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ORIENTED EMBEDDING FUNCTORS OF TORI AS
HOMOGENEOUS SPACES

PHILIPPE GILLE AND TING-YU LEE

Abstract. We provide a characterization of homogeneous spaces under a reductive
group scheme such that the geometric stabilizers are maximal tori. The quasi-split
case over a semilocal base is of special interest and permits to answer a question
raised by Marc Levine on homogeneous SLn-spaces. At the end, we provide an appli-
cation to the local-global principles for embeddings of étale algebras with involution
into central simple algebras with involution.
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1. Introduction

Let k be a field and let ks be a separable closure of k; we denote by Γk = Gal(ks/k)
the absolute Galois group of k. Let X be an affine k–variety which is a SLn-
homogeneous space such that the stabilizer of a geometric point is a maximal torus.
Marc Levine asked whether X is G-isomorphic to SLn /T where T is a maximal torus
of SLn.

Our main classification result (Theorem 3.4) tells us that X is the variety1 of
embeddings of a suitable oriented torus T in SLn and we explain now the meaning
of X(k). Denoting by Gn,1

m the standard split torus of SLn, we remind the reader
that the automorphism group of the root system An−1 = Φ(SLn,G

n,1
m ) is Sn × Z/2Z

if n ≥ 3 and Z/2Z for n = 2. We have that T = R1
A/k(Gm) for an étale k–algebra

A (see [14, §7.5]) and that X(k) corresponds to the set of embeddings f : T → SLn

such that the class of the Sn×Z/2Z–torsor Isom
(
Φ(SLn,ks,G

n,1
m,ks

),Φ(SLn,ks, f(T )ks)
)

is [A]× 1 if n ≥ 3 and simply [A] if n = 2. We used implicitely there that the Galois
cohomology set H1(k, Sn) classifies isomorphism classes of étale algebras of degree n
and that the oriented type of T is the class of the above torsor.

Date: July 27, 2023.
1Those varieties (and their generalizations over a base) have been defined by the second author

[15].
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2 PHILIPPE GILLE AND TING-YU LEE

On the other hand, if we see A as a k-vector space of dimension n, we have an
isomorphism SL(A)

∼
−→ SLn and the natural embedding T = R1

A/k(Gm) →֒ SL1(A)

defines then an embedding T → SLn of oriented type [A] × 1. In other words, the
SLn-homogeneous space X carries a k–point whose stabilizer is T = R1

A/k(Gm). Thus

X is SLn-isomorphic to SLn /T as desired.
This statement can be strengthened in two ways. First we can replace SLn by any

quasi-split reductive k-group, the presence of k-points on a such homogeneous space
being the Gille-Raghunathan’s theorem [12, 19].

With more effort, we can replace further the base field k by an arbitrary semilocal
ring (with infinite residue fields). This is Corollary 4.7 which involves a generaliza-
tion of the existence of maximal tori of any orientation in such group schemes (see
Theorem 4.6). As in Steinberg’s section theorem, the case of type A2n requires an
additional argument. Also this generalization needs the notion of versal torsor in that
setting (Reichstein-Tossici [21]); we introduced a variation of this technique involving
algebraic spaces (see §4.2).

Finally we provide an arithmetic application to the embeddings of étale algebras
with involution into central simple algebras with involution. Let (E, σ) be an étale
algebra E over k with involution σ and (A, τ) be a central simple algebra A over k
with involution τ . We want to know when (E, σ) can be embedded into (A, τ) under
some constraints on the dimensions of (E, σ) and (A, τ) (see [18], [2], [3]). In Theorem
4.4.1, we show that when k is a number field and the unitary group associated to (A, τ)
is quasi-split, the local-global principle always holds for the embeddings of (E, σ) into
(A, τ).

Acknowledgments. We thank Marc Levine for useful discussions and the Camille
Jordan Institute for inviting the second author.

Notation. We use mainly the terminology and notations of Grothendieck-Dieudonné
[10, §9.4 and 9.6] which agree with that of Demazure-Grothendieck used in [24, Exp.
I.4]

(a) Let S be a scheme and let E be a quasi-coherent sheaf over S. For each morphism
f : T → S, we denote by ET = f ∗(E) the inverse image of E by the morphism f . We
denote by V(E) the affine S–scheme defined by V(E) = Spec

(
Sym•(E)

)
; it is affine

over S and represents the S–functor Y 7→ HomOY
(EY ,OY ) [10, 9.4.9].

(b) We assume now that E is locally free of finite rank and denote by E∨ its dual.
In this case the affine S–scheme V(E) is of finite presentation (ibid, 9.4.11); also the
S–functor Y 7→ H0(Y, EY ) = HomOY

(OY , EY ) is representable by the affine S–scheme
V(E∨) which is also denoted by W(E) [24, I.4.6].

It applies to the locally free coherent sheaf End(E) = E∨ ⊗OS
E over S so that

we can consider the affine S–scheme V
(
End(E)

)
which is an S–functor in associative

commutative and unital algebras [10, 9.6.2]. Now we consider the S–functor Y 7→
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AutOY
(EY ). It is representable by an open S–subscheme of V

(
End(E)

)
which is

denoted by GL(E) (loc. cit., 9.6.4).

2. Generalities on homogeneous spaces

Let S be a scheme and let • be the final object of the category of fppf sheaves in
groups, that is •(T ) = HomS−sch(T, S) = hS(T ) for each S–scheme T .

Let G be a fppf S-sheaf in groups. Let X be a fppf S-sheaf equipped with a left
action of G. We say that X is homogeneous (resp. principal homogeneous) under
G if the map X → • is an epimorphism of fppf S-sheaves and if the action map
G ×S X → X ×S X, (g, x) → (x, g.x) is an epimorphism (resp. an isomorphism) of
fppf S-sheaves. Similarly we have the notion of right homogeneous (resp. principal
homogeneous) spaces.

Let E be a right principal homogeneous G-space and denote by G′ the twist of G
by E through inner automorphisms. Then twisting by E gives rise to an equivalence
of categories between the category of left homogeneous G–spaces and that of left
homogeneous G′–spaces.

Remark 2.1. For the discussion of the same material in the representable case, see
[20, VI.1].

Lemma 2.2. Let H be a fppf group subsheaf of G and X be the G-homogeneous space
G/H. Consider the S–sheaf in groups A = AutG(X) which acts on the left of X.

(1) Let N = NG(H) be the normalizer of H in G (as in [13, §2.3]). Then the map

G×S N → G, (g, n) 7→ gn induces an isomorphism N/H
∼

−→ Aop.

(2) The action of A on X is free and the map X → A\X is a (left) principal A–
homogeneous space.

(3) Let F be a right A-torsor and let X ′ be the twist of X by F . Then X ′ is a

G-homogeneous space and there is a canonical isomorphism A′\X ′ ∼
−→ A\X, where

A′ = AutG(X
′).

