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Summary

In this paper, we study the behavior of characteristic roots of a class of strictly proper
LTI SISO systems that are subject to a PD controller for which the derivative action
has been implemented by means of a delay-difference approximation scheme that
uses multiple delays. To such an end, the improperly-posed case is discussed in depth,
i.e. the situations where “small delays” induce instability in the closed-loop system.
The effect of adding more delays on the improperly-posed case is analyzed and a
methodology for determining the set of parameters that produces such a situation
for a given number of delays is derived. Some illustrative examples complete the
presentation.

KEYWORDS:
properly-/improperly-posed systems; PD-control; quasi-polynomials; delay-dependent coefficients.

1 INTRODUCTION

It is well known that Proportional-Integral-Derivative (PID) controllers are easy to implement on industrial processes and their
tuning makes it possible to respond satisfactorily to the control of large classes of processes. Such features are at the origin of
their large “popularity”1,2,3. It should be mentioned that the first analytical study of PID control dates back a century ago4. There
exists a large literature on methods of tuning PID controllers (see, for instance5 and the reference therein), and it has always
been mentioned that the derivative action brings some undesired behaviors in closed-loop control systems. The reasoning behind
this idea stems from a well-known property of derivative actions: the potential to amplify high-frequency noise signals in the
system. In this regard, there are two main methodologies in order to deal with such a problem. The first is to use a derivative
filter, while the second aims to reduce the noise amplification effect by intentionally inducing delays through a delay-difference
approximation scheme of the derivative operator6. This last idea has been studied by adopting different approaches. Roughly
speaking, in contrast to the derivative operator, the time-delay block exhibits a bounded magnitude with respect to the frequency.
This means that regardless of the frequency content of the input signal, the inclusion of high-frequency noise does not result in
signal amplification when processed through the time-delay block.

There are several attempts to substitute the derivative term and consider in its place delay-based schemes. Under such an
idea we can mention the following works: the proportional minus delay (PMD) controller proposed in7 carries out an averaged
derivative action, producing fast responses, being almost insensitive to high-frequency noise; such an idea has been explored, and
some design rules have been published for special cases8,9. In10 an average derivative action is also implemented; however, the
controller design considers a first-order Padé approximation to avoid the exponential term. A practical implementation of a PMD
controller on a real plant is also analyzed and presented in11 and a performance comparison between a classical PD controller
and a delay-based one can be found in12. It should be noted that the PMD controller induces parameters that explicitly depend
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on the delay term. However, such a dependency has not been analyzed in any of the above publications . Besides the previous
works, it is worth mentioning that the derivative can be approximated by using the well-known method of finite differences13.
Such a technique enhances the accuracy of the approximation by considering more than two points, bringing it closer to the ideal
derivative. When explicitly using only two points, it yields the same response as the PMD. Moreover, this approach mitigates
the amplification of noise, as mentioned in12. In this regard, a delay-difference approximation produces a characteristic equation
whose coefficients depend explicitly on the delay parameter. While there are several studies of time-delay systems stability,
such as the early results on differential-difference equations, presented in14, the study of the effects induced by the parameters
on the (asymptotic) stability of the dynamical system is still a subject of recurring interest (see, e.g.,15 and the references therein
for an overview of the open literature). In particular,16,17 proposed a simple characterization of the stability of the system with
respect to the delay parameter, method that is at the origin of several developments well reported in the literature. If, in most of
the cases, the delay is at the origin of bad behavior (oscillations, stability loss), the idea to use the delay as a control parameter
emerged more recently18,19.

Nevertheless, the analysis of systems whose parameters depend explicitly on the delay parameter is less frequently reported
in the literature; those that exist present a significantly increased difficulty of analysis. For instance20,21, focus on developing
algorithms and less on analytical methods. In22 delay margins are explicitly computed for linear systems with delay-dependent
coefficients.

It should be pointed out that, under certain conditions, the approximation may lead to some unexpected behaviors in terms
of sensitivity with respect to the delay parameter variation, and, in particular, in the case of unstable singular solutions of the
characteristic function even if the system with the ideal derivative operator is stable. Such a situation is referred as improperly-
posed, and to the best of the authors knowledge, was not sufficiently discussed in the open literature. The first ideas to address
the problem were considered in23, where the authors used a first-order approximation of the derivative, namely:

�̇�(𝑡) ≈
𝑦(𝑡) − 𝑦(𝑡 − 𝜏)

𝜏
,

where 𝜏 > 0 denotes the delay parameter. In24, the same discretization was studied and, although it was not fully characterized,
the improperly-posed character of the system was mentioned and some sufficient conditions are explicitly derived. Additionally,
the singular behavior of the unstable characteristic root was observed via a numerical example but without any further discussion
of the observed phenomenon. Next, following a similar idea, an extension of the analysis to a second-order approximation has
been proposed in25. In such a work, it is important to emphasize an interesting property known as the locking real unstable roots
mechanism. This property highlights that the system’s stability crossing exclusively happens through the origin when there is a
change in the derivative “gain” parameter. Additionally, it confirms that any unstable (characteristic) root, if present, is real.

The interest in extending this study to a case with a more significant number of delays comes from the possibility of increasing
the accuracy when approximating the derivative action, which at the same time allows larger delay values. Indeed, adding more
points (delays) to the approximation yields a better derivative approximation. However, this also increases noise amplification
as the operator approaches the ideal derivative action; additionally, the effects of adding 𝓁−delays to the system are not yet
characterized and, as discussed in the rest of this note, the locking real unstable roots mechanism property is not valid for cases
with more than two delays in the approximation scheme.

The main contribution of this note is to characterize certain unbounded solutions of the characteristic functions of the closed-
loop LTI systems subjected to PD controllers for which the derivative action has been approximated by using delay-difference
operators including 𝓁delays, assumed to be commensurate. The idea to use commensurate delays is consistent with the fact to
conserve only one parameter for the approximation, that is a low-complexity controller (only three parameters: the gains and
the delay). Furthermore, a methodology allowing to find an "improperly-posed criteria" based on parametric analysis and the
number of delays considered on the approximation is derived. Despite producing a better approximation, the use of a larger
number of delays represents a stability loss (improperly-posedness). Finally, the illustrative examples show the effectiveness of
the results showing the stabilizing/destabilizing effect induced by the delay approximation.

Notations: Throughout this paper, the following standard notations will be adopted: the set of real (rational) numbers is
denoted by ℝ (ℚ). In particular, ℝ+ = {𝑥 ∈ ℝ ∶ 𝑥 > 0}. Similarly, ℕ denotes the set of natural numbers. Next, ℂ (ℂ+,ℂ−)
represents the set of complex numbers (with strictly positive/negative real parts) and 𝒊 ∶=

√

−1. For a complex number 𝑧, ℜ(𝑧)
(ℑ(𝑧)) represents its real (imaginary) component. For a given set  , card {} denotes the number of elements of the set  . In
addition, we denote  ∶=  ∪ {0} and ∗ ∶=  ⧵ {0}. The 𝑗 − 𝑡ℎ Chebyshev polynomials (for a precise definition, please refer
to Appendix B) of the first and second kind are denoted by 𝑇𝑗 and 𝑈𝑗 , respectively. For a real number 𝑥, sign (𝑥) denotes the
sign of the number 𝑥, where sign (𝑥) ∈ {0,±1}. Finally, the binomial coefficient is defined by

(𝑛
𝑘

)

∶= 𝑛!
(𝑛−𝑘)!𝑘!

.
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2 MOTIVATING EXAMPLE AND PRELIMINARIES

Let us consider the following strictly proper LTI SISO system Σ = (𝐴, 𝑏, 𝑐𝑇 ) with the following state-space representation:

Σ ∶
{

�̇�(𝑡) = 𝑨𝑥(𝑡) + 𝑏𝑢(𝑡),
𝑦(𝑡) = 𝑐𝑇𝑥(𝑡),

(1)

where 𝑨 ∈ ℝ𝑛×𝑛 and 𝑐𝑇 , 𝑏 ∈ ℝ𝑛. The corresponding transfer function is given by:

𝐻𝑦𝑢 (𝑠) ∶=
𝑃 (𝑠)
𝑄 (𝑠)

≡ 𝑐𝑇 (𝑠𝑰 −𝑨)−1𝑏, (2)

where 𝑃 , 𝑄 are polynomials in 𝑠, with real coefficients:

𝑄(𝑠) ∶= 𝑠𝑛 +
𝑛−1
∑

𝑗=0
𝑞𝑗𝑠

𝑗 , 𝑃 (𝑠) ∶=
𝑚
∑

𝑗=0
𝑝𝑗𝑠

𝑗 , 𝑞𝑗 , 𝑝𝑗 ∈ ℝ, (3)

with 𝑛 ∶= deg(𝑄) > 𝑚 ∶= deg(𝑃 ), 𝑝𝑚 ≠ 0 and relative degree 𝑑𝑟 = 𝑛 − 𝑚 ≥ 1. As mentioned, this note addresses strictly
proper LTI SISO systems subject to a classic PD-controller:

𝑢(𝑡) ∶= 𝑘𝑝𝑦(𝑡) + 𝑘𝑑 �̇�(𝑡), (4)

where (𝑘𝑝, 𝑘𝑑) ∈ ℝ2 ⧵ {(0, 0)} are the proportional and derivative gains, respectively. The transfer function gives the
corresponding frequency-domain controller:

𝐶0(𝑠) ∶= 𝑘𝑝 + 𝑘𝑑𝑠. (5)
In closed-loop, the characteristic function Δ0 ∶ ℂ → ℂ writes as:

Δ0(𝑠) ∶= 𝑄(𝑠) + (𝑘𝑝 + 𝑘𝑑𝑠)𝑃 (𝑠). (6)

Denote by 𝜎(Δ0) the spectrum of Δ0. In the sequel, we assume that (6) has all its characteristic roots located in ℂ−, that is
𝜎(Δ0) ⊂ ℂ−. In other words, 𝐶0 is a stabilizing controller, and we will use the notation 𝐶0 ∈ Stab(𝐻𝑦𝑢).

