get

1

2

∫
F

(
u+ (ϕ(ρ))y

)2
dy +

∫ t

0

∫
F

(ργ)y(ϕ(ρ))y dy ds+
1

2m

(
mḣ(t)− ϕ(ρ−) + ϕ(ρ+)

)2
+

∫ t

0

1

mθ
(ρθ+ − ρθ−)(ργ+ − ρ

γ
−)ds 6 Ek(t)− Ek(0) +

∫ t

0

∫
F
ρµ(ρ)u2y dyds+

1

2

∫
F

(
u0 + (ϕ(ρ0))y

)2
dy

+
1

2m

(
m`20 − ϕ(ρ0(0

−)) + ϕ(ρ0(0
+))
)2

6
Cor.(3.4)

CJ ,

where C is a constant independent of t. This completes the proof of the proposition. �

As a consequence of the above result and Corollary 3.4 we obtain L∞(L2) bound of ρθ.

Corollary 3.7. There exists a positive constant C such that∫
F

(
(ρθ)y(t, y)

)2
dy 6 CJ , (t > 0).

3.2. No-contact. We shall now show that the piston does not come in contact with the extremities
of the cylinder. This is a consequence of Lemma 3.2 and Proposition 3.3.

Lemma 3.8. Let µ(ρ) = ρθ for some θ > 0. For any t > 0, we have

−1 + δ0 6 h(t) 6 1− δ0,

where

δ0 := min

{
(MR)

γ
γ−1

((γ − 1)E(0))
1

γ−1

,
(ML)

γ
γ−1

((γ − 1)E(0))
1

γ−1

}
.

Proof. In view of Lemma 3.2 and (3.9), we have P (t) 6 E(0) for all t > 0. By substituting the
expression of P (t) from (3.5), we infer that

1− h(t) >
(r+)

γ
γ−1

((γ − 1)E(0))
1

γ−1

, and 1 + h(t) >
(r−)

γ
γ−1

((γ − 1)E(0))
1

γ−1

, (t > 0).

From the above two relation and (2.3) the lemma flows easily. �
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3.3. Estimates on density. We have sufficient information to show that the density function is
bounded below and above. In the proofs below we will see that for showing the upper bound of ρ
we only need θ > 0, but for proving the lower bound of ρ we need 0 < θ < 1

2 .

Lemma 3.9. Let µ(ρ) = ρθ for some θ > 0. There exists a constant ρ∗ > 0, depending only on J
and independent of τ , such that

sup
(t,y)∈[0,τ)×F

ρ(t, y) 6 ρ∗.

Proof. First we will show that ρ is upper bounded on [0, τ)×F+. From Lemma 3.1, we have

1

r+

∫ r+

0

1

ρ(t, y)
dy =

1− h(t)

r+
.

Hence, for each t ∈ (0, τ), there exists y0(t) ∈ (0, r+), such that

ρ(t, y0(t)) =
r+

1− h(t)
. (3.20)

By the fundamental theorem of calculus, we have

ρθ(t, y) = ρθ(t, y0(t)) +

∫ y

y0(t)
(ρθ)y(t, η) dη, (t ∈ [0, τ), y ∈ F+).

Applying Corollary 3.7 and Lemma 3.8 to the above relation, we get that, for any t ∈ [0, τ), y ∈ F+

ρθ(t, y) 6
rθ+
δθ0

+
√
r+

(∫
F+

(ρθy(t, y))2 dy

) 1
2

6 C.

This implies that
sup

(t,y)∈[0,τ)×F+

ρ(t, y) 6 C.

In a similar manner, we get
sup

(t,y)∈[0,τ)×F−
ρ(t, y) 6 C.

This completes the proof of the lemma. �

Next, we show the lower bound for the density.

Lemma 3.10. Let µ(ρ) = ρθ for some 0 < θ < 1
2 . There exists a constant ρ∗ > 0, depending only

on J and independent of τ , such that

inf
(t,y)∈[0,τ)×F

ρ(t, y) > ρ∗.

Proof. In order to obtain the lower bound, we set ζ(t, y) :=
1

ρ(t, y)
, for (t, y) ∈ (0, τ)×F . First we

show the bound of ζ in (0, τ) × F+. Taking y0 as in (3.20) and using the fundamental theorem of
calculus, we get

ζ(t, y) = ζ(t, y0) +

∫ y

y0

ζy(t, y)dy =
1− h(t)

r+
−
∫ y

y0

ζ2(t, η)ρy(t, η)dη.