(4) The S–forms of X (as G-spaces) are classified by H1
right(S,A).

Proof. We put W = N/H.
(1) The map G×SN → G induces a map X×W → X hence a group homomorphism
φ : W → Aop of S-sheaves in groups.

φ is a monomorphism. Let T be a S-scheme and let w ∈ W (T ) be an element such
that φ(w) = 1. Up to localize we can assume that w arises from an element n ∈ N(T )
which satisfies 1× n ∈ H(T ). Thus w = 1.

φ is an epimorphism. Let T be an S–scheme and let f ∈ A(T ). We put x =
f([1]) ∈ X(T ) and up to localize we can assume that x arises from some g ∈ G(T ).
We claim that g ∈ N(T ). For each T -scheme T ′ and each g′ ∈ G(T ) we have
f(g′ · [1]) = g′ ·gT ′ · [1]. In particular for each h′ ∈ H(T ′), we have h′ gT ′ ∈ gT ′H(T ′) so
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that gT ′ normalizes H(T ′). The claim is proven and it follows that f = φ(w) where
w is the image of g ∈ N(T ) in W (T ).

(2) By (1), it is equivalent to prove that W acts freely on X. Let T be a scheme
and x ∈ X(T ). After localization we can assume that x arises from an element
g ∈ G(T ). Consider the T -sheaf in groups StabW (x). For each T -scheme T ′ and
w ∈ StabW (x)(T ′), up to localization we can assume that w comes from an element
n ∈ N(T ′). Then [g] = [g] · w = [gn], which implies n ∈ H(T ′) and w is the identity
in W (T ′). Hence W acts freely on X and X → A\X is a right torsor of W .

(3) Let p be the projection from X to the quotient sheaf A\X. Consider the map
π : F ×X → A\X, which projects F ×X to X and then to the quotient sheaf A\X.
Then clearly π induces a map from X ′ to A\X, which we still denote by π.

Note that G acts on the X-factor of F × X. As the G-action and the A-action
commutes on X, this defines an G-action on X ′. Choose a fppf -cover {Si}of S which
trivializes the A-torsor F . For each Si, there is an isomorphism of right A-torsors
between F Si

and ASi
. Hence X ′

Si
≃ XSi

and A′

Si
≃ ASi

.
Fix an isomorphism of ASi

-torsors ιi : F Si
→ ASi

. The map ιi induces an
isomorphism between X ′

Si
and XSi

which sends [f, x] to ιi(f)(x) for x ∈ X(Ti),
f ∈ F (Ti) and for arbitrary Si-scheme Ti. We denote this induced isomorphism still
by ιi. The map ιi induces an isomorphism between A′

Si
and ASi

by sending a′ to

ιi ◦ a
′ ◦ ι−1

i for a′ ∈ A′(Ti) and Ti an Si-scheme. Then clearly ιi induces an isomor-
phism ιi : (A

′\X ′)Si
→ (A\X)Si

.
One checks that p ◦ ιi = πSi

. Hence ιi ◦ p′ = πSi
where p′ is the projection from

X ′ to A′\X ′. This implies that π(x′) = π(a′ · x′) for x′ ∈ X ′(T ), a′ ∈ A′(T ) and for
arbitrary S-scheme T . Hence π induces a map π from A′\X ′ to A\X. On each Si,
we have πSi

= ιi. As ιi is an isomorphism, π is an isomorphism between A′\X ′ and
A\X.

(4) Let X ′ be an S-form of X as G-spaces. Then the sheaf of isomorphisms IsomG(X,X ′)

is a right A-torsor and IsomG(X,X ′) ∧A X is canonically isomorphic to X ′.

Conversely given a right A-torsor F , let X ′ be the twist of X by F . According
to the proof of (3) , the twist X ′ is a G-homogeneous space and is isomorphic to X
fppf -locally. Hence X ′ is an S-form of X. We claim that the sheaf of isomorphisms
Isom(X,X ′) is isomorphic to F .

Note that A∧AX is canonically isomorphic to X and the A-action on X corresponds
to the A-action on the A-factor of A∧AX. Regard A as a right A-torsor. Then there is
a natural map ι between IsomA(A, F ) and IsomG(X,X ′) = IsomG(A∧AX,F ∧A X ′).
To be precise, for an S-scheme S ′ and φ ∈ IsomA(A, F )(S ′), ι(φ)([(a, x)]) = [(φ(a), x)]

for any S ′-scheme S ′′ and [(a, x)] ∈ (A ∧A X)(S ′′).
The sheaf of automorphisms of A (as a right A-torsor) is A itself which acts on the

left of A. As IsomA(A, F ) is a right AutA(A)-torsor, it is a right A-torsor. It is easy
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to check that ι is compatible with the A-action. Since IsomA(A, F ) and IsomG(X,X ′)
are both right A-torsors, and ι is compatible with the A-action, ι is an isomorphism.

There is a natural map i from IsomA(A, F ) to F which sends φ ∈ IsomA(A, F )(S ′)
to φ(1A) ∈ F (S ′) for all S-schemes S ′. Since i is compatible the right A-action, i is
an isomorphism between right A-torsors, and i ◦ ι−1 gives the desired isomorphism
between IsomG(X,X ′) and F . Therefore the map which sends an S-form X ′ to the

right A-torsor IsomG(X,X ′) is a bijection. �

3. Embedding functors

Let S be a scheme. For a point s ∈ S, let κ(s) be the residue field of s and κ(s) be

the algebraic closure of κ(s). Let s be the scheme Spec(κ(s)).

3.1. Twisted root data and Weyl groups. Let M be a Z-lattice and M∨ be its
dual lattice. Let R and R∨ be finite subsets of M and M∨ respectively. Suppose that
(M,M∨, R, R∨) satisfy the root data axioms.

Denote by MS (resp. RS) the constant sheaf of S associated to M (resp. R). Let
T be an S-torus and denote by M (resp. M∨) the fppf sheaf of characters (resp.
cocharacters) of T . Let Ψ = (M,M∨,R,R∨) be a twisted root datum. (c.f. [24]
Exp. XXI, 1.1). We say that the twisted root datum Ψ is of type (M,M∨, R, R∨) at
s ∈ S if Ψs ≃ (M s,M

∨

s , Rs, R
∨

s ).
We denote by W (Ψ) the Weyl group of the twisted root datum Ψ. If Ψ is

split of constant type, Ψ can be written as (MS,M
∨

S, RS, R
∨

S) for some root datum
(M,M∨, R, R∨). In this case, the Weyl group W (Ψ) is a finite group generated by
the reflections sα defined by

sα(x) = x− (α∨, x)α, for α ∈ R and x ∈ M.

For α ∈ R, the reflection sα induces an automorphism s̃α on T by

s̃α(t) = t(α∨(α(t)))−1 for any S-scheme S ′, α ∈ R and t ∈ T (S ′).