As outlined in the Introduction, our focus is the thorough analysis and comprehension of the effects resulting from the
discretization of the derivative action. Several methodologies exist for such discretization; in this study, we adopt the well-
established finite-difference method (see for instance13 and26) to reconstruct the derivative. Specifically, we employ the 𝓁-th

t− 2τ t− τ t t+ τ t+ 2τ

1
2τ
[3y(t)− 4y(t− τ) + y(t+ 2τ)]

ẏ(t)

y(t)

Figure 1 Three-points (or two-delays) approximation of the derivative of 𝑦(𝑡) at 𝑡.

past values of the signal to achieve such a reconstruction. More precisely, the methodology can be stated as:

�̇�(𝑡) ≈
𝓁
∑

𝑘=0
𝑦(𝑡𝑘)𝐿′

𝑘(𝑡), (7)
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where 𝓁 ∈ ℕ represents the number of delays used on the approximation. In this context, we say that it is an (𝓁 + 1)−points
approximation. The delay 𝜏 ∈ ℝ+ is assumed strictly positive. The instants 𝑡𝑘 are given by 𝑡𝑘 = 𝑡− 𝑘𝜏, and 𝐿𝑘 denotes the 𝑘-th
Lagrange coefficient polynomial for 𝑦 at the time 𝑡𝑘, that is,

𝐿′
𝑘(𝑡) = 𝐿𝑘(𝑡)

𝓁
∑

𝑗=0, 𝑗≠𝑘

1
𝑡 − 𝑡𝑗

where 𝐿𝑘 is the polynomial given by

𝐿𝑘(𝑡) =
𝓁
∏

𝑗=1, 𝑗≠𝑘

𝑡 − 𝑡𝑗
𝑡𝑘 − 𝑡𝑗

.

Figure 1 illustrates the approximation when three points (two delays) are considered.
Inspired by this methodology, we aim to implement the derivative operator in𝐶0, given by (5) through such an approximation.

After applying the Laplace transform, the discretized controller 𝐶𝜏,𝓁 reads:

𝐶𝜏,𝓁(𝑠) ∶= 𝑘𝑝 +
𝑘𝑑
𝜏

𝓁
∑

𝑘=1

1
𝑘
(1 − 𝑒−𝜏𝑠)𝑘. (8)

Taking this approximation, the characteristic function of the closed-loop system Δ𝓁 ∶ ℂ ×ℝ+ → ℂ rewrites as:

Δ𝓁(𝑠; 𝜏) ∶= 𝑄(𝑠) +

(

𝑘𝑝 +
𝑘𝑑
𝜏

𝓁
∑

𝑘=1

1
𝑘
(1 − 𝑒−𝜏𝑠)𝑘

)

𝑃 (𝑠), (9)

which is a quasi-polynomial with delay-dependent coefficients. As discussed in15 into a different framework, it is sufficient to
check the location of the spectral abscissa†, given by 𝜎𝑎(Δ𝓁) = max{ℜ(𝑠0) ∶ 𝑠0 ∈ ℂ,Δ𝓁(𝑠0; 𝜏) = 0}. Such a root depends
continuously on the system’s parameters and this property holds as long as 𝜏 ∈ ℝ∗

+ stays strictly positive (see, for instance,15).
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Figure 2 Bode diagrams of the ideal derivative and the corresponding versions with one, two, and three-delays approximations.

Remark 1. Noise Reduction Effect. As mentioned in the Introduction, an advantage of using delay-difference approximations
is the reduction in the noise amplification produced when a derivative is used. Indeed, when we analyze the derivative operator’s
magnitude and phase response, given by 𝑀(𝑠) = 𝑠, we observe the following relations: |𝑀(𝒊𝜔)| = 𝜔, ∠𝑀(𝒊𝜔) = 𝜋

2
. This

indicates that as the frequency𝜔 of the input signal increases, the magnitude of its response will also increase. In other words, the
higher the frequency, the more pronounced the effect of the derivative operator on the signal’s magnitude. Next, let us analyze

†the spectral abscissa is the real part of the right-most root of the characteristic function.
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the effect of the delay-based approximation. To perform a similar analysis on such an element, let us consider first the following:
|𝑒−𝒊𝜔𝜏 | = | cos(𝜔𝜏) − 𝒊 sin(𝜔𝜏)| = 1, ∠𝑒−𝒊𝜔𝜏 = −𝜔𝜏. This relation allows us to conclude that, in contrast to the derivative
operator, the time-delay block exhibits a bounded magnitude with respect to the frequency 𝜔. This means that regardless of the
frequency content of the input signal, the inclusion of high-frequency noise does not result in signal amplification when processed
through the time-delay block. To conclude, the frequency analysis of these two components highlights their main differences:
while the derivative operator amplifies signals as frequencies increase, the time-delay block approximation maintains a bounded
magnitude, making it less sensitive to the introduction of high-frequency noise. Figure 2 illustrates the Bode magnitude diagram
of the ideal derivative and its one-, two-, and three-delay approximations.

2.1 Motivating example
As it has already been pointed out, there might exist cases where a system loses its stability after replacing the derivative term
with its delay-difference approximation. In fact, any digital implementation will always require a discretization process. In this
regard, in order to emphasize the importance of considering the limits of the discretization, let us consider the Phantom-Omni
Haptic device (see, Figure 3a) studied in27, described by the transfer function:

𝐻𝑦𝑢(𝑠) ∶=
𝐿(𝑇𝑧𝑠 + 1)
𝑠(𝑇𝑝𝑠 + 1)

. (10)

(a)

226.1878

-50

0

50

ℜ(s)

ℑ(s)

su(τ )
≈

(b)

Figure 3 (a) Phantom omni haptic system. (b) Singular behavior of the solution 𝑠𝑢(𝜏) for decreasing values of 𝜏.

Considering a classical PD controller, with gains (𝑘𝑝, 𝑘𝑑) ∈ ℝ2 ⧵ {(0, 0)}, the characteristic function Δ0 ∶ ℂ → ℂ of the
closed-loop system can be expressed as:

Δ0(𝑠) ∶= 𝑠2 + �̂�𝑝𝑠 + (𝐿𝑇𝑧�̂�𝑝𝑠 + 𝐿�̂�𝑝)(𝑘𝑝 + 𝑘𝑑𝑠), (11)

where �̂�𝑝 ∶= 1∕𝑇𝑝, with 𝑇𝑝 ≠ 0, and 𝐿, 𝑇𝑧 ∈ ℝ2 ⧵ {(0, 0)}. According to the Stodola condition28, in the case of a polynomial of
degree two, having the same sign in all coefficients is a necessary and sufficient condition to ensure exponential stability. Thus,
under the aforementioned assumptions, Δ0 corresponds to a stable closed-loop system if and only if the following conditions
hold:

sign
(

1 + 𝑘𝑑𝐿𝑇𝑧�̂�𝑝
)

= sign
(

�̂�𝑝
(

1 + 𝑘𝑑𝐿 + 𝑘𝑝𝐿𝑇𝑧
))

= sign
(

𝑘𝑝𝐿�̂�𝑝
)

≠ 0.
Now, to consider a realistic scenario, let us borrow the experimental data set from27: 𝐿 = 0.38123, 𝑇𝑧 = 63.031 and
𝑇𝑝 = 0.63304‡. Under such considerations, it is clear to see that choosing (𝑘𝑝, 𝑘𝑑) = (−2,−2) rends the closed-loop system
asymptotically stable. Now, let us replace the derivative action by its delay-difference approximation with a single time delay,
leading to the following characteristic function Δ1 ∶ ℂ ×ℝ∗

+ → ℂ:

Δ1(𝑠; 𝜏) ∶= 𝑠2 + �̂�𝑝𝑠 + (𝐿𝑇𝑧�̂�𝑝𝑠 + 𝐿�̂�𝑝)
(

𝑘𝑝 + 𝑘𝑑
1 − 𝑒−𝑠𝜏

𝜏

)

. (12)

‡This specific set of parameters was obtained using an identification procedure (see 27 for further details).
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A common practice suggests that the smaller the time delay, the better the approximation is; in this spirit, consider 𝜏 ∈ [0.1, 0.5].
With this particular selection of gains, the characteristic function Δ1 has an unstable real solution 𝑠𝑢 that exhibits a singular
behavior. Specifically, as the delay value 𝜏 decreases, 𝑠𝑢 moves further to the right, as can be observed in Fig. 3b. Surprisingly,
the system conserves its asymptotic stability by fixing the gain values to (𝑘𝑝, 𝑘𝑑) = (2, 1) instead of the previous values.
Motivated by the previous discussion, in the remaining part of the paper, we will disclose the mechanism behind such a singular
phenomenon (for further examples, we refer to29 (second-degree case) and23 (scalar case)). Furthermore, we will explore how
such a mechanism could be modified if we take several delays in the derivative approximation instead of only one delay value.