Since ζ1+θ(ρθ)y = θζ2ρy, the above estimate implies that, for any (t, y) ∈ [0, τ)×F+

ζ(t, y) 6
Lem.3.8

C +
1

θ

∫
F+

ζ1+θ|(ρθ)y|dy 6 C +
1

θ

(
sup
y∈F+

ζθ+
1
2

)∫
F+

ζ
1
2 |(ρθ)y|dy

6 C+
1

θ

(
sup
y∈F+

ζ

)θ+ 1
2 (∫

F+

(ρθy(t, y))2 dy

) 1
2
(∫
F+

ζdy

) 1
2

6
Lem.3.1,Lem.3.8,Cor.3.7

C+C

(
sup
y∈F+

ζ

)θ+ 1
2

.
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Since 0 < θ < 1
2 , applying Young’s inequality to the above estimate we get, for any (t, y) ∈

[0, τ)×F+ :

ζ(t, y) 6 C +
1

2

(
sup
y×F+

ζ

)
,

which implies that
1

2
sup

(t,y)∈(0,τ)×F+

ζ(t, y) 6 C.

Hence, we have inf
(t,y)∈[0,τ)×F+

ρ(t, y) > C. Similarly, we can show that inf
(t,y)∈(0,τ)×F−

ρ(t, y) > C. �

We can easily obtain the other bounds on ρ from Corollary 3.4 and Corollary 3.7 now that we
have lower and upper bounds of ρ,

Lemma 3.11. Let µ(ρ) = ρθ for some 0 < θ < 1
2 . There is a constant C > 0, depending only on J

and independent of τ , such that

sup
t∈[0,τ)

∫
F
ρy(t, y)2 dy 6 C,

∫ t

0

∫
F
ρy(s, y)2 dyds 6 C, (t > 0).

Proof. The first conclusion follows easily from Corollary 3.7 and Lemma 3.10. Note that L2(L2)
bound of ρy follows from the L∞(L2) bound of ρy, with a bound that depends on τ. In order to get
an estimate independent of τ we may proceed as follows. Using Proposition 3.6, Lemma 3.9 and
Lemma 3.10, for any t > 0, we have∫ t

0

∫
F
ρ2y dyds 6 C(ρ∗, ρ∗)

∫ t

0

∫
F
ρθ+γ−2ρ2y dyds 6 C. �

3.4. Estimates on velocity. In this subsection, we estimate the derivatives of u as proved in
the results below. We first note that by combining Corollary 3.4 and Lemma 3.10 we obtain the
following.

Lemma 3.12. Let µ(ρ) = ρθ for some 0 < θ < 1
2 . There exists a positive constant C, depending

only on J and independent of τ , such that∫ t

0

∫
F
u2y dyds 6 C, (t > 0).

Lemma 3.13. Let µ(ρ) = ρθ for some 0 < θ < 1
2 . There exists a positive constant C, depending

only on J and independent of τ , such that∫ t

0

∫
F
u2t dyds+

∫
F
u2y dy +m

∫ t

0
ḧ(s)2 ds 6 C, (t > 0).

Proof. The proof is divided into several steps.
Step 1: We multiply (2.8) by ut and integrate over (0, t)×F−:∫ t

0

∫
F−

u2t dyds =

∫ t

0

∫
F−

(
ρ1+θuy

)
y
ut dyds−

∫
F

(ργ)y ut dyds. (3.21)

Integrating by parts and using (2.9), we obtain∫ t

0

∫
F−

(
ρ1+θuy

)
y
ut dyds =

1 + θ

2

∫ t

0

∫
F−

ρθρtu
2
y dyds− 1

2

∫
F−

ρ1+θu2y dy

+
1

2

∫
F−

ρ1+θ0 u20ydy +

∫ t

0
ρ1+θ(s, 0−)uy(s, 0

−)ḧ(s)ds, (3.22)

and
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−
∫ t

0

∫
F−

(ργ)yutdyds = −γ
∫ t

0

∫
F−

ργ−1ρtuydyds+

∫
F−

ργuydy

−
∫
F−

ργ0u0ydy −
∫ t

0
ργ(s, 0−)ḧ(s)ds. (3.23)

Substituting (3.22) and (3.23) in (3.21) we infer that∫ t

0

∫
F−

u2tdyds =
1 + θ

2

∫ t

0

∫
F−

ρθρtu
2
ydyds− 1

2

∫
F−

ρ1+θu2ydy +
1

2

∫
F−

ρ1+θ0 u20ydy

− γ
∫ t

0

∫
F−

ργ−1ρtuydyds+

∫
F−

ργuydy −
∫
F−

ργ0u0ydy

+

∫ t

0

(
ρ1+θuy − ργ

)
(s, 0−)ḧ(s)ds. (3.24)

Analogously, we also have∫ t

0

∫
F+

u2tdyds =
1

2

∫ t

0

∫
F+

(1 + θ)ρθρtu
2
ydyds− 1

2

∫
F+

ρ1+θu2ydy +
1

2

∫
F+

ρ1+θ0 u20ydy

− γ
∫ t

0

∫
F+

ργ−1ρtuydyds+

∫
F+

ργuydy −
∫
F+

ργ0u0ydy

−
∫ t

0

(
ρ1+θuy − ργ

)
(s, 0+)ḧ(s)ds. (3.25)