(See [24] Exp. XXII, 3.3.) We denote by W (T ) the group generated by s̃α. The map
sending sα to s̃α defines an isomorphism from W (Ψ)op to W (T ). For w ∈ W (Ψ), we
denote by w̃ its image in W (T ). In general, W (Ψ) (resp. W (T )) is a finite étale group
scheme over S, which is regarded as a subgroup scheme of Aut(M) (resp. Aut(T )).

Let G be a reductive group scheme over S. Suppose that G has a maximal torus
T over S. We denote by Φ(G, T ) the twisted root datum of G with respect to T .
Let NG(T ) the normalizer of T in G. Then NG(T )/T is isomorphic to W (T ) ≃
W (Φ(G, T ))op. (cf. [24] Exp. XXII, 3.1-3.4)
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3.2. The Orientation. Let Ψ1, Ψ2 be two twisted root data. Suppose that Ψ2 and
Ψ1 are of the same type at each s ∈ S . Let Isom(Ψ1,Ψ2) be the sheaf of isomorphisms
between Ψ1 and Ψ2. Then Isom(Ψ1,Ψ2) is a right principal homogeneous space of
Aut(Ψ1) and a left principal homogeneous of Aut(Ψ2). Define

Isomext(Ψ1,Ψ2) = W (Ψ2)\Isom(Ψ1,Ψ2).

Suppose Isomext(Ψ1,Ψ2)(S) is nonempty. For u ∈ Isomext(S), we define Isomintu(Ψ1,Ψ2)
to be the fiber of Isom(Ψ1,Ψ2) → Isomext(Ψ1,Ψ2) at u.

Let G be a reductive group scheme over S. The type of G at s is the type of the
root datum of Gs with respect to its maximal torus. (ref. [24], Exp. 22, Def. 2.6.1,
2.7).

Suppose that G has a maximal torus T . We define Isomext(G,Ψ) to be Isomext(Φ(G, T ),Ψ).
For a different choice of maximal tori T ′, there is a canonical isomorphism between
Isomext(Φ(G, T ),Ψ) and Isomext(Φ(G, T ′),Ψ) (ref. [15, §1.2.1]). Hence Isomext(G,Ψ)
is well-defined.

We define Isomext(Ψ, G) in a similar way. As there is a canonical isomorphism be-
tween Isom(Φ(G, T ),Ψ) and Isom(Ψ,Φ(G, T )), which sends f ∈ Isom(Φ(G, T ),Ψ)(S ′)
to f−1 ∈ Isom(Ψ,Φ(G, T ))(S ′), the two functors Isomext(G,Ψ) and Isomext(Ψ, G)
are canonically isomorphic .

An orientation of G with respect to Ψ is an element of Isomext(G,Ψ)(S).

A twisted root datum Ψ is admissible for G if at each s ∈ S, the type of Gs is the
same as the type of Ψs, and Isomext(G,Ψ)(S) 6= ∅.

Let G′ be an S-form of G. Let Isom(G,G′) be the sheaf of group isomorphisms
between G and G′. Note that G acts on itself by conjugation. Thus we can de-
fine the right quotient of Isom(G,G′) by the adjoint quotient Gad of G and denote
Isom(G,G′)/Gad by Isomext(G,G′).

Let Ψ1, Ψ2 and Ψ3 be twisted root data over S. Suppose that all of them are of
the same type at each geometric fibre of S. Then we have the following map :

(3.1) Isomext(Ψ1,Ψ2)× Isomext(Ψ2,Ψ3) → Isomext(Ψ1,Ψ3),

which comes from the composition of isomorphisms

Isom(Ψ1,Ψ2)× Isom(Ψ2,Ψ3) → Isom(Ψ1,Ψ3).

Suppose G and Ψ1 are of the same type at each geometric fiber of S. Similarly we
have the following pairings coming from the composition of isomorphisms between
root data.

Proposition 3.2.1. We have the following pairings

(1) Isomext(G,Ψ1)× Isomext(Ψ1,Ψ2) → Isomext(G,Ψ2).
(2) Isomext(G,Ψ1)× Isomext(G,Ψ2) → Isomext(Ψ1,Ψ2).
(3) Isomext(G,Ψ1)× Isomext(G′,Ψ1) → Isomext(G,G′).
(4) Isomext(G′, G)× Isomext(G,Ψ) → Isomext(G′,Ψ).
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Proof. The first two assertions come from the definition of Isomext(G,Ψ) and the
composition of isomorphisms between root data. For (3) and (4), we notice that if G
and G′ have maximal tori T and T ′ respectively, then Isomext(Φ(G, T ),Φ(G′, T ′)) is
representable and isomorphic to Isomext(G,G′). As reductive groups have maximal
tori étale locally, assertions (3) and (4) can be deduced from descent. We refer to [15,
Prop. 1.4] for more details. �

Denote by G//G the adjoint quotient of G (ref [16]). Suppose that G has a maximal
torus T . Let T/W (T ) be the quotient sheaf of T by the action of Weyl group W (T ).
Then T/W (T ) is isomorphic to G//G ([16] Thm. 4.1).

Consider the quotient map (of fppf-sheaves) π : T → T/W (T ). Let x ∈ (G//G)(S).
As T/W (T ) and G//G are isomorphic, we can regard x as an element in (T/W (T ))(S).
Suppose that there is a semisimple regular element t1 ∈ G(S) whose image in
(G//G)(S) is x. Let T1 be the centralizer CG(t1), which is also a maximal torus.
Let Ψ (resp. Ψ1) be the root datum associated to T (resp. T1). Then the natural
inclusion from T to G gives an orientation v ∈ Isomext(G,Ψ)(S). Similarly, we get
an orientation v1 ∈ Isomext(G,Ψ1)(S) from the natural inclusion of T1 in G. Then
by 3.2.1 (2) we get an orientation u ∈ Isomext(Ψ,Ψ1)(S) coming from v · v1. Then
we have the following proposition.

Proposition 3.2.2. The left W (T )-torsor π−1(x) is isomorphic to Isomintu(Ψ,Ψ1).

Proof. For an S-scheme S ′ and t ∈ π−1(x)(S ′), we denote by Transp(t, t1) the trans-
porter from t to t1. Both t and t1 are mapped to the same element in (G//G)(S),
and hence Transp(t, t1) → • is surjective. Since t1 is a semisimple regular element,
so is t. As t lies in T , the centralizer CG(t) of t is the torus TS′ and Transp(t, t1) is a
right TS′-torsor.

The conjugation action of T on Ψ = Φ(G, T ) is trivial. Therefore the canonical
morphism

Transp(t, t1) ∧
TS′ ΨS′ → Ψ1,S′

defines an element in Isomintu(Ψ,Ψ1)(S
′). In this way, we get a map

i : π−1(x) → Isomintu(Ψ,Ψ1).

