
HAL Id: hal-04171949
https://hal.science/hal-04171949

Submitted on 27 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Verified High Performance Computing: the SyDPaCC
Approach

Frédéric Loulergue, Abdelali Ed-Dbali

To cite this version:
Frédéric Loulergue, Abdelali Ed-Dbali. Verified High Performance Computing: the SyDPaCC Ap-
proach. 16th International Conference on Verification and Evaluation of Computer and Commu-
nication Systems (VECoS), Oct 2023, Marrakech, Morocco. �10.1007/978-3-031-49737-7_2�. �hal-
04171949�

https://hal.science/hal-04171949
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


PREPRINT

Verified High Performance Computing:
the SyDPaCC Approach

Frédéric Loulergue Ali Ed-Dbali
Laboratoire d’Informatique Fondamentale d’Orléans

Univ Orléans, INSA CVL, LIFO EA 4022, Orléans, France
{frederic.loulergue, ali.eddbali}@univ-orleans.fr

July 27, 2023

Abstract

The SyDPaCC framework for the Coq proof assistant is based on a transfor-
mational approach to develop verified efficient scalable parallel functional programs
from specifications. These specifications are written as inefficient (potentially with a
high computational complexity) sequential programs using some easily understandable
predefined sequential function. We obtain efficient parallel programs implemented us-
ing algorithmic skeletons that are higher-order functions implemented in parallel on
distributed data structures. The output programs are constructed step-by-step by
applying transformation theorems. Leveraging Coq type classes, the application of
transformation theorems is partly automated. The current version of the framework is
presented and exemplified on the development of a parallel program for the maximum
segment sum problem. This program is experimented on a parallel machine.

Keywords: program transformation, scalable parallel computing, functional program-
ming, interactive theorem proving

1 Introduction

Our everyday activities generate extremely large volume of data. Big data analytics offer
opportunities in a variety of domains [3, 12].

While there are many challenges in the design and implementation of big data analytics
applications, we focus on the programming aspects. Due to the large scale, scalable par-
allel computing is a necessity. Most approaches either cite Bulk Synchronous Parallelism

1



(BSP) [41] as an inspiration, that is the case of Pregel [30] and related frameworks such as
Apache Giraph, or are related to, even if it is not often acknowledged, algorithmic skele-
tons [5]. This is the case of Hadoop MapReduce [8] and Spark [1].

Both BSP and algorithmic skeletons are structured and high-level approaches to par-
allelism which free the developers from tedious details of the implementation of parallel
algorithms found for example in MPI programming, a de facto standard for writing HPC
programs. While BSP is a general purpose parallel programming model, algorithmic skele-
tons approaches as well as the mentioned big data frameworks are limited to what is ex-
pressible by the build blocks they provide. This lack of generality is both a strength making
them easier to use in classes of applications they naturally cover, but also a weakness in that
expressing one’s algorithm with these building blocks may become very convoluted or even
impossible.

SyDPaCC [27, 26] is a framework for the Coq proof assistant to systematically develop
correct and efficient parallel programs from specifications. Currently, SyDPaCC provides
sequential program optimizations via transformations based on list homomorphism theo-
rems [16] and the diffusion theorem [20]. It also provides automated parallelization via
verified correspondences between sequential higher-order functions and algorithmic skele-
tons implemented using the parallel primitives of BSML [25] a library for scalable par-
allel programming with the multi-paradigm (including functional) programming language
OCaml [23]. In this paper, we develop a new verified parallel algorithm for the maximum
segment sum problem, which is for example a component of computer vision applications to
detect the brightest area of an image.

The remaining of the paper is organized as follows. Functional bulk synchronous parallel
programming with the BSML library is introduced in Section 2. Section 3 is devoted to
an overview of the SyDPaCC framework. In Section 4, we develop a verified scalable
Bulk Synchronous Parallel algorithm of the maximum segment sum problem and experiment
(Section 5) on a parallel machine the extracted code from the Coq proof assistant. We
compare our approach to related work in Section 6 and conclude in Section 7.

2 Functional Bulk Synchronous Parallelism

In the Bulk Synchronous Parallel model, the BSP computer is seen as a homogeneous
distributed memory machine with a point-to-point communication network and a global
synchronization unit. It runs BSP programs which are sequences of so-called super-steps.
A super-step is where the parallelism is. The computation phase is concerned with each
processor-memory pair computing using only the data available locally. In the communica-
tion phase, each processor may request data from other processors and send requested data
to other processors. Finally, during the synchronization phase, the communication exchanges
are finalized and the super-step ends with a global synchronization of all the processors.