The above two estimates, along with (2.7) and (2.10), show that∫ t

0

∫
F
u2t dyds+m

∫ t

0
ḧ(s)2 ds+

1

2

∫
F
ρ1+θu2y dy = −1 + θ

2

∫ t

0

∫
F
ρ2+θu3y dyds

+ γ

∫ t

0

∫
F
ργ+1u2ydyds+

∫
F
ργuydy +

1

2

∫
F
ρ1+θ0 u20ydy −

∫
F
ργ0u0ydy. (3.26)

The last two terms on the right hand side of (3.26) can be estimated due to the assumption
on the initial data. The second term is uniformly bounded due to Corollary 3.4, Lemma 3.9, and
Lemma 3.10. To estimate the third term we proceed as follows∫
F
ργuy dy 6

1

4

∫
F
ρ1+θu2y dy + 4

∫
F
ρ2γ−(1+θ)dy 6

Lem.3.9

∫
F

ρ1+θ

4
u2ydy + 4(ρ∗)2γ−(1+θ)(r+ − r−).

Plugging the above estimate in (3.26) and using Corollary 3.4, Lemma 3.9, and Lemma 3.10, we
deduce that, there exists a positive constant C independent of t such that∫ t

0

∫
F
u2tdyds+m

∫ t

0
(ḧ(s))2ds+

1

4

∫
F
ρ1+θu2ydy 6 C

(
1 +

∫ t

0

∫
F
|ρ1+θu3y|dyds

)
, (t > 0). (3.27)

Step 2: We claim that the following holds: for every ε > 0, there exists Cε > 0 such that∫ t

0

∫
F
|ρ1+θu3y|dyds 6 ε

∫ t

0

∫
F
u2tdyds+ Cε

∫ t

0

(∫
F
u2ydy

)2

ds+ C1, (t > 0), (3.28)

where the positive constant C1 depends only on J , ρ∗ and ρ∗.
We only show the above estimate on F+. The proof is similar for F−. We begin with the identity

ρ1+θu3y = (ρ1+θuy − ργ)u2y + ργu2y,

so that
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0

∫
F+

|ρ1+θu3y|dyds 6
∫ t

0

∥∥∥(ρ1+θ)uy − ργ)(s, ·)
∥∥∥
L∞(F+)

(∫
F+

u2ydy

)
ds+

∫ t

0

∫
F+

ργu2y dyds

6
Lem.3.12, Lem.3.9

∫ t

0

∥∥∥(ρ1+θ)uy − ργ)(s, ·)
∥∥∥
L∞(F+)

(∫
F+

u2ydy

)
ds+ C1, (3.29)

where C1 depends only of J , ρ∗, and ρ∗. For any t > 0, we have

(ρ1+θuy − ργ)(t, y) = (ρ1+θuy − ργ)(t, z) +

∫ y

z
(ρ1+θuy − ργ)y(t, η) dη

= (ρ1+θuy − ργ)(t, z) +

∫ y

z
ut(t, η) dη, (y, z ∈ F+),

which implies that

|(ρ1+θuy − ργ)(y)| 6 1

r+

∫
F+

|(ρ1+θuy − ργ)(t, z)|dz +

∫
F+

|ut|dy

6
1

2r2+

∫
F+

ρ2(1+θ)dy +
1

2

∫
F+

u2ydy +
1

r+

∫
F+

ργdy +

∫
F+

|ut|dy

6
Lem.3.9

1

2

∫
F+

u2ydy +

∫
F+

|ut|dy + C1, (t > 0, y ∈ F+). (3.30)

Therefore ∥∥∥(ρ1+θuy − ργ)(t, ·)
∥∥∥
L∞(F+)

6
1

2

∫
F+

u2ydy +

∫
F+

|ut|dy + C1, (t > 0).

Substituting the above expression in (3.29), we get for any t > 0,∫ t

0

∫
F+

|ρ1+θu3y|dyds 6
∫ t

0

(
1

2

∫
F+

u2ydy +

∫
F+

|ut|dy + C1

)∫
F+

u2ydyds+ C1

6
Lem.3.12

1

2

∫ t

0

(∫
F+

u2ydy

)2

ds+

∫ t

0

(∫
F+

|ut|dy
)(∫

F+

u2ydy

)
ds+ C1

6
1

2

∫ t

0

(∫
F+

u2ydy

)2

ds+ ε

∫ t

0

∫
F+

u2tdyds+ Cε

∫ t

0

(∫
F+

u2ydy

)2

ds+ C1

6 Cε

∫ t

0

(∫
F+

u2ydy

)2

ds+ ε

∫ t

0

∫
F+

u2tdyds+ C1.

This completes the proof of the estimate (3.28).
Step 3: Using (3.28) in (3.27), we get∫ t

0

∫
F
u2tdyds+m

∫ t

0
ḧ(s)2ds+

∫
F

ρ1+θ

4
u2ydy 6 CCε

∫ t

0

(∫
F
u2ydy

)2

ds+ Cε

∫ t

0

∫
F
u2tdyds+ CC1.