To be precise, write the root datum Ψ as (M,M∨,R,R∨). For an S ′-scheme S ′′ and
h ∈ Transp(t, t1)(S

′′), i(t)(m) = m ◦ int(h−1) for all m ∈ MS′′ = HomS′′(TS′′,Gm,S′′).
Note that i(t) is independant of the choice of h since T acts trivially on M.

As Isomintu(Ψ,Ψ1) is a right W (Ψ)-torsor and W (T ) ≃ W (Ψ)op, we can regard it
as left W (T )-torsor. We write down explicitly this action. For w ∈ W (T )S′, let nw

be a lift of w in N(T )(S ′′) for some S ′-scheme S ′′. As T acts on M trivially, int(n−1
w )

induces an automorphism on MS′. For f ∈ Isomintu(Ψ,Ψ1)(S
′), (w · f)(m) :=

f(m ◦ int(nw)) for m ∈ MS′ = HomS′−grp(TS′,Gm,S′).
Since π−1(x) and Isomintu(Ψ,Ψ1) are both W (T )-torsors, to check i is an isomor-

phism, it suffices to check the map i is W (T )-equivariant. Let w ∈ W (T )S′ and
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nw be a lift of w in N(T )(S ′′) for some S ′-scheme S ′′. For h ∈ Transp(t, t1)(S
′′),

hn−1
w ∈ Transp(w · t, t1)(S

′′). Thus

(3.2)

i(w · t)(m) = m ◦ int((hn−1
w )−1)

= m ◦ int(nw) ◦ int(h
−1)

= i(t)(m ◦ int(nw))

= (w · i(t))(m).

Hence i is an isomorphism between W (T )-torsors. �

3.3. Embedding functors. Let G be a reductive group scheme over S and
Ψ = (M,M∨,R,R∨) be an admissible root datum for G. Let T be the S-torus
with sheaf of characters M.

Suppose there is an embedding f of T into G as algebraic group schemes. Then f
induces an isomorphism from the character group of f(T ) to M. We call this map
f ♯. If f ♯ induces an isomorphism between Φ(G, f(T )) and Ψ, then we say f is an
embedding with respect to the twisted root datum Ψ.

Define the embedding functor E(G,Ψ) as follows: for each S-scheme S ′,

E(G,Ψ)(S ′) =



 f : TS′ →֒ GS′

∣∣∣∣∣∣

f is both a closed immersion and a group
homomorphism which induces an isomorphism

f ♯ : Φ(GS′, f(TS′))
∼
−→ ΨS′





Suppose Isomext(G,Ψ)(S) is nonempty. Fix an orientation v ∈ Isomext(G,Ψ)(S).
The oriented embedding functor E(G,Ψ, v) over S is defined by

E(G,Ψ, v)(S ′) =

{
f : TS′ →֒ GS′

∣∣∣∣
f ∈ E(G,Ψ)(S ′), and the image of f ♯

in Isomext(G,Ψ)(S ′) is v.

}

The oriented embedding functor E(G,Ψ, v) is representable by an affine S–scheme
which is a left homogeneous G-space ([15, 1.6]). For an S-scheme S ′ and an element
f ∈ E(G,Ψ, v)(S ′), the stabilizer of f in GS′ is f(TS′), which is a maximal torus
of GS′. It admits a right action of W (T ) and the quotient sheaf E(G,Ψ, v)/W (T )
identifies with the S-scheme TG of maximal tori of G. (See [15, §1.1 and §1.2] for
mare details.)

Remark 3.1. In [15, §1.2.2] we define the oriented embedding functor E(G,Ψ, v′)
by orientation v′ ∈ Isomext(Ψ, G)(S) instead of v ∈ Isomext(G,Ψ)(S) here. How-
ever when v′ is the image of v under the canonical isomorphism Isomext(G,Ψ) →
Isomext(Ψ, G), these two definitions are clearly equivalent.

Lemma 3.2. Keep the notation as above.

(1) We have an isomorphism W (Ψ)
∼

−→ AutG(E(G,Ψ, v)) as group schemes.

(2) Let Ψ′ be another admissible root datum for G, and v′ ∈ Isomext(G,Ψ′)(S).
Let u ∈ Isomext(Ψ,Ψ′)(S) be the orientation v′ · v by the pairing (3.2.1). Under the
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identification of W (Ψ) and AutG(E(G,Ψ, v)) in (1), there is a natural isomorphism
between Isomintu(Ψ,Ψ′) and Isom(E(G,Ψ, v),E(G,Ψ′, v′)) as right W (Ψ)–torsors.

(3) Let F be a right W (Ψ)-torsor and Ψ′ = F ∧W (Ψ) Ψ. Let c be the canonical
element of Isomext(Ψ,Ψ′)(S), and let v1 ∈ Isomext(G,Ψ′) be c · v by the pairing
(3.2.1). By identifying W (Ψ) with AutG(E(G,Ψ, v)), F∧W (Ψ)

E(G,Ψ, v) is isomorphic
to E(G,Ψ′, v1).

(4) Let E be a right G–torsor and denote by G′ the twist of G by E via in-
ner automorphisms. Let c be the canonical element of Isomext(G′, G)(S). Then
the homogeneous G′-space E ∧G

E(G,Ψ, v) is isomorphic to E(G′,Ψ, v′) where v′ ∈
Isomext(G′,Ψ)(S) is c · v by the pairing (3.2.1).

Proof. (1) For an S-scheme S ′ and w ∈ W (Ψ)(S ′), we denote by w̃ the image of w
in W (T )(S ′). Define a morphism ι : W (Ψ) → AutG(E(G,Ψ, v)) as the following. For
an S-scheme S ′ and w ∈ W (Ψ)(S ′),

ι(w)(x) := x ◦ w̃ for all S ′-schemes S ′′, and x ∈ E(G,Ψ, v)(S ′′).

For w1 and w2 ∈ W (Ψ)(S ′),

(3.3)

ι(w1 ◦ w2)(x) = x ◦ ˜(w1 ◦ w2)

= x ◦ w̃2 ◦ w̃1

= (ι(w1) ◦ ι(w2))(x).

Hence ι is a group homomorphism.
Clearly ι is monomorphism. To see that ι is an isomorphism, it suffices to check ι

is an isomorphism of fppf-sheaves. Let {Si} be a fppf -cover of S such that GSi
and

ΨSi
are both split. Then E(G,Ψ, v)(Si) is not empty. Choose xi ∈ E(G,Ψ, v)(Si).

By Lemma 2.2, AutG(E(G,Ψ, v))(Si) is isomorphic to (NG(xi(T ))/xi(T ))
op, where

NG(xi(T )) is the normalizer of xi(T ) in G. Since NG(xi(T ))/xi(T ) ≃ W (Φ(GSi
, xi(TSi

)))op,
the group NG(xi(T ))/xi(T ) is isomorphic to W (ΨSi

)op. Thus AutG(E(G,Ψ, v))Si
≃

W (ΨSi
). As ι is a monomorphism and AutG(E(G,Ψ, v))Si

is isomorphic to W (ΨSi
),

ι is an isomorphism.