3 IMPROPERLY-POSED SYSTEMS ANALYSIS

3.1 Definitions and problem formulation
With the above discussion in mind, consider the following definition, borrowed from23:

Definition 1 (Improperly-posed system). Consider the LTI SISO system (1) with transfer function (2). Suppose that 𝐶0 of the
form (5) is a stabilizing controller 𝐶0 ∈ Stab(𝐻𝑦𝑢) and is replaced by 𝐶𝜏,𝓁 given in (8). If there exists a sequence of real
numbers (𝜏𝑛)𝑛∈ℕ, 𝜏𝑛 → 0+ when 𝑛 → ∞ such that for all 𝜖 > 0, there exists some positive integer 𝑛𝑢, with 𝜏𝑛𝑢 < 𝜖 and
𝐶𝜏𝑛𝑢 ,𝓁 ∉ Stab(𝐻𝑦𝑢) the controller 𝐶𝜏,𝓁 is called an improperly-posed controller for “small” delays. In this case, the closed-loop
system is improperly-posed§.

Remark 2. Observe that, since 𝐶0 ∈ Stab(𝐻𝑦𝑢), all of the zeros of Δ0 are located in ℂ−. Definition 1 simply tells us that the
spectral abscissa of the system is located in ℂ+ for some “small” delay values, even though the solutions of the delay-free (𝜏 = 0)
case are stable. In other words, improperly-posed closed-loop systems correspond to some loss of continuity of the spectral
abscissa for "small" delays.

As one may expect from the definition above, the properly-posed for "small" delays case refers to the situation where the
system remains stable after approximating the derivative action via an infinitesimal delay.

Remark 3. Although a properly-posed system remains stable after applying the discretization for “small” delay values, there
may be a delay margin (an upper bound) to guarantee the system’s closed-loop stability.

In the light of the above definition (see also the motivating example), we will focus on the following problem: Find the
improperly/properly-posed criteria with respect to the closed-loop system parameters and the number of delays considered in
the derivative approximation for 𝓁 ∈ ℕ.

The above problem can be summarized as finding the structure of an unstable-unbounded solution of the characteristic function
of an improperly-posed closed-loop system, as well as finding the corresponding region in the considered parameter space
(including the gains, the delay, and the number of delays).

3.2 Improperly-Posed Case: Asymptotic Behavior Analysis
To analyze the effects of small delays on the discretization of the derivative action, we will use the so-called Newton’s Diagram
Method30 to find an appropriate change of variable, such an approach follows similar steps to those presented in31,23 and25. In
fact, the change of variable aims to simplify the asymptotic behavior analysis with respect to the delay parameter.

Proposition 1. Consider the system with transfer function (2) in closed-loop with the delay-based control scheme (8). Let
𝓁 ∈ ℕ, and consider the closed-loop characteristic function Δ𝓁 given by (9). Then, when 𝜏 → 0+ the quasi-polynomial (8) has
an unbounded root 𝑠 ∶ ℝ+ → ℂ with the following structure:

𝑠 (𝜏) =
𝑠0
𝜏

+ 𝜑 (𝜏) , (13)

where 𝑠0 ∈ ℂ ⧵ {0} and 𝜑 is a holomorphic function satisfying 𝜑(0) ≠ 0.

Proof. The proof is based on the Newton-diagram method and will be omitted, as it closely follows the steps outlined in23.

§for “small” delays.
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Proposition 1 gives essential information about the structure of particular solutions of the characteristic function. Under such
a framework, in the sequel, we aim to complete its characterization by analyzing a way to obtain "𝑠0" and its location in the
complex plane. It is worth mentioning that the location of "𝑠0" in ℂ+ (ℂ−) is essential for concluding if the corresponding
closed-loop system is improperly-(properly-) posed.

Now that the singular behavior of certain characteristic roots has been identified, we aim to find their location in the complex
plane. Note that, a direct application of the previously mentioned Newton’s Polygon method produces the auxiliary quasi-
polynomial 𝑃 𝑎𝑢𝑥

𝓁 ∶ ℂ → ℂ given by:

𝑃 𝑎𝑢𝑥
𝓁 (𝑤) = lim

𝜏→0+
𝜏𝑛Δ(𝑤𝜏−𝛽 ; 𝜏) = lim

𝜏→0+
𝜏𝑛Δ(𝑤

𝜏
; 𝜏), (14)

which after computing reads:

𝑃 𝑎𝑢𝑥
𝓁 (𝑤) ∶=

{

𝑤𝑛 if 𝑚 < 𝑛 − 1
𝑤𝑛−1𝑓𝓁(𝑤; 𝑘𝑑𝑝𝑛−1) if 𝑚 = 𝑛 − 1

, (15)

where 𝑛 and 𝑚 are the degree¶ of the denominator and numerator in (2), respectively, 𝓁 is the number of delays considered on
the approximation and 𝑓𝓁 ∶ ℂ ×ℝ → ℂ is a complex analytic function defined as

𝑓𝓁(𝑤; 𝛼) ∶= 𝑤 + 𝛼
𝓁
∑

𝑘=1

(1 − 𝑒−𝑤)𝑘

𝑘
. (16)

Remark 4. Note that, regardless of the number of delays, 𝑓𝓁(⋅; 𝛼) always presents at least a single root at 𝑤 = 0, which is
invariant with respect to the parameter 𝛼; this implies that 𝑃 𝑎𝑢𝑥

𝓁 has always a root of multiplicity 𝑛 at 𝑤 = 0.

With this in mind, we have the following result, which is a direct consequence of Proposition 1:

Corollary 1. A singular characteristic root 𝑠∗ of the characteristic function (9) is given by:

𝑠∗(𝜏) = 1
𝜏
𝑧∗ + (1),

where 𝑧∗ is a nontrivial solution of the auxiliary quasi-polynomial 𝑃 𝑎𝑢𝑥
𝓁 (𝑤).

Let us also introduce the following definitions:

Definition 2 (Frequency crossing set). Consider the function 𝑓𝓁 in (16) and a value 𝛼∗ ∈ ℝ∗. The frequency crossing set
Ω𝛼∗ ⊂ ℝ∗

+ is the set of all 𝜔 ∈ ℝ∗
+ such that 𝑓𝓁(𝒊𝜔; 𝛼∗) = 0.

Definition 3 (Critical parameter/value). We say that 𝛼 ∈ ℝ∗ is a critical parameter if there exists at least one real 𝜔∗ ∈ Ω𝛼∗

satisfying 𝑓𝓁(𝒊𝜔∗; 𝛼∗) = 0. Similarly, a crossing frequency 𝜔∗ ∈ Ω𝛼∗ is called a critical value if there exists 𝛼∗ ∈ ℝ∗ such that
𝑓𝓁(𝒊𝜔∗; 𝛼∗) = 0.

Remark 5. Given our focus on nontrivial solutions, it becomes essential to verify the presence of an unstable unbounded root
only when the relative degree of the system equals one. This condition is expressed as 𝑛 ∶= deg𝑄 ≡ 1+𝑚 ∶= deg𝑃 . According
to (15), it is clear to see that in cases where this condition is not fulfilled, the auxiliary quasi-polynomial takes the form of
𝑃 𝑎𝑢𝑥
𝓁 (𝑤) = 𝑤𝑛, which exclusively yields trivial solutions.

3.3 Auxiliary quasi-polynomial and its properties
In the following, let us study the solutions of the auxiliary quasi-polynomial 𝑓𝓁 given by (16), with respect to the real parameter
𝛼. According to the results reported in23, for 𝓁 ≡ 1, there is always a real root located at ℂ+ (ℂ−) if and only if 𝛼 < −1 (𝛼 > −1).
Moreover, in the improperly-posed case, there are no other unstable roots. This property translated into a properly-posed interval
defined by 𝑘𝑑𝑝𝑛−1 > −1. Under such an observation, as a first hypothesis, one may assume that such a property remains valid
for any given number of delays. Surprisingly, such a property does not hold for any number of delays, and thus it is necessary
to find a properly-posed interval given the value of 𝓁. In this regard , we have the following result:

Proposition 2. Let 𝓁 ∈ ℕ, and consider the quasi-polynomial 𝑓𝓁(𝑤; 𝛼) given by (16). Then, the following properties hold:

(𝑖) For a given 𝛼0 ∈ ℝ∗ ⧵ {−1} the set 𝓁 ∶= {𝑟 ∈ ℝ ∶ 𝑓𝓁(𝑟; 𝛼0) = 0} has always card
{

𝓁

}

≤ 2.

¶Observe that 𝑝𝑛−1 correspond to the leading coefficient of 𝑃 (𝑠) in (2) when 𝑚 = 𝑛 − 1.
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(𝑖𝑖) For 𝛼0 ∶= −1 the set 𝓁 has always card
{

𝓁

}

= 𝓁 + 1.

(𝑖𝑖𝑖) There exists a sufficiently small value 0 < |𝛼|≪ 1, such that all roots of 𝑓𝓁(𝑤; 𝛼) ∶= 𝑓𝓁(𝑤; 𝛼)∕𝑤 lie in ℂ−.

(𝑖𝑣) Let 𝛼 = 𝛼∗ ∈ ℝ∗ ⧵ {−1} be a critical value. Then, the non-zero characteristic roots of the quasi-polynomial 𝑓𝓁 located
on the imaginary axis are simple.