Then choosing small enough ε and using Lemma 3.10 we conclude that∫ t

0

∫
F
u2t dyds+

∫
F
u2y dy +m

∫ t

0
(ḧ(s))2 ds 6 C + C

∫ t

0

(∫
F
u2ydy

)2

ds. (3.31)

In particular, we have ∫
F
u2y dy 6 C + C

∫ t

0

(∫
F
u2ydy

)2

ds,

from which, applying Grönwall’s inequality, we infer that∫
F
u2ydy 6 C exp

(∫ t

0

∫
F
u2ydyds

)
6

Lem.3.12
C, (t > 0). (3.32)
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Using the above estimate on the right hand side of (3.31), we obtain, for any t > 0∫ t

0

∫
F
u2tdyds+

∫
F
u2ydy +m

∫ t

0
ḧ(s)2ds 6 C +

∫ t

0

(∫
F
u2ydy

)(∫
F
u2ydy

)
ds

6
(3.32)

C + C

∫ t

0

∫
F
u2ydyds 6

Lem.3.12
C.

This completes the proof of the lemma. �

Lemma 3.14. Let µ(ρ) = ρθ for some 0 < θ < 1
2 . There exists a positive constant C, depending

only on J , such that ∫ t

0

∫
F
u2yy dyds 6 C, (t > 0).

Proof. We prove the estimate only on F+. The estimate on F− will be similar. Let us fix y0 ∈ F+.
From the momentum equation (2.8), we have

−uy(t, y) = −ργ−θ−1 − (ρ1+θuy − ργ)(y0)

ρ1+θ
−

∫ y

y0

ut(t, η)dη

ρ1+θ
, (t > 0, y ∈ F+).

Differentiating both sides with respect to y,

uyy(t, y) = −(γ−θ−1)ργ−θ−2ρy+
(ρ1+θuy − ργ)(y0)

ρθ+2
ρy+

∫ y

y0

ut(t, η)dη

ρθ+2
ρy−

ut
ρ1+θ

, (t > 0, y ∈ F+).

Therefore, using Lemma 3.10, Lemma 3.9 and (3.30) we obtain

|uyy| 6 C

(
|ρy|+ |ut|+ |ρy|

(∫
F+

|ut|2 dy

)1/2
)
, (t > 0, y ∈ F+), (3.33)

which implies that∫ t

0

∫
F+

u2yy dyds

6 C

(∫ t

0

∫
F+

(ρ2y + u2t ) dyds+

∫ t

0

(∫
F+

ρ2ydy

)(∫
F+

u2tdy

)
ds

)
6

Lem.3.11,Lem.3.13
C. �

3.5. Proof of Theorem 2.3. Combining Corollary 3.4, Lemma 3.8, Lemma 3.10, Lemma 3.9 and
Lemma 3.13. it follows that there exists a constant C > 1, depending only on J such that

‖u(t, ·)‖H1(F) + ‖ρ(t, ·)‖H1(F−) + ‖ρ(t, ·)‖H1(F+) 6 C, t ∈ [0, τ),

1

C
6 ρ(t, ·) 6 C, t ∈ [0, τ), y ∈ F ,

−1 +
1

C
6 h(t) 6 1− 1

C
, t ∈ [0, τ).

Then, according to the local existence result Theorem 2.5, we can extend the solution beyond τ,
and [0, τ) cannot be the maximal interval of existence. Hence, the solution is global. �
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4. Large-time behavior of strong solution

In this section we are going to prove Theorem 2.4. Throughout this section we assume that
(h, ρ, u) is the global strong solution to the system (2.7)-(2.13). We start with the following result,
which shows that, as t goes to infinity, velocity of the fluid and the piston goes to zero, and density
of the fluid converges to the average density defined in (3.2).

Lemma 4.1. Let (h, ρ, u) be the global strong solution to the system (2.7)-(2.13). Then

‖u(t, ·)‖H1
0 (−r−,r+) + |ḣ(t)|+ ‖ρ(t, ·)− ρ(t, ·)‖H1(F) → 0 as t→∞, (4.1)

where ρ is defined in (3.2).

Proof. Let us set

Q(t) :=

∥∥∥∥µ(ρ(t, ·))ρy(t, ·)
ρ(t, ·)

∥∥∥∥2
L2(F)

+ ‖uy(t, ·)‖2L2(F). (4.2)

We show that Q ∈W 1,1(0,∞). More precisely,∫ ∞
0

Q(s)ds 6 C and

∫ ∞
0

∣∣Q′(s)∣∣ ds 6 C. (4.3)

The fact that Q ∈ L1(0,∞) follows from Corollary 3.4, Lemma 3.10 and Lemma 3.11. To show
Q′ ∈ L1(0,∞), using the continuity equation (2.7), we can rewrite the momentum equation (2.8) as

ut = (ρµ(ρ)uy)y − (ργ)y = −
(
µ(ρ)

ρ
ρt

)
y

− (ργ)y .