(2) Write Ψ′ = (M′, (M′)∨,R′, (R′)∨) and denote by T ′ the torus with sheaf of
characters M′. For an S-scheme S ′ and f ∈ Isomintu(Ψ,Ψ′)(S ′), we denote by

f̃ the isomorphism from T ′
S′ to TS′ induced by f . Define η : Isomintu(Ψ,Ψ′) →

Isom(E(G,Ψ, v),E(G,Ψ′, v′)) by η(f)(x) = x ◦ f̃ , for all S ′-scheme S ′′, and x ∈
E(G,Ψ, v)(S ′′).
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Next we show that η is compatible with the W (Ψ)-action under the identification
of W (Ψ) and AutG(E(G,Ψ, v)). Let w ∈ W (Ψ)(S ′). Then

(3.4)

η(f ◦ w)(x) = x ◦ (f̃ ◦ w)

= x ◦ w̃ ◦ f̃

= η(f)(x ◦ w̃)

= η(f)(ι(w)(x))

= (η(f) ◦ ι(w))(x).

This shows that η is compatible with the W (Ψ)-action. Since Isomintu(Ψ,Ψ′) and
Isom(E(G,Ψ, v),E(G,Ψ′, v′)) are both right W (Ψ)-torsors, this implies that η is an
isomorphism.
(3) Write Ψ′ as (M′, (M′)∨,R′, (R′)∨) and let T ′ be the torus with character group

M′. For an S-scheme S ′ and f ∈ F (S ′), we define ϕ♯
f : MS′ → M′

S′ as ϕ♯
f(m) =

(f,m) for all S ′-scheme S ′′ and m ∈ MS′(S ′′). Denote by ϕf the group homomor-

phism from T ′ to T defined by ϕ♯
f .

Define ς : F × E(G,Ψ, v) → E(G,Ψ′, v′) as follows. For an S-scheme S ′ and
(f, x) ∈ (F × E(G,Ψ, v))(S ′), let ς(f, x) = x ◦ ϕf . Clearly x ◦ ϕf is an embedding of
T ′ in G with orientation v′. Note that for w ∈ W (Ψ)(S ′), we have

(3.5)

ϕ♯
fw(m) = (fw,m)

= (f, w−1m)

= ϕ♯
f(w

−1m).

Therefore ϕ♯
fw = ϕ♯

f ◦ w
−1 and ϕfw = w̃−1 ◦ ϕf . It follows that

(3.6)

ς(fw, x) = x ◦ ϕfw

= x ◦ w̃−1 ◦ ϕf

= (w−1 · x) ◦ ϕf

= ς(f, w · x).

Hence ς induces a morphism from F ∧W (Ψ)
E(G,Ψ, v) to E(G,Ψ′, v′), which is clearly

an isomorphism.

(4) For an S-scheme S ′ and e ∈ E(S ′), we define fe : GS′ → G′
S′ by fe(g) = [e, g] for

all S ′-scheme S ′′ and g ∈ G(S ′′). Then fe is an isomorphism between GS′ and G′
S′.

For y = (e, x) ∈ (E ×S E(G,Ψ, v))(S ′), we define

ı : E ×S E(G,Ψ, v) → E(G′,Ψ, v′)

as ı(y) = fe ◦ x. It is clear that ı(y) ∈ E(G′,Ψ)(S ′). As x is an embedding of
orientation v, by the definition of canonical orientation, the embedding ı(y) is of
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orientation v′. Since ı(e, x) = ı(e ·g, g−1 ·x) for all g ∈ G(S ′), ı induces an isomorhism
from E ∧G

E(G,Ψ, v) to E(G′,Ψ, v′). �

Remark 3.3. Let Gsc be the simply connected cover of G and let Gad be its adjoint
quotient. On the other hand let Ψsc (resp. Ψad) the simply connected (resp. adjoint)
root datum associated to Ψ. Then we can attach to (Ψ, v) an oriented root datum
(Ψsc, vsc) (resp. (Ψad, vad)) and isomorphisms

E(Gsc,Ψsc, vsc)
∼

−→ E(G,Ψ, v)
∼

−→ E(Gad,Ψad, vad).

It implies that we can deal in practice with semisimple simply connected (resp. ad-
joint) group schemes. Another advantage is that we have isomorphisms of finite étale
group schemes

Isomext(Gsc,Ψsc)
∼

−→ Isomext(Gad,Ψad)
∼

−→ Isomext(Dyn(G),Dyn(Ψ)).

(See [15, Cor. 1.7].)

3.4. The main result.

Theorem 3.4. Let X be a separated S-scheme satisfying one of the following condi-
tions:

(i) S is locally noetherian;

(ii) X is locally of finite type over S.

We assume that X is a left homogeneous space under G and that for each point s ∈ S,
the stabilizers of Xs are maximal tori of Gs.

(1) There exists a root datum Ψ = (M,M∨,R,R∨) which is admissible for G and
an orientation v ∈ Isomext(G,Ψ)(S) such that X is isomorphic to E(G,Ψ, v) as left
G-homogeneous spaces.

(2) The oriented root datum (Ψ, v) in (1) is unique up to isomorphism.

Proof. We shall establish first that the local stabilizers of X are maximal tori. Since
G is smooth over S with connected fibers, X is smooth of finite presentation over S
according to [20, prop. VI.1.2].

(1) Let (Si)i∈I be a fppf cover of S such that XSi
is GSi

–isomorphic to GSi
/Hi where

Hi is a Si-subgroup scheme of GSi
(see [24, IV 6.7.3]). Since Hi is the stabilizer of

a point of X(Si) (which is Si–separated), Hi is a closed Si–subgroup scheme of GSi

and is in particular affine.
Again by [20, prop. VI.1.2], Hi is flat locally of finite presentation over Si so is

affine flat of finite presentation over Si. As the geometric fibers of Hi are tori, it
follows that Hi is a Si–torus [24, X.4.9]. Therefore Hi is a maximal Si–torus of GSi

for each i ∈ I.
In particular, C(G) acts trivially on X, so X is a Gad-homogeneous space whose lo-

cal stabilizers are maximal tori. By Remark 3.3 we reduce to the case that G is an ad-
joint semisimple S–group scheme. We denote by Gq a quasi-split S–form of G. Since
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G is an inner form of Gq, there is a canonical orientation c ∈ Isomext(G,Gq)(S). Let
T q be a maximal torus of Gq, Ψq be the root datum Φ(Gq, T q) and vq ∈ Isomext(Gq,Ψq)(S)
be the orientation induced by the inclusion of T q to Gq. Let u = c·vq ∈ Isomext(G,Ψq)(S)
(by 3.2.1) and consider the homogeneous G–space Xq = E(G,Ψq, u). This is a left G
homogeneous space whose local stabilizers are maximal tori.