Proof. x

(𝑖) Let 𝛼0 ∈ ℝ∗ ⧵{−1}. Under such an assumption it is clear to see that 0 ∉ 𝓁 . Now, to understand the behavior of 𝑓𝓁 , let us
analyze its derivative:

𝑓 ′
𝓁(𝑟; 𝛼0) ∶=

𝑑
𝑑𝑤

𝑓𝓁(𝑤; 𝛼0)
|

|

|

|𝑤=𝑟
= 1 + 𝛼0(1 − 𝜌)

𝓁
∑

𝑘=1
𝜌𝑘−1 ≡ 1 + 𝛼0

(

𝓁
∑

𝑘=1
𝜌𝑘−1 −

𝓁
∑

𝑘=1
𝜌𝑘
)

,

⇒ 𝑓 ′
𝓁(𝑟; 𝛼0) = 1 + 𝛼0(1 − 𝜌𝓁), (17)

where 𝜌 ∶= 1−𝑒−𝑟. From (17), it is evident that 𝑓 ′
𝓁 can have a maximum of two solutions in ℝ, implying that card

{

𝓁

}

≤
2, thereby proving (𝑖).

(𝑖𝑖) For 𝛼0 = −1, it is evident that 𝑤 = 0 is a root of 𝑓𝓁 for any 𝓁 ∈ ℕ. In addition, we have that

𝑓 ′
𝓁(𝑤; 𝛼0) = 1 + 𝛼0𝑒−𝑤

𝓁
∑

𝑘=0
(1 − 𝑒−𝑤) . (18)

Hence, by considering the change of variable 𝑧 ∶= 1 − 𝑒−𝑤, it results that (18) can be rewritten as

𝑓 ′
𝓁(𝑧; 𝛼0) = 1 + 𝛼0 (1 − 𝑧)

𝓁
∑

𝑘=0
𝑧𝑘 ≡

(

1 + 𝛼0
)

− 𝛼0𝑧𝓁 . (19)

Now, the change of variable suggests that 𝑤 = 0 is a root of 𝑓 ′
𝓁 if and only if 𝑧 = 0 is a root of (19). Therefore, the proof

of (ii) is complete by noticing that for 𝛼0 = −1, 𝑧 = 0 is a root of 𝑓 ′
𝓁 of multiplicity 𝓁.

(𝑖𝑖𝑖) First, from the structure of 𝑓𝓁 , it can be noted that for any value of 𝛼, 𝑓𝓁 has an invariant root at the origin of the complex
plane; with such an observation in mind, let us define 𝜑 ∶ ℂ → ℂ by 𝜑(𝑤) ∶= 1−𝑒−𝑤

𝑤
, which clearly is an analytic and

bounded function in ℂ+, furthermore, it has the following limits:

lim
𝑤→0

𝜑(𝑤) = 1 ∧ lim
|𝑤|→∞

𝜑(𝑤) = 0.

In fact, to see that 𝜑 is bounded in ℂ+, let us first assume that |𝑤| > 1. Under such a consideration, it is easy to observe
that,

|

|

|

|

1 − 𝑒−𝑤
𝑤

|

|

|

|

≤ 1 + |𝑒−𝑤|
|𝑤|

≤ 𝑒−ℜ{𝑤} + 1,

which is clearly bounded. For 𝑤 ∈  ∶= {𝑤 ∈ ℂ ∶ |𝑤| ≤ 1}, the boundedness of 𝜑 follows straightforwardly from its
analiticity and the compactness of . Next, from its definition we see that 𝑓𝓁 is analytic in ℂ, moreover, it can be expressed
as:

𝑓𝓁(𝑤; 𝛼) = 1 + 𝛼𝜑(𝑤)
𝓁
∑

𝑘=1

(1 − 𝑒−𝑤)𝑘−1

𝑘
.

Defining 𝑀 ∶=
∑𝓁
𝑘=1 2

𝑘−1∕𝑘 yields the inequality:
|

|

|

|

|

|

𝓁
∑

𝑘=1

(1 − 𝑒−𝑤)𝑘−1

𝑘

|

|

|

|

|

|

≤𝑀.

Hence, by choosing 𝛼0 such that 𝑀 |

|

𝛼0|| < 1, yields

|

|

𝛼0|| |𝜑(𝑤)|
|

|

|

|

|

|

𝓁
∑

𝑘=1

(1 − 𝑒−𝑤)𝑘−1

𝑘

|

|

|

|

|

|

< 1,

which allows concluding that 𝑓𝓁(𝑤; 𝛼) ≠ 0, ∀𝑤 ∈ ℂ+ and all |𝛼| ≤ |

|

𝛼0||, proving the property.
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(𝑖𝑣) The proof follows straightforwardly, by noticing that the equations

𝑓𝓁 (𝒊𝜔; 𝛼) = 0 ∧ 𝑑
𝑑𝑠
𝑓𝓁 (𝑠; 𝛼)

|

|

|

|𝑠=𝒊𝜔
= 0,

are incompatible for all 𝜔 ∈ ℝ and all 𝛼 ∈ ℝ∗.

Remark 6. Observe that, as long as 𝛼0 ∈ ℝ∗, the real root of 𝑓 ′
𝓁(𝑟; 𝛼0) (if any) will be given by:

𝑟 = log

⎡

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎝

1 + 𝓁

√

1 + 𝛼0
𝛼0

⎞

⎟

⎟

⎠

−1
⎤

⎥

⎥

⎥

⎦

.

Remark 7. Observe that𝑤 = 0 is an invariant root of 𝑓𝓁(𝑤; 𝛼) for any values of 𝛼 and 𝓁. Thus, such a solution is not of interest.

Next, we are interested in computing the values of 𝛼 for which the auxiliary quasi-polynomial (16), that is, the one that
characterizes the improperly-posed case, has zeros in the right-half plane. To such an end, since the roots of (16) are continuous
with respect to their parameters15, we must detect all critical pairs (𝛼∗, 𝜔∗). Hence, in order to give the exact computation of
such values, let us introduce the sets 𝒵𝓁 and 𝒲𝓁 defined by:

𝒵𝓁 ∶=
{

𝜁∗ ∈ [−1, 1] ∶ 𝜑𝓁 (𝜁∗) = 0
}

, (20)

and
𝒲𝓁 ∶=

{

𝜔 ∈ ℝ∗ ∶ 𝑧 = 𝑒𝒊𝜔 where 𝑧 satisfy 𝑧2 − 2𝜁∗𝑧 + 1 = 0, and 𝜁∗ ∈ 𝒵𝓁

}

, (21)
where 𝜑𝓁 is a polynomial in 𝜁 , with deg

(

𝜑𝓁

)

= 𝓁 defined as

𝜑𝓁 (𝜁 ) ∶=
𝓁
∑

𝑘=1

𝑘
∑

𝑗=0

(−1)𝑗

𝑘

(

𝑘
𝑗

)

𝑇𝑗 (𝜁 ) . (22)

Bearing in mind the above definitions, the following result allows us to characterize the complete set of critical pairs (𝛼∗, 𝜔∗).

Proposition 3. Let 𝓁 ∈ ℕ, and consider the quasi-polynomial 𝑓𝓁(𝑤; 𝛼) given by (16). Then, (𝛼∗, 𝜔∗) ∈ ℝ∗ × ℝ∗ is a critical
pair of 𝑓𝓁(𝑤; 𝛼) if 𝜔∗ ∈ 𝒲𝓁 and 𝛼∗ is given by:

𝛼∗ ∶= 𝜔∗

sin (𝜔∗)𝜓𝓁 (𝜁∗)
, (23)

where 𝜁∗ ∈ 𝒵𝓁 , and 𝜓𝓁 is a polynomial in 𝜁 with deg (𝜓) = 𝓁 − 1 defined by:

𝜓𝓁 (𝜁 ) ∶=
𝓁
∑

𝑘=1

𝑘
∑

𝑗=1

(−1)𝑗

𝑘

(

𝑘
𝑗

)

𝑈𝑗−1 (𝜁 ) .

Proof. Let 𝓁 ∈ ℕ and 𝑤 = 𝒊𝜔 with 𝜔 ∈ ℝ. Then, from the definition of 𝑓𝓁 , it is clear to see that the following equations hold:

𝑓𝓁 (𝒊𝜔; 𝛼) = 0 ⇔ 𝑓𝓁 (−𝒊𝜔; 𝛼) = 0. (24)

Thus, according to (24), if (𝒊𝜔) is a critical root, the following equations must be satisfied:

𝑓𝓁 (𝒊𝜔; 𝛼) + 𝑓𝓁 (−𝒊𝜔; 𝛼) = 0, (25)
𝑓𝓁 (𝒊𝜔; 𝛼) − 𝑓𝓁 (−𝒊𝜔; 𝛼) = 0. (26)

Consequently, from (25) we have:

𝑓𝓁 (𝒊𝜔; 𝛼) + 𝑓𝓁 (−𝒊𝜔; 𝛼) =

(

𝒊𝜔 + 𝛼
𝓁
∑

𝑘=1

(1 − 𝑒−𝒊𝜔)𝑘

𝑘

)

+

(

−𝒊𝜔 + 𝛼
𝓁
∑

𝑘=1

(1 − 𝑒𝒊𝜔)𝑘

𝑘

)

,

= 𝛼
𝓁
∑

𝑘=1

(
(

1 − 𝑒−𝒊𝜔
)𝑘 +

(

1 − 𝑒𝒊𝜔
)𝑘

𝑘

)

. (27)
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By considering (27), it follows that (𝒊𝜔) is a critical root of 𝑓𝓁 if the following equation holds:
𝓁
∑

𝑘=1

(

1 − 𝑒−𝒊𝜔
)𝑘 +

(

1 − 𝑒𝒊𝜔
)𝑘

𝑘
= 0. (28)

Now, by introducing the change of variable 𝑧 ∶= 𝑒−𝒊𝑤, it is straightforward to see that (28) can be rewritten as:
𝓁
∑