Multiplying the above identity with
µ(ρ)ρy
ρ

and integrating over F , we get

∫
F
ut
µ(ρ)ρy
ρ

dy = −
∫
F

(
µ(ρ)

ρ
ρt

)
y

µ(ρ)ρy
ρ

dy −
∫
F

(ργ)y
µ(ρ)ρy
ρ

dy

= −
∫
F

(
µ(ρ)ρy
ρ

)
t

µ(ρ)ρy
ρ

dy−
∫
F

(ργ)y
µ(ρ)ρy
ρ

dy = −1

2

d

dt

∥∥∥∥µ(ρ)ρy
ρ

∥∥∥∥2
L2(F)

−
∫
F

(ργ)y
µ(ρ)ρy
ρ

dy,

which implies that

d

dt

∥∥∥∥µ(ρ)ρy
ρ

∥∥∥∥2
L2(F)

6 C
∫
F

(u2t + ρ2y) dy,

where C is independent of t. On the other hand, integrating by parts

d

dt

∫
F
u2y dy = −2ḧ(t)[uy](t, 0)− 2

∫
F
uyyut dy 6 C

(
|ḧ(t)|2 +

∫
F

(u2t + u2y + u2yy) dy
)
.

Combining the above two estimates with Lemma 3.11, Lemma 3.12, Lemma 3.13 and Lemma 3.14
we obtain (4.3). Thus limt→∞Q(t) = 0. In particular,

‖ρy(t, ·)‖2L2(F) + ‖uy(t, ·)‖2L2(F) → 0 as t→∞.

Finally, from the definition of ρ̄ in (3.2) and Poincaré-Wirtinger inequality, we deduce

‖ρ− ρ̄‖L2(F−) 6
Lem.3.8, Lem.3.9

C

∥∥∥∥1

ρ
− 1

ρ̄

∥∥∥∥
L2(F−)

=
(3.2)

C

∥∥∥∥1

ρ
− 1

r−

∫
F−

1

ρ
dy

∥∥∥∥
L2(F−)

6
Lem.3.10

C‖ρy(t, ·)‖L2(F−)
t→∞−−−→ 0.
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Similarly, we get the analogous estimate over the region F+. Hence lim
t→∞
‖ρ(t, ·)− ρ̄(t, ·)‖H1(F) = 0.

This completes the proof of the lemma. �

The next result shows that the density becomes same on both sides of the piston as time goes to
infinity.

Lemma 4.2. Let (h, ρ, u) be the global strong solution to the system (2.7)-(2.13). Then

(i) [ρθ](t, 0)→ 0, as t→∞.
(ii) For all (y−, y+) ∈ F− ×F+, |ρθ(t, y−)− ρθ(t, y+)| → 0 as t→∞.

Proof. The first conclusion follows if we show that
[
ρθ
]

(·, 0) ∈ H1(0,∞). Since 0 < θ < 1
2 and

γ > 1, we get ∫ ∞
0

[
ρθ
]

(t, 0)2dt 6
Lem.3.10

C

∫ ∞
0

[
ρθ
]

(t, 0) [ργ ] (t, 0) dt 6
(3.11)

C.

Note that

d

dt
ρθ(t, 0±) = −θρθ+1(t, 0±)uy(t, 0

±).

Therefore ∫ ∞
0

(
d

dt
[ρθ](t, 0)

)2

ds 6
Lem.3.9

C

∫ ∞
0

∫
F

(u2y + u2yy) dydt 6
Lem.3.12,Lem.3.14

C.

The second conclusion follows by observing that, for any t > 0 and (y1, y2) ∈ F− ×F+

|ρθ(t, y1)− ρθ(t, y2)| 6 |[ρθ](t, 0)|+ C(ρ∗)‖ρy(t)‖L2(F) −−−−−→
Lem.4.1

0, as t→∞. �

We are now in a position to prove Theorem 2.4.

Proof of Theorem 2.4. In view of Lemma 3.8, for every t > 0 we have that the set {h(t)}t>0 is
relatively compact in R. Let {tn}n>0 be a sequence of positive numbers such that

tn →∞, lim
n→∞

h(tn) = h∗ ∈ [−1 + δ0, 1− δ0]. (4.4)

From (4.1) and Lemma 4.2 we infer that

lim
n→∞

ρ(tn, y) =
ML

1 + h∗
(y ∈ F−), lim

n→∞
ρ(tn, y) =

MR

1− h∗
(y ∈ F+),

and

ML

1 + h∗
=

MR

1− h∗
.