Claim. X is an S-form of Xq.
Denote by IsomG(X

q, X) the sheaf of G-space isomorphisms over S. Since Φ(GSi
, Hi)

is fppf-locally isomorphic to Ψq
Si

over Si, we can find a fppf-cover Sij of Si such that
there is f ∈ Xq(Sij) with f(T q

Sij) = Hi,Sij
. As the stabilizer StabGSij

(f) is Hi,Sij
, we

have Xq
sij

≃ GSij
/Hi,Sij

as GSij
-spaces. Hence there is an isomorphism between Xq

and X over Sij which preserves the G-structure. This proves that IsomG(X
q, X) is

nonempty. The canonical isomorphism IsomG(X
q, X) ∧AutG(Xq) Xq → X then shows

that X is an S-form of Xq. Our claim is established.

By identifying W (Ψq) with AutG(X
q) as in Lemma 3.2 (1), we denote by Ψ the

root datum IsomG(X
q, X)∧AutG(Xq) Ψq. Let c′ ∈ Isomext(Ψq,Ψ)(S) be the canonical

orientation, and v be the orientation u · c′ by pairing (3.2.1). We conclude that X is
isomorphic to the embedding functor E(G,Ψ, v) by Lemma 3.2(3).

(2) It follows from Lemma 3.2(2). �

4. The case of a semilocal ring

4.1. Schematically dominant morphisms. We recall that a morphism of schemes
f : Y → X is schematically dominant if OX → f∗OY is injective; if f is an immersion
we say that X is schematically dense in Y [11, 11.10.2]. If g : X ′ → X is flat, and f is
schematically dominant and quasi-compact, then f ′ : Y ×X X ′ → X ′ is schematically
dominant (loc. cit., 11.10.5).

If f : X → Y is an S–morphism of schemes, we say that f is schematically S-
dominant (or universally schematically dominant with respect to S) if for each S-
scheme S ′, fS′ : XS′ → YS′ is schematically dominant; similarly if f is an immersion,
we say that Y is schematically S–dense in X. Under mild assumptions, this property
can be checked fiberwise (ibid, 11.10.9). The base change property above extends
mechanically: If g : X ′ → X is flat and f : Y → X is schematically S-dominant and
quasi-compact, then f ′ : Y ×X X ′ → X ′ is schematically S-dominant.

Rydh extended that to morphism of algebraic spaces [22, §7.5]. A morphism of
algebraic spaces f : X → Y is schematically dominant if the morphism OY → f∗OX

is injective in the small étale site; if f is an immersion, we say that X is schematically
dense in Y .

As in [23, §3.5] the base change property extends in that framework: given a flat
morphism g : X ′ → X of algebraic spaces assuming that f : Y → X is schematically
dominant and quasi-compact, then f ′ : Y ×X X ′ → X ′ is schematically dominant.
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If S is a scheme and f : Y → X is a morphism of S-algebraic spaces, we say that
f : X → Y is schematically S–dominant if for each S-scheme S ′, fS′ : XS′ → YS′ is
schematically dominant; similarly if f is an immersion, we say that Y is schematically
S–dense in X. One last time, given a flat morphism g : X ′ → X and assuming that
f : Y → X is schematically S-dominant and quasi-compact, then f ′ : Y ×X X ′ → X ′

is schematically S–dominant.

4.2. (4)-Versal torsors. Our goal is to adapt the framework of versal torsors [9,
§5] from fields to the semilocal ring setting by using algebraic spaces for which we
use Olsson’s book as reference [O] as well with the Stacks project [26]. It is close of
Reichstein-Tossici’s definition of (3)-versality for algebraic groups [21, def. 1.3].

Let S = Spec(R) be a semilocal scheme and let G be an affine flat S–group scheme
of finite presentation.

Definition 4.1. Let f : E → X be a G–torsor where E is a qcqs S–scheme and X is a
qcqs S-algebraic space. We say that E → X is (4)–versal if for any open retrocompact
subspace U schematically S–dense in X then for each semilocal R–algebra B whose
residue fields of maximal ideals are infinite, and for each G–torsor F over B, there
exists x ∈ U(B) such that Ex

∼= F as G–torsors.

Remarks 4.2. (a) We observe that if f : E → X is a (4)–versal G–torsor so is
f−1(V ) → V for each schematically S–dense open retrocompact subspace V of X.

(b) There exists a dense open subspace X ′ of X which is a scheme [26, Tag 06NH].
If X ′ can be chosen furthermore schematically S-dense retrocompact, we see then
that the open dense retrocompact subscheme U ′ = U ×X X ′ can be chosen in the
definition. This is the case if S is noetherian of dimension ≤ 1 and X is reduced
separated according to [26, Tag 0ADD].

Lemma 4.3. Let G → GL(E) be a faithful linear representation of G where E is a
locally free R-module of finite rank.

(1) The fppf quotient X = GL(E)/G is representable by an algebraic space and the
quotient map GL(E) → X is a (4)-versal G–torsor with right G-action.

(2) Assume that V(E) admits an open universally dense S-subscheme V which is
G–stable and such that G acts freely on V . Let Y = V/G be the quotient algebraic
space. Then V → V/G is a (4)–versal G–torsor.

Proof. (1) If R is noetherian, then the fppf quotient X = GL(E)/G is represented by
an S–algebraic space [1, th. 3.1.1]. The usual noetherian reduction trick shows that
it is the case in general. Let B be a semilocal ring whose residue fields of maximal
ideals are infinite and F be a G-torsor over B. Denote by κi the residue fields of
maximal ideals Mi of B.

We first consider the case that B is indecomposable, i.e. SpecB is connected. In
this case E ⊗RB becomes a free module over B of rank n, and we can regard GL(E)B
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as GLn,B. Consider the exact sequence of pointed sets:

1 → G(B) → GLn(B) → X(B)
δ
→ H1

fppf(B,G) → H1
fppf(B,GLn).

As B is semilocal, we have H1
fppf(B,GLn) = 1 since all locally free B-modules of

rank r are trivial. Hence the torsor F is a pull-back of GL(E) → X at some element
x ∈ X(B). Denote by xi the image of x in X(κi).

Denote by Xκi
(resp. XB) the functor obtained from X restricted to the category

of κi-schemes (resp. B-schemes). Then Xκi
is an algebraic space over Specκi. Note

that we have a natural left GL(E)-action on X. Hence x defines a morphism fx from
GLn,B to XB as follows:

fx(g) = g · x,

for all B-algebra C and all g ∈ GLn,B(C). This induces a morphism fxi
: GLn,κi

→
Xκi

.
Let U be an open retrocompact subspace of X which is schematically S–dense in

X. We have the following commutative diagram

U ×
X,fx

GLn,B −−−→ GLn,B

y
yfx

UB −−−→ XB

The algebraic space U ×
X,fx

GLn,B is representable by an open retrocompact subscheme

Vx of GLn,B which is S-dense according to base change property listed in 4.1. Since κi

is infinite, Vx(κi) is nonempty. Hence for each i, there is a point gi ∈ Vx(κi) such that
gi · xi is in the image of U(κi). By Chinese remainder theorem, there is an element
g ∈ GLn,B(B/

∏
Mi) which lifts gi for all i. As B is semilocal, we can lift g to an

element g ∈ GLn,B(B). By our construction g is in Vx(B). Hence g ·x is in the image
of U(B). Since δ(x) = δ(g · x), F is a pull back of GL(E) → X at g · x ∈ U(B).