BSML offers a set of constants (giving access to the parameters of the BSP machine as
they are discussed in [37] but omitted here) including bsp_p the number of processors in
the BSP machine and a set of four functions which are expressive enough to express any

2



module type SKELETONS = sig

type α dislist (* A type for distributed lists *)

val init : int →(int →α) →α dislist

val map : (α →β) →α dislist →β dislist

val filter : (α →bool) →α dislist →α dislist

val count : α dislist →int

end

Figure 1: A Signature for Algorithmic Skeletons on Distributed Lists

BSP algorithm. BSML is implemented as a library for the multi-paradigm and functional
language OCaml [23]. BSML is purely functional but using on each processor the imperative
features of OCaml, it is possible to implement an imperative programming library [25] in the
style of the BSPlib for C [18]. In this paper we are interested in the pure functional aspects
of BSML as it is only possible to write pure functions within Coq.

Given any type α and a function f from int to α (which is written f: int→α in OCaml),
the BSML primitive mkpar f (mkpar applied to f, application in OCaml and many other
functional languages is simply denoted by a space) creates a parallel vector of type α par.
Parallel vectors are therefore a polymorphic data-structure. In such a parallel vector, pro-
cessor number i with 0 ≤ i <bsp_p, holds the value of f i. For example, mkpar(fun i→i)

is the parallel vector ⟨0, . . . , bsp p − 1⟩ of type int par. In the following, this parallel
vector is denoted by this. The function replicate has type α →α par and can be de-
fined as: let replicate = fun x →mkpar(fun i →x). In expression replicate x, all
the processors will contain the value of x.

(+)1 is the partial application of addition seen in prefix notation, it is equivalent to
fun x→1+x. Therefore replicate ((+)1) is a parallel vector of functions and its type is
(int→int)par. A parallel vector of functions is not a function and cannot be applied di-
rectly. That is why BSML provides the primitive apply that can apply a parallel vector
of functions to a parallel vector of values. For example, apply (replicate ((+)1)) this

is the parallel vector ⟨1, . . . , bsp p⟩. Using apply and replicate in such a way is com-
mon. The function parfun is also part of the BSML standard library and is defined as:
let parfun f = apply(replicate f).

The primitive proj can be seen as a partial inverse of mkpar, its type is α par →(int →α).
However, proj(mkpar f) is in general different from f. Indeed f may be defined on all the
values of type int, but proj(mkpar f) is defined only on {0, . . . , bsp p− 1}.

To transform a parallel vector into a list, one can define to_list as follows:
let to_list v = List.map (proj v) processors where processors has type int list

and contains the integers from 0 (included) to bsp_p (excluded).
While mkpar and apply do not require any communication or synchronization to run,

proj needs communications and a global synchronization. The value of each processor is sent
to all the other processors (it is a total exchanged). For a finer control over communications
the primitive put should be used. It is the most complex operation of BSML and its type is

3



type α dislist = { content : α list par; size : int }

let init (size : int) (f : int →α) : α dislist =
let rem = size mod bsp_p in

let ajust pid = if pid < rem then 1 else 0 in

let local_size pid = (size / bsp_p) + ajust pid in

let first_index pid =
if pid < rem then pid ∗ (local_size pid + 1)
else (pid ∗ local_size pid) + rem

in

{
content =
mkpar (fun pid →

let lsize = local_size pid in

let findex = first_index pid in

List.init lsize (fun i →f (findex + i)));
size;

}

let map (f : α →β) (l : α dislist) : β dislist =
{ content = parfun (List.map f) l. content; size = l. size }

let filter (p : α →bool) (l : α dislist) : α dislist =
let sum : int list →int = List.fold_left ( + ) 0 in

let new_content =parfun (List.filter p) l. content in

let local_sizes =parfun List.length new_content in

let new_size = sum (to_list local_sizes) in
{ content = new_content; size = new_size }

let count (l : α dislist) = l. size

Figure 2: A BSML Example

(int→α)par →(int→α)par. The functions in the input vector contain the messages to be
sent to other processors. The functions in the output vector contain the messages received
from other processors. For example if the input vector contains function ini at processor
i, then the value v = ini i

′ will be sent to processor i′. After executing the put, processor
i′ contains a function outi′ such that outi′ i = v. Some OCaml values are considered to be
empty messages so an application of put does mean that each processor communicates with
every other processors. For the sake of conciseness we do not detail put further but we refer
to [28].

As an example, we implement in Figure 2 the set of algorithmic skeletons on a data-
structure of distributed lists whose module type is shown in Figure 1.