Therefore

h∗ =
ML −MR

ML +MR
= h∞,

and

lim
n→∞

ρ(tn, y) =
ML +MR

2
, (y ∈ F), (4.5)

which ends the proof. �
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5. The case of several pistons

In this section we briefly explain how to extend our main results Theorem 1.3 and Theorem 1.5
to the case of several pistons. Let N ∈ N be the number of pistons. We denote by hi(t) the position
of the ith piston at instant t. We suppose that initially there is no contact between the pistons, and
without loss of generality, we may assume that the initial positions of the pistons are in increasing
order, i.e.,

− 1 < h1(0) < h2(0) < . . . < hN (0) < 1. (5.1)

The domain occupied by the fluid is denoted by

F{hi(t)}Ni=1
:= (−1, 1) \ {hi(t)}Ni=1. (5.2)

Moreover, the density and velocity of the fluid is denoted by ρ̃ and ũ respectively, and the mass of
the ith piston is denoted by mi. With the above notations, the equations modelling the motion of
several pistons in a density dependent viscous compressible fluid is given by

ρ̃t + (ρ̃ũ)x = 0, (x ∈ F{hi(t)}Ni=1
, t > 0), (5.3)

ρ(ũt + ũũx)− (µ(ρ̃)ũx)x + (ρ̃γ)x = 0, (x ∈ F{hi(t)}Ni=1
, t > 0), (5.4)

ũ(t, hi(t)) = ḣi(t), i ∈ {1, . . . , N}, (t > 0), (5.5)

miḧi = [µ(ρ̃)ũx − ρ̃γ ](t, hi(t)), i ∈ {1, . . . , N}, (t > 0), (5.6)

ũ(t, 1) = 0, ũ(t,−1) = 0, (t > 0), (5.7)

hi(0) = hi0 , ḣi(0) = `i0 , i ∈ {1, . . . , N}, (5.8)

ũ(0, x) = ũ0(x), ρ̃(0, x) = ρ̃0(x), x ∈ F{hi0}Ni=1
, (5.9)

where

µ(ρ̃) = ρ̃θ 0 < θ <
1

2
. (5.10)

We introduce the definition of strong solutions to the system (5.3)–(5.10).

Definition 5.1. A tuple (h1, . . . , hN , ρ̃, ũ) is said to be a strong solution to the problem (5.3)–(5.10)
on the interval [0, T ] when it satisfies

hi ∈ H2(0, T ), i ∈ {1, . . . , N}, −1 < h1(t) < · · · < hN (t) < 1, for all t ∈ [0, T ],

ρ̃ ∈ C([0, T ];H1(F{hi(t)}Ni=1
)) ∩H1(0, T ;L2(F{hi(t)}Ni=1

)),

ρ̃(t, x) > 0, for all t ∈ [0, T ], x ∈ F{hi(t)}Ni=1
,

ũ ∈ L2(0, T ;H2(F{hi(t)}Ni=1
)) ∩H1(0, T ;L2(F{hi(t)}Ni=1

)) ∩ C([0, T ];H1
0 (−1, 1)),

equations (5.3) and (5.4) a.e. in (0, T ) × F{hi(t)}Ni=1
, equation (5.6) a.e. in (0, T ), equations (5.5)

and (5.7) in the sense of traces, and the initial conditions stated in (5.8) and (5.9).

We now state the global existence result for system (5.3)-(5.9).

Theorem 5.2. Let us assume that µ satisfies (5.10), hi0 ∈ (−1, 1), `i0 ∈ R, for i ∈ {1, . . . , N}, and
(ρ̃0, ũ0) belongs to H1(F{hi0}Ni=1

)×H1
0 (−1, 1) and satisfy

−1 < h10 < h20 < . . . < hN0 < 1,

ũ0(hi0) = `i0 , for i ∈ {1, . . . , N}, ρ̃0(x) > 0 for x ∈ F{hi0}Ni=1
.

Then, for any T > 0 the system (5.3)-(5.9) admits a unique strong solution on [0, T ], in the sense
of Definition 5.1.
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Next, we determine the equilibrium solution to the system (5.3)-(5.10). Let us set

h0 = h0(t) = −1 and hN+1 = hN+1(t) = 1 (t > 0). (5.11)

The following mass conservation holds.

Mi :=

∫ hi(t)

hi−1(t)
ρ̃(t, x) dx =

∫ hi(0)

hi−1(0)
ρ̃0(x) dx, (i = 1, 2, · · ·N + 1, t > 0). (5.12)

Lemma 5.3. Let (h1∞, . . . , hN∞, ρ∞, u∞) be an equilibrium solution to the system (5.3)-(5.10).
Then u∞ = 0, and ρ∞ and hi∞ are given by

ρ∞ =
1

2

N+1∑
i=1

Mi, hi∞ =

i∑
j=1

Mj −
N+1∑
j=i+1

Mj

N+1∑
j=1

Mj

, i ∈ {1, . . . , N}. (5.13)

Proof. From (5.3), (5.4) and (5.7) we first infer that

u∞ = 0, ρ∞ =


ρ1∞, x ∈ (h0, h1∞),

...
...

ρ(N+1)∞, x ∈ (hN∞, hN+1),

where ρi∞, i ∈ {1, . . . , N + 1}, are positive constants. Then using (5.6), gives ρ∞ = ρ1∞ = . . . =
ρ(N+1)∞. Using (5.12), we conclude that

M1 = (h1∞ − h0)ρ∞,
Mi = (hi∞ − h(i−1)∞)ρ∞, for i ∈ {2, . . . , N}, (5.14)

MN+1 = (hN+1 − hN∞)ρ∞.