As every semilocal ring B can be decomposed into a finite product of indecompos-
able semilocal rings Bi, the first assertion follows.

(2) Let B be a semilocal ring whose residue fields of maximal ideals are infinite and
F be a G-torsor over B. Denote by κi the residue fields of maximal ideals Mi of B.
Let U be an open retrocompact subspace of V/G which is S–schematically dense. We
consider the G–torsor P = V ×V/G U over U and want to show that it is (4)-versal,
that is, for a given G-torsor F over B to find u ∈ U(B) such that Pu

∼= F . The
Chinese Remainder theorem implies that V (B) 6= ∅. We pick v ∈ V (B), we can
define a right G-equivariant morphism fv from GL(E) to V(E) by

fv(σ) = v ◦ σ,
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where σ is an element of GL(E)(C) and C is a B-algebra. We have then a commutative
diagram of G-torsors

GL(E)B
fv

−−−→ VB

q

y q′

y

GL(E)B/GB
fv−−−→ (V/G)B.

The point is that f
−1

v (UB) is retrocompact and schematically B-dense in XB =
GL(E)B/GB according to the preliminaries of 4.1.

According to (1) applied to B, the G-torsor GL(E) → X is a (4)-versal torsor.

There exists x ∈ f
−1

v (UB) such that q−1(x) ∼= F . We put u = f v(x) and conlude that
Pu = q′−1(u) ∼= F .

Thus V → V/G is also a (4)-versal torsor. �

In this paper we shall use only the next special case.

Lemma 4.4. Let G be a finite locally free S-scheme. Let E be a locally free G −
R-module of finite rank. Let U ⊂ V(E) be a G–stable retrocompact S-dense open
subscheme such that G acts freely on U . Then U/G is representable by an S–scheme
X and the quotient map U → X is a versal (4)–torsor.

Proof. According to [8, III.2.6.1, Corollaire], U/G is representable by an S-scheme X
and U → X is a G–torsor. Lemma 4.3 shows that U → X is a versal (4)–torsor. �

Remark 4.5. In this setting, it is not clear whether (4)-versal torsors always exist.

4.3. Embbedings in quasi-split groups. In this section, we assume that S is a
semilocal scheme which is a finite field or whose residue fields (of maximal ideals) are
infinite. Let G be a quasi-split reductive S–group scheme.

Let (B, T ) be a Killing couple of G. We identity the Weyl group W (T ) with
NG(T )/T and denote by Dyn(G) the Dynkin scheme (which is finite étale over S).

We have a canonical isomorphism Dyn(Φ(G, T ))
∼

−→ Dyn(G).
According to [24, XXIV.3.13], if G is simply connected, we have an isomorphism

T
∼

−→ RDyn(G)/S(Gm,Dyn(G)). We denote by T reg the open subscheme of regular
elements of T . Then W (T ) stabilizes T reg and acts freely on it. According to
[8, III.2.6.1, Corollaire], the fppf sheaf T reg/W (T ) is representable and the map
π : T reg → T reg/W (T ) is a W (T )–torsor.

Denote by G//G the adjoint quotient. We use now Chevalley’s theorem [16] in this

setting u : T/W (T )
∼

−→ G//G. Away of type A2n, we can deal with the Steinberg
cross section c : G//G → G of the quotient map G → G//G [16, th. 5.7]; in that case
we can associate to an element x ∈ (T reg/W (T ))(S) the semisimple regular element
g = c(u(x)) ∈ G(S) giving rise to the maximal S–subtorus Tx = CG(g) of G. The
following generalizes to the semilocal setting a result of Gille-Raghunathan [12, 19].
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Theorem 4.6. Let S be a semilocal scheme which is a finite field or whose residue
fields (at maximal ideals) are infinite.

Let G be a quasi-split reductive S–group scheme. Let Ψ be a root data which is ad-
missible for G and let v ∈ Isomext(G,Ψ)(S) be an orientation. Then E(G,Ψ, v)(S) 6=
∅.

Proof. The finite field is obvious since all homogeneous G-spaces have a k-rational
point [25, III.2.4]. We assume that S = Spec(R) where R is a semilocal ring whose
residue fields (of maximal ideals) κ1, . . . κc are infinite.

Without loss of generality, we can assume that S is connected and G is semisimple
simply connected. Furthermore using the decomposition [24, XXIV.5.5] and the usual
Weil restriction argument, we can assume that the geometric fibers of G are almost
simple. Let (B, T ) be a Killing couple of G. We denote by W (T ) = NG(T )/T the
Weyl group and by Dyn(G) the Dynkin scheme (which is finite étale).

Let c be the orientation coming from the natural inclusion T →֒ G, and denote by
u ∈ Isomext(Φ(G, T ),Ψ)(S) the image of (c, v) under the morphism in Prop. 3.2.1.
We consider the left W–torsor J = Isomintu(Φ(G, T ),Ψ). According to Lemma 3.2,
we have E(G,Ψ, v) = J ∧W

E(G,Φ(G, T ), c).
By Lemma 4.4, π : T reg → T reg/W is a (4)-versal (left) W (T )–torsor. In particular

there exists x ∈ (T reg/W )(S) such that π−1(x) ∼= J (as left W (T )–torsors).

Case 1. G is without A2n-components. By Steinberg cross section, there is a semisim-
ple regular element t ∈ G(S) mapped to x. The centralizer of t is a maximal torus T ′

of G over S. Let c′ ∈ Isomext(G,Φ(G, T ′))(S) be the canonical orientation induced
by the natural inclusion from T ′ to G. Denote by u′ ∈ Isomext(Φ(G, T ),Φ(G, T ′))(S)
be the image of (c, c′) under the pairing in Prop. 3.2.1. By Prop. 3.2.2 the left
W (T )-torsors π−1(x) and Isomintu′(Φ(G, T ),Φ(G, T ′)) are isomorphic. It follows that
J ∧W

E(G,Φ(G, T ), c) = E(G,Ψ, v) is isomorphic to π−1(x) ∧W
E(G,Φ(G, T ), c) ∼=

E(G,Φ(G, T ′), c′). As E(G,Φ(G, T ′), c′)(S) 6= ∅, we conclude that E(G,Ψ, v)(S) is
not empty.