𝑘=1

(1 − 𝑧)𝑘 +
(

1 − 𝑧−1
)𝑘

𝑘
= 0. (29)

It is clear to see that (29) only includes constant terms or elements of the form 𝑧𝑗 + 𝑧−𝑗 , for 𝑗 = 1,… ,𝓁. Moreover, since
|𝑧| = 1, such observation suggests writing (29) in terms of Chebyshev polynomials of the first kind, that is, by considering
𝜁 ∶= 1

2

(

𝑧 + 𝑧−1
)

, equation (28) can be rewritten as:
𝓁
∑

𝑘=1

𝑘
∑

𝑗=0

(−1)𝑗

𝑘

(

𝑘
𝑗

)

𝑇𝑗 (𝜁 ) = 0. (30)

Since the solutions of (30) are given by the set 𝒵𝓁 , it follows that all critical roots ±𝒊𝜔 are given by the elements of 𝒲𝓁 , as
stated in Proposition 3. Next, to compute the critical parameters 𝛼∗, let us take 𝜔∗ ∈ 𝒲𝓁 , its associate value 𝑧∗, and consider
(26), which yields to:

𝑓𝓁 (𝒊𝜔∗; 𝛼) − 𝑓𝓁 (−𝒊𝜔∗; 𝛼) =

(

𝒊𝜔∗ + 𝛼
𝓁
∑

𝑘=1

(1 − 𝑒−𝒊𝜔∗)𝑘

𝑘

)

−

(

−𝒊𝜔∗ + 𝛼
𝓁
∑

𝑘=1

(1 − 𝑒𝒊𝜔∗)𝑘

𝑘

)

,

= 𝒊2𝜔∗ + 𝛼
𝓁
∑

𝑘=1

⎛

⎜

⎜

⎜

⎝

(1 − 𝑧∗)𝑘 −
(

1 − 1
𝑧∗

)𝑘

𝑘

⎞

⎟

⎟

⎟

⎠

,

= 𝒊2𝜔∗ + 𝛼
(

𝑧∗ − (𝑧∗)−1
)

𝓁
∑

𝑘=1

𝑘
∑

𝑗=1

(−1)𝑗

𝑘

(

𝑘
𝑗

)

𝑈𝑗−1 (𝜁∗) . (31)

Finally, by recognizing that 𝑧∗ − (𝑧∗)−1 = 𝒊2 sin (𝜔∗) and referring to the definition of Ψ𝓁 , from (31), it follows that 𝛼∗ is given
by (23), which allows us to conclude the proof.

Corollary 2. Let 𝓁 ∈ ℕ, and consider the quasi-polynomial 𝑓𝓁(𝑤; 𝛼) given by (16). Then, all the roots of 𝑓𝓁(𝑤; 𝛼) will lie in
ℂ− if 𝛼 ∈

(

𝛼−, 𝛼+
)

⧵ {0}, where 𝛼− and 𝛼+ are defined as

𝛼+∶= min
𝜁∗∈𝒵𝓁 , 𝜔∗∈𝒲𝓁

{

𝛼 ∈ ℝ+ ∶ 𝛼 = 𝜔∗

sin (𝜔∗)𝜓𝓁 (𝜁∗)

}

and 𝛼−∶= max
𝜁∗∈𝒵𝓁 , 𝜔∗∈𝒲𝓁

{

𝛼 ∈ ℝ− ∶ 𝛼 = 𝜔∗

sin (𝜔∗)𝜓𝓁 (𝜁∗)

}

. (32)

Proof. The proof follows straightforwardly from Proposition 2-(iii) and Proposition 3.

Example 3.1. In order to illustrate the benefits of Proposition 3 to compute the critical parameters of 𝑓𝓁 , let us consider the
cases for which 𝓁 = 3, 4, 5. In this regard, Table 1 summarizes a straightforward application of the previous results.

Now, to determine the stable interval , let us consider the case for which 𝓁 = 3. Hence, by considering Corollary 2, it results

that  =
(

𝛼−, 𝛼+
)

=

(

−
2 tan−1

(
√

15
)

√

15
,

4𝜋−2 tan−1
(
√

15
)

√

15

)

. To illustrate the behavior of the solutions of 𝑓𝓁 for 𝓁 = 3, Fig.4 depicts

the evolution of the rightmost roots when 𝛼 ∈ (−1.1, 3).

Remark 8. Figure 4 confirms, as stated in Proposition 2-(ii), that for 𝛼 = −1, 𝑤 = 0 is a root with multiplicity 4 (recall that
there is an invariant root at 𝑤 = 0).

Computing more examples suggests that, as shown in Figure 5a, the larger the number of delays, the smaller the interval
(𝛼−, 𝛼+) for which the system is properly-posed. It can also observe the changes in the properly-posed region on the (𝑘𝑑 , 𝑝𝑛−1)
space by setting 𝛼 = 𝑘𝑑𝑝𝑛−1 and finding the region corresponding to 𝛼− < 𝑘𝑑𝑝𝑛−1 < 𝛼+ (see Fig.5b).
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Figure 4 Evolution of the rightmost roots of 𝑓𝓁 for increasing value of 𝛼, where 𝛼 ∈ (−1.1, 3).

Table 1 Relations between 𝑓𝓁 , 𝜑𝓁 and 𝜓𝓁 for different values of 𝓁.

Functions Solutions

𝓁 𝑓𝓁 𝜑𝓁 𝜁∗ 𝜔∗† 𝛼∗

3 𝑤 + 𝛼
3
∑

𝑘=1

(1−𝑒−𝑤)𝑘

𝑘
−4𝜁3 + 9𝜁2 − 6𝜁 + 1 1

4
± tan−1

(
√

15
)

+ 2𝑚𝜋
∓2

(

2𝑚𝜋 ± tan−1
(
√

15
))

√

15

4 𝑤 + 𝛼
4
∑

𝑘=1

(1−𝑒−𝑤)𝑘

𝑘
6𝜁4 − 16𝜁3 + 12𝜁2 − 2 − 1

3
(2𝑚 + 1)𝜋 ± tan−1

(

2
√

2
) ∓3

(

(2𝑚+1)𝜋±tan−1
(

2
√

2
))

10
√

2

5 𝑤 + 𝛼
5
∑

𝑘=1

(1−𝑒−𝑤)𝑘

𝑘
− 48

5
𝜁5 + 30𝜁4 − 28𝜁3 + 12𝜁 − 22

5

3+
√

1065
48

2𝑚𝜋 ± tan−1
(

8
√

𝛾1

)

∓3
√

𝛿1

(

2𝑚𝜋±tan−1
(

8
√

𝛾1

))

152

3−
√

1065
48

(2𝑚 + 1)𝜋 ± tan−1
(

8
√

𝛾2

)

∓3
√

𝛿2

(

(2𝑚+1)𝜋±tan−1
(

8
√

𝛾2

))

152

Notes:
†𝑚 ∈ ℤ; 𝛾1 ∶= 59 + 3

√

213
5

; 𝛾2 ∶= 59 − 3
√

213
5

; 𝛿1 ∶= 2555 + 387
√

213
5

; 𝛿2 ∶= 2555 − 387
√

213
5

.

3.4 Characterizing properly/improperly-posed closed-loop systems
The previous example has shown a crucial property: crossings from stability towards instability or vice versa may occur. There-
fore, to find the properly-posed interval it will be required the explicit computation of the crossing direction at the given critical
value 𝛼∗.

Let 𝒲𝓁 denote the set of crossing frequencies given by (21). It is worth noting that when 𝓁 = 1, it implies that card
{

𝒲𝓁

}

= 0.
Such an observation stems from the fact that, for 𝓁 ∈ {1, 2}, any potential crossings take place exclusively at the origin.
This distinctive characteristic has been extensively explored in previous works such as23 and25 to characterize regions of
properly/improperly-posedness. Bearing in mind the previous observations, in the following we wish to express the crossing
direction of the solution 𝑠∗ = 𝒊𝜔∗ as a function of 𝛼, seen as a parameter. More precisely, in the case of simple roots on the
imaginary axis, we compute explicitly the sign of the real part of the derivative at the point of interest. Simple computations
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(a) Interval
(

𝛼− , 𝛼+
)

of properly-posedness for different values of 𝓁. (b) Properly-posed region for different values of 𝓁 with 𝛼 = 𝑘𝑑 𝑝𝑛−1

Figure 5 Effect of increasing the number of delays on stability.

lead to the following formula:

sign
(

ℜ
[𝑑𝑤
𝑑𝛼

]−1

𝑤=𝒊𝜔∗,𝛼=𝛼∗

)

= sign

(

ℜ

[

𝛼
𝑤(𝛼)

+ 𝛼2 𝑒
−𝑤(𝛼)

𝑤(𝛼)

𝓁
∑

𝑘=1
(1 − 𝑒−𝑤(𝛼))𝑘−1

]

𝑤=𝒊𝜔∗,𝛼=𝛼∗

)

.

Further computations show that the sign is invariant with respect to the parameter 𝛼, and it depends on the crossing frequency
𝜔∗ and the number of delays 𝓁. More precisely, one gets:

sign
(

ℜ
[𝑑𝑤
𝑑𝛼

]−1

𝑤=𝒊𝜔∗,𝛼=𝛼∗

)

= sign

(

−ℜ

[

𝓁
∑

𝑘=1
𝒊𝑘2𝑘−1𝑒−𝒊𝜔∗(𝑘+1)∕2[sin(𝜔∗∕2)]𝑘−1

])

. (33)

Proposition 4. Let 𝓁 ∈ ℕ, and consider the auxiliary quasi-polynomial 𝑓𝓁(⋅; 𝛼) given by (16). Let 𝛼 = 𝛼∗ ∈ ℝ∗ ⧵ {−1} be a
critical parameter for the corresponding critical value 𝜔∗. Then, for 𝛼 > 𝛼∗ sufficiently close to 𝛼∗, the root 𝑤 (𝛼) will crossing
towards stability (instability) if

ℜ
[𝑑𝑤
𝑑𝛼

]−1

𝑤=𝒊𝜔∗,𝛼=𝛼∗
< 0 (> 0).