Summing the above identities, we get

N+1∑
i=1

Mi = (hN+1 − h0)ρ∞ = 2ρ∞,

from which we obtain the expression of ρ∞ as in (5.13). Substituting this in (5.14), successively, we
obtain the expressions of each of the hi’s as given in (5.13). �

The next result asserts the large time behaviour of the system (5.3)-(5.10).

Theorem 5.4. The global strong solution (h1, . . . , hN , ρ̃, ũ) to the system (5.3)-(5.10), satisfies the
following

‖ρ̃(t, ·)− ρ∞‖H1(F{hi(t)}Ni=1
) + ‖ũ(t, ·)‖H1((−1,1) +

N∑
i=1

|hi(t)− hi∞| → 0, as t→∞,

In particular, as t → ∞, each of the piston comes to rest, and the density becomes constant in
the interval (−1, 1).

Let us explain the main steps to prove Theorem 5.2 and Theorem 5.4. We begin by rewriting
the system in the mass Lagrangian coordinate, as we did for the single piston. We define the
transformation

y := X(t, x) =

∫ x

h1(t)
ρ̃(t, η) dη, (t > 0, x ∈ [−1, 1]).
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Using (5.12), it is easy to see that, for any t > 0

r0 := X(t,−1) = −M1, rN+1 := X(t, 1) =

N∑
j=2

Mj ,

r1 := X(t, h1(t)) = 0, ri := X(t, hi(t)) =

i∑
j=2

Mj for i ∈ {2, . . . , N},

Moreover, if ρ̃(t, ·) is sufficiently regular, positive and bounded away from zero, then X is a C1-

diffeomorphism from [−1, 1] to [−r0, rN+1]. For every t > 0, we denote by Y (t, ·) = [X(t, ·)]−1, the
inverse of X(t, ·). Let us set

FN = (−r0, rN+1) \ {r1, r2, . . . , rN},

and we consider the following change of variables

ρ(t, y) = ρ̃ (t, Y (t, y)) , u(t, y) = ũ (t, Y (t, y)) (t > 0, y ∈ FN ).

Analogous to the single piston case, using the above change of variables, the system (5.3)-(5.9) can
be written as

ρt + ρ2uy = 0 (y ∈ FN , t > 0), (5.15)

ut − (ρµ(ρ)uy)y + (ργ)y = 0 (y ∈ FN , t > 0), (5.16)

u (t, ri) = ḣi(t) i ∈ {1, . . . , N}, (t > 0), (5.17)

miḧi(t) = [ρµ(ρ)uy − ργ ] (t, ri) i ∈ {1, . . . , N}, (t > 0), (5.18)

u(t,−r0) = u(t, rN+1) = 0 (t > 0), (5.19)

hi(0) = hi0 , ḣi(0) = `i0 i ∈ {1, . . . , N}, (5.20)

ρ(0, y) := ρ0(y), u(0, y) := u0(y) (y ∈ FN ). (5.21)

where

ρ0(y) = ρ̃0(Y (0, y)), u0(y) = ũ0(Y (0, y)).

The rest of the proof is similar to the single piston case. Similar to Theorem 2.5 local in time
existence and uniqueness of the above system can be obtained. Regarding the global existence, we
only state the analogous version of Proposition 3.3, Proposition 3.6 and Lemma 3.8 for the system
(5.15)–(5.21). We define the average function ρ̄ as follows,

ρ̄(t, y) =



M1

1 + h1(t)
, for y ∈ (−r0, r1), t ≥ 0,

Mi

hi(t)− hi−1(t)
, for i ∈ {2, 3, · · · , N}, y ∈ (ri−1, ri), t ≥ 0,

MN+1

1− hN (t)
, for y ∈ (rN , rN+1), t ≥ 0.

Next, we define the kinetic and potential energy of the system, respectively, as follows

Ek(t) :=
1

2

∫
FN
|u(t, y)|2 dy +

1

2

N∑
i=1

miḣ
2
i (t),

Ep(t) :=
1

γ − 1

∫
FN

(ργ−1(t, y)− ρ̄γ−1(t, y)) dy.

We also define the quantity
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P (t) :=
1

γ − 1

∫
FN

ρ̄γ−1(t, y)dy

=
1

γ − 1

[
(M1)

γ

(1 + h1(t))γ−1
+

N∑
i=2

(Mi)
γ

(hi(t)− hi−1(t))γ−1
+

(MN+1)
γ

(1− hN (t))γ−1

]
.

Note that, Ek(t), Ep(t), P (t) > 0 for any t > 0. We have the following energy identity for the system
(5.15)–(5.21). The proof is similar to that of Proposition 3.3.

Proposition 5.5. Let µ(ρ) = ρθ for some θ > 0. Let us set

E(t) := Ek(t) + Ep(t) + P (t), (t > 0).