Case 2. G is of A2n-type. First note that for type A, we have a Cartan involution
defined over S, hence if we we have an embedding with respect to one orientation, we
have an embedding with respect to the other orientation. Hence it suffices to show
that E(G,Ψ) 6= ∅. The key point is to reduce to the case that G is of type A2n+1.

Let R/S be an étale quadratic algebra which splits G. We can assume that G is
the unitary group U(V, h) for some non-degenerate hermitian form (V, h) over R/S,
where V is a free R-module V of rank 2n+1 and h is of Witt index n. (See [15, Cor.
1.7].)

Let Si be the symmetric group of the set {1, ..., i}. We have a natural injection
from S2n+1 to S2n+2 and hence an injective homomorphism ι from S2n+1 ×Z/2Z to
S2n+1×Z/2Z which maps Z/2Z isomorphically to itself. The map ι induces a map ι∗ :
H1

ét(S,S2n+1×Z/2Z) → H1
ét(S,S2n+2×Z/2Z). Note that S2n+1×Z/2Z is isomorphic
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to the Weyl group of the split root datum of GL2n. Hence H1
ét(S,S2n+1 × Z/2Z)

classifies those root data which are étale locally isomorphic to the split root datum
of GL2n+1,S.

Thus Ψ = (M,M∨,R,R∨) corresponds to some [α] ∈ H1
ét(S,S2n+1 × Z/2Z). We

twist the split root datum of GL2n+2,S by ι∗([α]) and denote it by Ψ′ = (M′,M′∨,R′,R′∨).
Let T and T ′ be the tori determined by M and M′ respectively. Note that by our
construction M′∨ can be written as M∨ ⊕ E∨ with E is locally free of rank 1 in
such a way that R∨ is injectively sent to a subset of R′∨. Fix such an isomorphism

M′∨ ≃ M∨ ⊕ E∨. This in turns gives an isomorphism T ′ ≃ T × R
(1)
R/S(Gm). We

denote by T0 the subtorus 1× R
(1)
R/S(Gm) ⊆ T ′ (under the above isomorphism).

Write the Witt decomposition of V as 〈a〉 ⊥ Hn, where Hn is the maximal hyper-
bolic Hermitian subspace of V . Let (V ′, h′) = (V, h) ⊥ 〈−a〉. Let G′ = U(V ′, h′).
By our assumption, there is an orientation between Ψ and G. Hence Ψ and G are
both become inner forms after base change to R. By our construction of Ψ′ and G′,
they are also both of inner form after base change to R. Hence there is an orienta-
tion v′ between Ψ′ and G′. Since G′ is quasi-split of type A2n+1, by Case 1 we have
E(G′,Ψ′, v′)(S) 6= ∅.

Choose f ∈ E(G′,Ψ′, v′)(S). Consider the subgroup f(T0) in G′. Let C be the
centralizer CentrG′(f(T0)), which is a Levi subgroup of G′. Clearly f(T ′) ⊆ C. Let
V0 be the maximal submodule of V fixed by f(T0). Namely, V0 is the maximal
submodule on which f(T0) acts trivially. Note that as f(T0) is a torus, V is étale
locally decomposed into eigenspace of f(T0). Thus the rank of V0 is 2n + 1, which
can be checked étale locally. As h′ is a hyperbolic Hermitian form on V ′, V0 must
contains a totally isotropic submodule of rank n. Let h0 be the restriction of h′ on
V0. As (V0, h0) and (V, h) are R-module of the same rank and with maximal Witt
index, we have U(V0, h0) ≃ U(V, h) = G.

Clearly C stabilizes V ′ and hence induces an action of C/f(T0) on (V ′, h′). This
gives a group homomorphism of C/f(T0) to U(V0, h0), which is an isomorphism at
each geometric point s of S. Therefore C/f(T0) ≃ U(V0, h0) and f gives an embedding
of T ≃ T ′/T0 in G with respect to Ψ. �

Corollary 4.7. Let S be a semilocal scheme which is the spectrum of a finite field
or the spectrum of a semilocal rings whose residue fields at the maximal ideals are
infinite. Let G be a quasi-split reductive S–group scheme. Let X be an S-scheme
satisfying one of the following conditions:

(i) S is noetherian;

(ii) X is locally of finite type over S.

We assume that X is a left homogeneous under G and that for each point s ∈ S,
the stabilizers of Xs are maximal tori of Gs. Then X ∼= G/T where T is a maximal
S–torus of G.

Proof. It follows immediately from Theorem 3.4 and Theorem 4.6. �
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4.4. An application to the local-global principle for embeddings. In this
section we assume that k is a global field with characteristic not 2. Let K be a field,
A be a central simple algebra over K with involution τ , and E be an étale algebra
over K with involution σ. Suppose that τ |K = σ|K and that k is the field of invariants
Kτ .

Let dimL A = n2. Assume that dimK E = n, and that if K 6= k, then dimk E
σ = n.

If K = k, then we assume that dimk E
σ = [n+1

2
].

The local-global principle for embeddings of K-algebras with involution (E, σ) into
(A, τ) is first considered in [18]. One can associate a root datum Ψ to (E, σ) and
a reductive group U(A, τ)◦ to (A, τ), where U(A, τ)◦ is the connected component of
the unitary group U(A, τ). (See [15] §1.3.2.) In [15] §1.3.2 and [2] §1.2 and 1.3, it is
shown that there is a bijection between the embeddings of algebras with involutions
over k and the embeddings of corresponding root data into reductive groups.

Combining with Theorem 4.6, we have the following theorem.

Theorem 4.4.1. Let (E, σ) and (A, τ) be as above. If U(A, τ)◦ is quasi-split, then
the local-global principle holds for the K-algebra embeddings of (E, σ) into (A, τ).

Proof. Let Ψ be the root datum associated to (E, σ) ([15] §1.3.2). Let G = U(A, τ)◦.
By Theorem 4.6, it suffices to show that Isomext(G,Ψ)(k) 6= ∅.

First we consider the case where K 6= k. In this case, we can always fix an
orientation by [15] Theorem 1.15 (2) and Remark 1.16.

Next we consider the case where K = k. If τ is symplectic involution or τ is
orthogonal with n odd, then G is of type Cn/2 or B(n+1)/2. Then there is always an
orientation between Ψ and G.

Consider the case that τ is orthogonal with n even. Suppose there is an embedding
ηv of (E ×k kv, σ ⊗ idkv) into (A ×k kv, σ ⊗ idkv) for all places v of k. Then ηv
gives an isomorphism between the discriminant ∆(E) of E and the center Z(A, τ)
of the Clifford algebra of (A, τ) over kv (see [3] §2.3). As they are both quadratic
étale algebras over k, this means that ∆(E) is isomorphic to Z(A, τ) over k. By [2]
Proposition 1.3.1, an isomorphism between ∆(E) and Z(A, τ) gives an orientation
between Ψ and G.

Hence for K = k, we can always fix an orientation between Ψ and G. �
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