Proof. From Proposition 2-(iv) it is known that any crossing point occurring on 𝒊ℝ∗
+ is a simple root, which implies that the

Implicit Function Theorem32 is valid and it is easy to observe that it suffices to examine in which direction the real part of the
root is moving.

Inspired by33,34, we consider the following stability indicator function  ∶ (−1,+∞)∗ ×ℝ∗ → {0,±1}:

(𝛼∗) ∶= sign
(

ℜ
[𝑑𝑤
𝑑𝛼

]−1

𝑤=𝒊𝜔∗,𝛼=𝛼∗

)

. (34)

Proposition 5. Let 𝓁, 𝑁 ∈ ℕ, and consider the auxiliary quasi-polynomial 𝑓𝓁(⋅; 𝛼) given by (16). For a given (𝛼∗,𝓁) ∈
(−1,+∞)∗ × ℕ, let 𝛼ℎ, ℎ ∈ {1,… , 𝑁} be the solutions of Proposition 3, such that the following order relations hold:

−1 < 𝛼1 < 𝛼2 <… < 𝛼𝑁−1 < 𝛼
∗ ≤ 𝛼𝑁 .

Then, the number of roots located in ℂ+ is given by:

𝑛(𝓁,𝛼0) = (1 + sign (𝛼∗))
𝑁−1
∑

𝑖=𝑗+1
(𝛼𝑖) − (1 − sign (𝛼∗))

𝑗
∑

𝑖=𝑁
(𝛼𝑖), (35)

where 𝑗 ∈ ℕ is chosen by considering that it satisfies 𝛼𝑗 = 𝛼−, with 𝛼− given by Corollary 2.

Proof. From Proposition 2 (iii) we know that, regardless of the number of delays, there exists some interval 𝛼 ∈ (𝛼−, 𝛼+)∗,
such that 𝑓𝓁∕𝑤 is stable, in other words, there are no roots of 𝑓𝓁 in ℂ+. By continuity with respect to 𝛼 we know that roots can
only cross from the left-half plane to the right-half plane by crossing the imaginary axis. Furthermore, from Proposition 2-(iv)
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Figure 6 𝑓3(𝑤; 𝛼 = 5) roots.

whenever a root is located over the imaginary axis, that root is simple, which means that every crossing point corresponds to only
a pair of complex-conjugate roots. From the same result, we also know that any real crossing may only occur for 𝛼∗ ∈ {0,−1}.
Since 𝛼∗ > −1, the above observations allow us to conclude the proof.

Example 3.2. To illustrate the mechanism provided by Proposition 5 to count the number of unstable roots for a given 𝛼 =
𝛼0 ∈ ℝ∗, let us consider 𝓁 = 3 and 𝛼0 = 5. From Proposition 5, we shall consider 𝛼𝑖 ∈ {−0.68… , 2.56… , 5.80…}. Table
2 presents the crossing directions as well as the frequencies where they occur for each 𝛼 of interest. Figure 6 depicts the two
unstable roots counted for 𝛼 = 5, demonstrating the efficiency of the methodology.

Table 2 Counting of unstable roots for a given value of 𝛼.

Number of unstable roots of 𝑓3(𝑤; 𝛼)||𝛼=5
𝑖 𝛼𝑖 𝜔 (𝛼𝑖, 𝜔)

1 −
4 tan−1

(

√

3
5

)

√

15
2 tan−1

(

√

3
5

)

−1

2
2
(

2𝜋−2 tan−1
(

√

3
5

))

√

15
2𝜋 − 2 tan−1

(

√

3
5

)

1

3
2
(

4𝜋−2 tan−1
(

√

3
5

))

√

15
4𝜋 − 2 tan−1

(

√

3
5

)

1

𝑛(3,5) = 2

With the notations and results above, we state now our main result:

Theorem 1. Given a system Σ with corresponding transfer function 𝐻𝑦𝑢 given by (2) subjected to a PD controller with the
derivative action approximated via a delay-difference approximation and frequency-domain representation (8), the following
properties hold:

(i) if the relative degree is greater than one (𝑛 > 𝑚+1), then the closed-loop system is always properly-posed independently
of the number of delays in the delay-difference approximation scheme;
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(ii) if the relative degree of the system equals one (𝑛 ≡ 𝑚 + 1), then there exists an open interval (𝛾1, 𝛾2) =∶ 𝐼𝓁 ⊂ ℝ, such
that the closed-loop system is properly-posed if the gain “𝑘𝑑” satisfies the condition 𝛾1 < 𝑘𝑑𝑝𝑛−1 < 𝛾2. Furthermore, as
the number of delays 𝓁 increases, the diameter of the interval 𝐼𝓁 decreases.

Proof. (i) can be directly verified from Corollary 1 and the Newton’s diagram method. For (ii), in order for the system to be
properly-posed, all of the nontrivial solutions of the auxiliary quasi-polynomial 𝑃 𝑎𝑢𝑥

𝓁 (𝑤), given by (15), must be in ℂ−. Since
the trivial solutions are not of interest, consider the quasi-polynomial 𝑓𝓁(𝑤; 𝛼) given by (16). Thanks to Proposition 2 (ii) and
Proposition 3 we can explicitly compute at least one interval of the parameter 𝛼 for which condition (ii) holds.

Remark 9. The case corresponding to one-delay approximation is equivalent to the PMD controller presented in7, which as it can
be intuitively derived from this result, can also be improperly-posed. Such an aspect was not considered in the PMD controller
study.

Remark 10. A system subjected to a PD controller (8) with 𝓁 ∈ {1, 2} is properly-posed if and only if 𝑘𝑑𝑝𝑛−1 > −1. In other
words, for the one and two delay cases the interval 𝐼1 = 𝐼2 = (−1,∞).

4 ILLUSTRATIVE EXAMPLES

All the numerical solutions of quasi-polynomials obtained in this section were computed using the Quasi-Polynomial Mapping
Based Rootfinder (QPmR). Readers may refer to35 for further details on such an algorithm.

4.1 Destabilizing effect of the time-delay approximation
Examples 4.1 and 4.2 show how the derivative action discretization can lead to instability in closed-loop for "small" delay values.

Example 4.1. Consider as a first example the system described by the transfer function:

𝐻𝑦𝑢(𝑠) =
𝑠

5 − 𝑠2
. (36)

Considering a classical PD controller with gains (𝑘𝑝, 𝑘𝑑) = (1.5, 1) the system is stable in closed-loop and has roots at 𝑠 = −1±3𝒊.
However, it has relative degree one, and 𝑘𝑑𝑝𝑛−1 = −1.5 < −1; thus, the closed-loop system is improperly-posed for such gains.
Considering an approximation of the derivative action via three delays, the auxiliary quasi-polynomial reads:

𝑓3(𝑤; −1.5) = 𝑤 − 1.5
(

11 − 18𝑒−𝑤 + 9𝑒−2𝑤 − 2𝑒−3𝑤
6

)

,

which has a solution at 𝑤 = 2.335, which according to Corollary 1 leads to a singular solution of the characteristic equation
with the following structure:

𝑠∗(𝜏) = 2.335
𝜏

+ (1).
If we consider 𝜏 = 0.1 in the discretization process, we should expect a solution located around 𝑠 ≈ 23.35. Indeed, computing
the solutions of the characteristic equation, we find a root located at 𝑠 = 25.23.

Example 4.2. As a second example, consider a system described by the transfer function:

𝐻𝑦𝑢(𝑠) =
𝛽(𝑠2 + 1)

𝑠3 − 2𝑠2 + 𝑠 + 1
, (37)

where 𝛽 = −1. It is easy to observe that the system can be stabilized by a PD controller with (𝑘𝑝, 𝑘𝑑) = (2, 3); nonetheless, similar
to the previous example, the system’s realtive degree is one, and 𝑘𝑑𝑝𝑛−1 = −3 < −1. Now, if we consider an approximation
with two delays, we obtain the following auxiliary quasi-polynomial

𝑓2(𝑤; −3) = 𝑤 − 3
(

3 − 4𝑒−𝑤 + 𝑒−2𝑤
2

)

,

which has a solution at𝑤 = 4.428. As in the previous example, such a solution indicates that the characteristic equation presents
a solution of the form:

𝑠∗(𝜏) = 4.428
𝜏

+ (1).
Taking, for example, 𝜏 = 0.2 and computing the solutions of the characteristic equation, we find that 𝑠 = 26.34 is a solution. As
we might expect, this solution is close to 𝑠 ≈ 22.14.
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4.2 Stabilizing effect of the time-delay approximation
The next example shows the benefits of using a delay-difference approximation of the PD-controller and the advantages that
may be acquired by increasing the number of delays considered in the approximation.

Example 4.3. Consider a system described by

𝐻𝑦𝑢(𝑠) =
1

𝑠4 + 𝑠2 + 4𝑠 − 31
. (38)

The open-loop system is unstable, having roots located at 𝑠 = {−2.43, 2.07, 0.179,±2, 48𝒊}. Observe that, unlike the previous
examples, the system’s relative degree is greater than one, therefore the closed-loop system is properly-posed when approximat-
ing the derivative by a delay-difference operator including 𝓁 delays. In the ideal PD-controller, with gains (𝑘𝑝, 𝑘𝑑) = (31.4,−3.4)
the closed-loop system has the following unstable roots:

𝑠 = 0.5 ± 1.02𝒊.