Then the function t 7→ E(t) is C1 on [0, T ], and for any t > 0 we have

Ė(t) = −
∫
FN

ρ(t, y)µ (ρ(t, y))uy(t, y)2 dy, (t > 0). (5.22)

The next result shows that the pistons do not come in contact with each other or with the
extremities of the cylinder.

Lemma 5.6. Let us set

δ0 := min

{
(M1)

γ
γ−1

((γ − 1)E(0))
1

γ−1

,
(M2)

γ
γ−1

((γ − 1)E(0))
1

γ−1

, . . . ,
(MN+1)

γ
γ−1

((γ − 1)E(0))
1

γ−1

}
.

Then for any t > 0

−hi−1(t) + δ0 6 hi(t) 6 hi+1(t)− δ0 (i = 1, 2, · · · , N).

Finally, we state the analogous version of Proposition 3.6.

Proposition 5.7. Let µ(ρ) = ρθ for some θ > 0. Then there exists a positive constant C, depending
only on the initial data, such that

1

2

∫
FN

(
u+

1

θ
(ρθ)y

)2

dy + γ

∫ t

0

∫
FN

ρθ+γ−2(ρy)
2 dyds

+

N∑
i=1

1

2mi

(
miḣ(t) +

1

θ

[
ρθ
]

(t, ri)

)2

+

N∑
i=1

∫ t

0

1

miθ

[
ρθ
]

(s, ri) [ργ ] (s, ri)ds 6 C (t > 0).

Once we have the above results, we can mimic the steps given in Section 3 and Section 4, to
obtain the proof of Theorem 5.2 and Theorem 5.4. Since the calculations are almost identical and
too much of a repetition, we omit the details here.

6. Concluding remarks

The main results of this paper concern global existence and large time behaviour of the system
modelling the motion of pistons in a viscous compressible fluid with density dependent viscosity. In
view of our results several questions seem natural which we believe merit further attention.

Viscosity of the form µ(ρ) = ρθ, θ > 1
2 : In this paper, we have crucially used the fact that θ <

1

2
to get the lower bound of density field (see Lemma 3.10). It seems natural to consider the piston

problem with µ(ρ) = ρθ, with θ >
1

2
. Perhaps one can follow the arguments of [3] to get the global

existence in this case.
Large time behaviour for the Cauchy problem: One can also consider the Cauchy problem with

density dependent viscosity. We think the global in time existence can be proved in a similar manner.
However, the main challenge would be to show the decay rates of the solution, and determine the
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large time behaviour of the piston. We remind that in the constant viscosity case this was studied
in [12, 14, 13].

Piston problem with two different fluids: Another interesting problem is to consider the system
with the two sides of the piston filled with two different fluids. More precisely, now the viscosities
will be of the form ρθ1 and ρθ2 , respectively, on the left and right side of the piston with θ1 different
from θ2. Accordingly, the pressure laws will be changed to ργ1 and ργ2 , γ1 6= γ2 respectively. The
local in time existence can be proved easily. However, if we follow our method, we end up with

a term like

∫ t

0

1

m

(
ρθ2(s, 0+)

θ2
− ρθ1(s, 0−)

θ1

)
(ργ2(s, 0+) − ργ1(s, 0−))ds in Proposition 3.6, which

doesn’t have any sign.
Control problems: As far as we know, there is no controllability result available for the system

(1.1)–(1.6) even when the viscosity is constant. The objective is to find controls, in terms of the
boundary conditions, to drive the fluid to rest and the piston to a desired position. When the fluid
is modelled by the viscous Burgers’ equation the relevant control problem was studied in [16, 4, 21].
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Sredy, (1977), pp. 132–150, 169.

[23] , Stabilization of the solution of a model problem on the motion of a piston in a viscous gas, Dinamika
Sploshn. Sredy, (1978), pp. 134–146, 173.

[24] , Motion with a contact discontinuity in a viscous heat conducting gas, Dinamika Sploshn. Sredy, (1982),
pp. 131–152.

[25] J. L. Vázquez and E. Zuazua, Large time behavior for a simplified 1D model of fluid-solid interaction, Comm.
Partial Differential Equations, 28 (2003), pp. 1705–1738.

[26] , Lack of collision in a simplified 1D model for fluid-solid interaction, Math. Models Methods Appl. Sci.,
16 (2006), pp. 637–678.

Vaibhav Kumar Jena, Debayan Maity, Abu Sufian
TIFR Centre for Applicable Mathematics,
560065 Bangalore, Karnataka, India.
Email address: vkjena22@tifrbng.res.in, debayan@tifrbng.res.in, abu22@tifrbng.res.in


	1. Introduction and main results
	2. Change of coordinates
	3. Global in time existence and uniqueness
	3.1. Energy estimates
	3.2. No-contact
	3.3. Estimates on density
	3.4. Estimates on velocity
	3.5. Proof of thm-929

	4. Large-time behavior of strong solution
	5. The case of several pistons
	6. Concluding remarks
	References