Consider now the one-delay approximation of the derivative action, leading to the following closed-loop characteristic function:

Δ1(𝑠; 𝜏) ∶= 𝑠4 + 𝑠2 + 4𝑠 − 31 + 𝑘𝑝 + 𝑘𝑑
1 − 𝑒−𝜏𝑠

𝜏
. (39)

We are looking for a delay 𝜏 such that the characteristic function (39) has all of its solutions located in the left-hand plane of
ℂ. Figure 7a depicts the behavior of some characteristic roots of the closed-loop system as we increase the delay 𝜏 from 0.01 to
0.85. It can be observed that the system does not stabilize for any value of the delay parameter.

Alternatively, consider the proposed PID-delayed controller proposed in10, which is defined as 𝐶𝑃𝐼𝐷𝑑(𝑠) = 𝐶𝑑(𝑠) + 𝐶𝑖(𝑠),
where

𝐶𝑑(𝑠) = 𝐾𝑝 − 𝑘𝑑 + 𝑘𝑑(1 − 𝑒−𝜏1𝑠) ≈ 𝑘𝑝 − 𝑘𝑑 + 𝑘𝑑𝜏1
𝑠

1 + 1
2
𝜏1𝑠

,

which is a PMD-type controller where the delay is approximated using the Padé approximation, and

𝐶𝑖(𝑠) =
𝑘𝑖(𝑎𝜏2𝑠 + 1)

𝑎𝜏2𝑠 + 1 − 𝑒−𝑠𝜏2
≈

𝑘𝑖(1 +
𝜏2
2
𝑠)(1 + 𝑎𝜏2𝑠)

(𝑎 + 1)𝜏2(1 +
𝑎𝜏2

2(𝑎+1)
𝑠)𝑠

,

which is a delay-based approximation of an integral action for which the delay has been approximated using the Padé approxima-
tion. Considering the controller 𝐶𝑃𝐼𝐷𝑑(𝑠) produces a configuration with at least five parameters to tune, which aims to emulate
the behavior of a PID controller, which is out of the scope of this work. Nonetheless, the controller 𝐶𝑑(𝑠) intends to produce a
similar behavior in terms of the derivative action than the delay-difference approximation discussed in the paper, without dealing
with an infinite-dimensional system. If we consider the system subjected to 𝐶𝑑(𝑠) the characteristic function rewrites as follows:

Δ𝑃𝐼𝐷𝑑(𝑠; 𝜏1) ∶=
𝜏1
2
𝑠5 + 𝑠4 +

𝜏1
2
𝑠3 + (1 + 2𝜏1)𝑠2 + (4 −

31𝜏1
2

−
𝑘𝑑𝜏1
2

+
𝑘𝑝𝜏1
2

),

where 𝜏1 > 0. Direct computation of classic methods such as the Routh-Hurwitz criteria shows that the system will remain
unstable for any (𝑘𝑝, 𝑘𝑑 , 𝜏1) ∈ ℝ2 ×ℝ∗

+.
Alternatively, one may choose to approximate the derivative action using two time-delays, obtaining the following character-

istic function:
Δ2(𝑠; 𝜏) ∶= 𝑠4 + 𝑠2 + 4𝑠 − 31 + 𝑘𝑝 + 𝑘𝑑

3 − 4𝑒−𝜏𝑠 + 𝑒−2𝜏𝑠
2𝜏

. (40)
Figure 7b shows the evolution of the closed-loop system characteristic roots as the value of 𝜏 changes. Contrary to what we
observed in the one-delay case and when using a Padé approximation, there exist a certain delay 𝜏 for which a stability shift
occurs.

4.3 Beneficial effect of the approximation in the properly-posed case
The following examples aim to demonstrate that, under specific conditions, in a properly-posed system, the stability region may
"expand" when considering the time-delay approximation of the derivative action.

Example 4.4. Consider the system represented by the following transfer function:

𝐻𝑦𝑢(𝑠) =
1

𝑠3 + 4𝑠2 + 4𝑠 + 1
. (41)
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(a) Behavior of the closed-loop characteristic equation (39) as the value of 𝜏 changes in (0, 0.85].
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(b) Behavior of the closed-loop characteristic equation (40) as the value of 𝜏 changes in (0, 0.85].

Figure 7 Comparison of the behavior of closed-loop characteristic roots depending on the number of delays taken into account
in the approximation. The crossing, indicated by a star, shows that there is a certain value of the delay 𝜏 for which the system
stabilizes when considering the two-delay approximation.

Figure 8 Stability region of system (41) in closed-loop with classical PD controller and a one-delay approximation version.

The system’s relative degree is greater than one, indicating that the system is properly-posed. Furthermore, as per the Routh-
Hurwitz criterion, to maintain stability in a closed loop with a classical PD controller, it is sufficient to ensure: 𝑘𝑝 > −1 and
𝑘𝑑 > (𝑘𝑝 − 3)∕4. Subsequently, by replacing the derivative action with its corresponding one-delay approximation, the stability
boundary of the system is illustrated in Figure 8. It is observed that there exists a range within which a lower value of the
derivative gain 𝑘𝑑 still maintains stability.

4.4 Robustness with Respect to the Delay Parameter
In this final example, we aim to demonstrate the effectiveness of our methodology in computing the delay margin for a properly-
posed closed-loop system.
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Example 4.5. Consider a system with transfer function representation given by:

𝐻𝑦𝑢(𝑠) =
𝑤2
𝑛

𝑠2 + 2𝜁𝑤𝑛𝑠 +𝑤2
𝑛
, (42)

where 𝑤𝑛 is the natural frequency of the system, and 𝜁 is its damping ratio. In closed-loop with a PD controller the closed-loop
characteristic function reads:

Δ(𝑠) = 𝑠2 + 2𝜁𝑤𝑛𝑠 +𝑤2
𝑛 +𝑤

2
𝑛(𝑘𝑝 + 𝑘𝑑𝑠). (43)

To warranty the closed-loop stability of the system one has to chose 𝑘𝑝 > −1 and 𝑘𝑑 > −2𝜁∕𝑤𝑛. Consider now that 𝑤𝑛 =
√

2
and 𝜁 = 3∕(2

√

2). Under such a configuration, the control gains (𝑘𝑝, 𝑘𝑑) = (3, 2) place the closed-loop characteristic roots at
𝑠 = 1

2
(−7±

√

17). Since the relative degree of the system is greater than one, making it properly-posed for small delays, we can
approximate the derivative action in the controller scheme. As previously mentioned, in the properly-case scenario there might
still exist a delay margin 𝜏max, such that the closed-loop system loss its stability for any 𝜏 ≥ 𝜏max. In this vein, following a similar
methodology to the one proposed in23, we can compute the so-called margin of the delay parameter when considering the system
described by the transfer function (42) in closed-loop with the proposed PD controller considering different approximations of
the derivative action, as shown in Table 3.

Table 3 Delay margin for different approximations of the derivative action.

Delay margin

𝓁 𝜏(𝜔) 𝜏max 𝜔

3 480
−11𝜔2+

√

841𝜔4−6976𝜔2+53824+88
≈ 0.49 ≈ 7.42

5 137𝜔2+
√

786769𝜔4−19500304𝜔2+50353216−1096
15(𝜔4−25𝜔2+64) ≈ 0.15 ≈ 21.21

7 1089𝜔2+
√

332661121𝜔4−2339301136𝜔2+21290311744−8712
105(𝜔4−7𝜔2+64) ≈ 0.05 ≈ 58.54

9 7129𝜔2+
√

110781799921𝜔4−775930003216𝜔2+7090035194944−57032
630(𝜔4−7𝜔2+64) ≈ 0.01 ≈ 170

These results can be further validated through numerical computation of the system’s roots with respect to 𝜏. Indeed, Figure
9 depicts the stability loss for the cases of the three- and five-delay approximations. It is worth noticing that, as the value of 𝓁
increases, the delay margin 𝜏max decreases, suggesting that utilizing a larger number of delays makes the system more sensitive
to small changes on the parameter 𝜏.

5 EXPERIMENTAL EXAMPLE

In this section, we present experimental results using the QUBE-Servo 2 servo motor. The system can be described by the
following transfer function that relates the output angular position (Θ[𝑟𝑎𝑑]) to the input voltage (𝑉 [𝑉 ]):

𝐻𝑦𝑢(𝑠) =
Θ(𝑠)
𝑉 (𝑠)

= 𝑘
𝑠(𝑇 𝑠 + 1)

, (44)

Here, 𝑘 ∈ ℝ∗
+ represents the open-loop gain of the plant, and 𝑇 ∈ ℝ∗

+ its time constant. Notably, this system has a relative
degree of two, making issues related to improperly-posedness inconsequential. Furthermore, since this plant corresponds to an
"integral" plant, opting for a PD control scheme is both intuitive and ideal.

The plant parameters, specifically 𝑘 = 473
20

and 𝑇 = 69
200

, were determined through identification. As a preliminary step, we
consider the closed-loop system with the controller 𝐶0(𝑠) defined by (5). This controller leads to the closed-loop characteristic
equation Δ(𝑠) ∶ ℂ → ℂ:
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(a) Closed-loop characteristic roots behavior with respect to 𝜏 when the system described by the transfer
function in (42) is in closed-loop with the PD controller considering a three-delays approximation of
the derivative action.
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(b) Closed-loop characteristic roots behavior with respect to 𝜏 when the system described by the transfer
function in (42) is in closed-loop with the PD controller considering a five-delays approximation of the
derivative action.

Figure 9 Behavior of the closed-loop system characteristic roots under different configurations of the derivative approximation.

(a) (b)

Figure 10 System output considering the different proposed controllers and 𝑟(𝑡) = 𝜋
4

. (a) Plant output 𝜃(𝑡) when in closed-loop
with the chosen controllers. (b) Control output 𝑣(𝑡) of the filtered PD controller and both approximations.

Δ(𝑠) = 𝑠2 + 𝑠 1
𝑇
(1 + 𝑘𝑘𝑑) +

𝑘
𝑇
𝑘𝑝. (45)

From Equation (45), it is evident that the closed-loop system will maintain stability if and only if 𝑘𝑝 > 0 and 𝑘𝑑 > − 1
𝑘
. In

this scenario, we have chosen the control parameters (𝑘𝑝, 𝑘𝑑) =
(

700
473
, 1
)

, which positions the right-most root of the system at
𝑠 = − 100

69
.

Next, we explore three distinct approaches for implementation: (i) the one-delay approximation of the derivative action, (ii)
the two-delay approximation of the derivative action, and (iii) the filtered derivative action. For the latter, the controller can be
expressed as:

𝐶𝑓 (𝑠) = 𝑘𝑝 + 𝑘𝑑
𝑁𝑠

𝑁𝑠 + 1
. (46)

From the plant documentation, we are informed that the smallest usable delay is 𝜏 = 0.002. However, for the sake of simplicity,
we have opted to use 𝜏 = 0.005. Additionally, for the filtered implementation, we have selected a value of 𝑁 = 100. The results
obtained from these choices are illustrated in Figure 10. Some noteworthy observations can be made from the figure.

Firstly, it is evident that the filtered implementation tends to reach the reference signal more swiftly. Conversely, the
implementations using the derivative approximation exhibit reduced oscillations and an smaller error.

Secondly, a close examination of the control output reveals certain similarities, yet, in general, it is apparent that the control
effort required for the filtered derivative implementation is lower.
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Figure 11 Experiment to verify the computed delay margins.

5.1 Delay-Margin Computation and Experimental Verification
As previously discussed, even in properly-defined systems, there exists an upper limit for the delay parameter beyond which
the system’s stability cannot be guaranteed. In this section, we calculate this stability margin for system (44) in closed-loop
with PD controllers with one and two-delay approximations of the derivative action. Additionally, we experimentally validate
the accuracy of our computations by demonstrating that as the delay parameter (𝜏) approaches its maximum value (𝜏max), the
system exhibits significant oscillations. Following the methodology in23 we obtain the following expression for delay margin in
the one-delay case:

𝜏max(𝜔) =
2𝑘𝑘𝑑

(

𝑇𝜔2 − 𝑘𝑘𝑝
)

(

𝑘𝑘𝑝 − 𝑇𝜔2
)2 + 𝜔2

𝜔∗ = 43.7645. (47)

Which implies that stability might be lost as 𝜏 → 0.0747. Similarly, for the two-delays case we obtain:

𝜏max(𝜔) =

√

𝑘2𝑘2𝑑
(

25
(

𝑘𝑘𝑝 − 𝑇𝜔2
)2 + 16𝜔2

)

+ 3𝑘𝑘𝑑
(

𝑇𝜔2 − 𝑘𝑘𝑝
)

2
(

(

𝑘𝑘𝑝 − 𝑇𝜔2
)2 + 𝜔2

) 𝜔∗ = 87.1097, (48)

thus, stability is lost as 𝜏 → 0.0366.
To experimentally validate the calculated margins, we conducted a comparative analysis of the system’s performance while

incrementally varying the delay parameter 𝜏. The results of this experimentation are illustrated in Figure 11, which visually
shows the emergence of oscillations as the value of 𝜏 is progressively increased. This behavior is expected, as we are aware of
the eventual crossing on the imaginary axis. This crossing implies that with higher values of 𝜏 there will be roots approaching
the imaginary axis, leading to the observed behavior.

5.2 Effect of the Delay-Difference Approximation on the System Stability
We have previously emphasized the critical importance of selecting an appropriate delay value. In addition to this consideration,
it is essential to recognize that the stable region of the closed-loop system undergoes changes concerning the control parameters
when we introduce an approximation of the derivative action.

As mentioned earlier, for the transfer function Δ(𝑠) defined by Equation (45), ensuring the stability of the closed-loop system
is straightforward by choosing 𝑘𝑝 > 0 and 𝑘𝑑 > −1∕𝑘. However, when we incorporate the two-delay approximation, the
characteristic function Δ2 ∶ ℂ ×ℝ+ → ℂ takes the following form:

Δ2(𝑠; 𝜏) = 𝑠2 + 1
𝑇
𝑠 + 𝑘

𝑇

(

𝑘𝑝 +
𝑘𝑑
𝜏

(3
2
− 2𝑒−𝜏𝑠 + 1

2
𝑒−2𝜏𝑠

)

)

. (49)

It is natural to expect that the stability region will change as the system itself undergoes transformation due to the approx-
imation. To explore this change, we computed the stability crossing curves, as illustrated in Figure 12. The figure reveals in
particular the presence of a "gap" in which the closed-loop system with the “classic” PD controller remains stable, while the
approximate value controller version leads to system instability.
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Figure 12 Stability regions in the control parameters plane of Δ(𝑠) and Δ2(𝑠; 𝜏 = 0.005)

6 CONCLUSIONS

Unbound solutions of the characteristic function of the closed-loop system have been characterized for systems subjected to PD
controllers, where derivative action has been approximated via a delay-difference approximation including an arbitrary number
of time-delays. Such characterization allowed deriving conditions on certain system parameters to identify improperly-posedness
of the closed-loop system. Such results proved crucial since stability may be lost if the controller gains are selected without con-
sidering the discretization; in particular, the impact of the number of delays on the improperly-posedness criteria was explicitly
addressed. Several illustrative examples showed the effectiveness of the method in detecting improperly-posedness conditions.
Moreover, when the closed-loop system is properly-posed, we present examples that show the existence of a delay margin (an
upper limit) of the delay parameter such that the closed-loop system preserves stability. Additionally, to exemplify the practi-
cality of our findings, we conducted an experiment to demonstrate the effectiveness of our studied controller in regulating a real
plant. This experiment also facilitated a comparative analysis between the implementation of the derivative action approxima-
tion and the filtered derivative action approach. Future research may consider non-commensurate delays in the discretization,
looking to reduce the size of the improperly-posed region in the parameter-space. It is also interesting to extend the analysis to
systems that naturally present a delayed input.
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APPENDIX

A DEGREE OF A QUASI-POLYNOMIAL

We have the following definition36,37:

Definition 4. For a given quasi-polynomial Δ ∶ ℂ → ℂ with real coefficients of the form Δ(𝑠) =
𝑘
∑

𝑖=0
𝑃𝑖(𝑠)𝑒−𝑠𝜏𝑖 , with 𝜏𝑘 ∈ ℝ,

such that 𝜏0 = 0 < 𝜏1 < … 𝜏𝑘, the degree of Δ is defined by 𝑑𝑒𝑔(Δ) = 𝑘 +
𝑘
∑

𝑖=0
𝑑𝑖 where 𝑑𝑖 represents the degree of the

polynomial 𝑃𝑖 for 𝑖 = 0, 1,… , 𝑘.

B CHEBYSHEV POLYNOMIALS

Let 𝑘 ∈ ℕ. Then, the 𝑘-th Chebyshev polynomial of the first kind 𝑇𝑘 ∶ [−1, 1] → [−1, 1]38,39, is defined as the real part of the
function 𝑧𝑘 in the unit circle, namely

𝑇𝑘(𝑥) ∶= ℜ(𝑧𝑘) = 1
2
(𝑧𝑘 + 𝑧−𝑘) = cos(𝑘𝜃),

where 𝑥 ∶= 1∕2(𝑧 + 𝑧−1) = cos(𝜃), 𝜃 = cos−1(𝑥). It is easy to observe that 𝑇0(𝑥) = 1, 𝑇1(𝑥) = 𝑥, and for all 𝑘 ≥ 2, the
polynomials 𝑇𝑘 satisfy the following recurrent relationship:

𝑇𝑘+1(𝑥) = 2𝑥𝑇𝑘(𝑥) − 𝑇𝑘−1(𝑥).

For instance, for 𝑘 = 2, 3, 4, one gets 𝑇2(𝑥) = 2𝑥2 − 1, 𝑇3(𝑥) = 4𝑥3 − 3𝑥, 𝑇4(𝑥) = 8𝑥4 − 8𝑥2 + 1.
Similarly, the 𝑘-th Chebyshev polynomial of the second kind,

𝑈𝑘(𝑥) =
sin ((𝑘 + 1)𝜃)

sin (𝜃)
,

satisfy the recurrent relationship:
𝑈𝑘+1(𝑥) = 2𝑥𝑈𝑘(𝑥) − 𝑈𝑘−1(𝑥),

but with 𝑈0(𝑥) = 1 and 𝑈1(𝑥) = 2𝑥. For instance, in this case, for 𝑘 = 2, 3, 4, one gets 𝑈2(𝑥) = 4𝑥2 − 1, 𝑈3(𝑥) = 8𝑥3 − 4𝑥,
𝑈4(𝑥) = 16𝑥4 − 12𝑥2 + 1.
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