We implement the distributed list type as a record type: its content is a parallel vector
of lists and it also possesses a field for the global size of the distributed list. init is similar
to mkpar, however for distributed lists the size is given by the user while it is always bsp_p
for parallel vectors. We want the list to be distributed evenly: each processor contains

4



size/bsp_p elements, or one more element than that.
map is similar to the List.map function on sequential lists: it applies a function f to

all the elements of the lists. Here each processor takes care of the sub-list it holds locally.
List.filter p l uses a predicate p to keep only the elements of l that satisfy this predicate.
Our filter skeleton does the same: the part about the content is easy to write. But we
also need to update the global size of the distributed list and communications are required
to do so. Note that after a filter, the distributed list may no longer be evenly distributed.

3 An Overview of SyDPaCC

We present the use of SyDPaCC through a very simple example. In this case the speci-
fication is already quite efficient, but often the specification has a higher complexity than
the optimized program. This is for example the case of the maximum prefix sum problem
presented in [27] and the maximum segment sum problem presented in the next section.

Our goal is to obtain a parallel algorithm for computing the average of a list of natural
numbers. To do so, we use SyDPaCC to parallelize a function that sums the elements of a
list and counts the number of elements of this list. This specification can be written as:

Fixpoint sum (l: list nat) : nat :=
match l with

| [] ⇒ 0
| n:: ns ⇒ n + sum ns

end.

Definition count : list nat → nat := length (A:=nat).

Definition spec : list nat → nat ∗ nat := (sum △ count).

sum is a recursive function defined by pattern matching on its list argument while count is
just an alias for the pre-defined length function. The specification spec is defined as the
tupling of these two functions.

We then try to show that this function has some simple properties: it is leftwards,
meaning it can be written as an application of List.fold_right, rightwards, meaning it
can be written as an application of List.fold_left, and finally it has a right inverse, which
is a weak form of inverse.

For a list l = [x1;. . .;xn], binary operations ⊕ ⊗, and values el er, we have:

List.fold_left ⊕ el l = (. . .((el ⊕ x1) ⊕ x2) . . .)⊕ xn
List.fold_right ⊗ er l = x1 ⊗ (x2 (. . .(xn ⊗ er). . .))

spec is indeed leftwards, rightwards and has a right inverse:

Definition opr := fun n acc ⇒ (n + fst acc, 1 + snd acc).

Instance spec_leftwards: Leftwards spec opr (0,0).

5



Proof. (* omitted *) Defined.

Definition opl := fun acc n ⇒ (n + fst acc, 1 + snd acc).

Instance spec_rightwards: Rightwards spec opl (0,0).
Proof. (* omitted *) Defined.

Definition spec_inv (p: nat∗nat) : list nat :=
let (s, c):= p in match c with 0 ⇒ [] | S c ⇒ s::(repeatv c 0) end.

Instance spec_inverse: Right_inverse spec spec_inv.

Each of these properties are expressed as instances of type-classes defined in SyDPaCC.
Basically type-classes are just record types (in these cases with only one field that holds a
proof of the property of interest) and the values of these types are called instances. The
difference with record types is that instances are recorded in a database. Coq functions
can have implicit arguments: when such arguments have a type that is a type-class, each
time the function is applied Coq searches for an instance that fits the implicit argument.
Instances may have other instances as parameters. In this situation to build an instance the
system first needs to build instances for the parameters. Such parametrized instances can
be seen as Prolog rules while non-parametrized instances can be seen as Prolog facts. Coq
searches for an instance with a Prolog-like resolution algorithm.

For the inverse, we need to build a list l such that for a sum s and a number of elements
c, we have spec l = (s, c). One possible solution is to have l = [s; 0; . . .; 0]. An application
of function repeatv builds the list of zeros. If c = 0 then the list should be empty. The
omitted proofs are short: from 3 to 9 lines with calls to a couple one-liner lemmas.

These instances are enough for the system to automatically parallelize the specification,
as follows:

Definition par_average : par(list nat) → nat :=
Eval sydpacc in

(uncurry Nat.div) ◦ (parallel spec).

In this example, parallel spec will produce a composition of a parallel reduce and a
parallel map. The automated sequential optimization of spec,then the automated paralleliza-
tion is triggered by the call to parallel that has several implicit arguments whose types are
type-classes.

Two of them are notions of correspondence:

• A type Tsource corresponds to a type Ttarget if there exists a surjective function join: Ttarget →
Tsource. We note Tsource ◀ Ttarget such a type correspondence. Intuitively, the join

function is surjective because we want the target type to have at least the same ex-
pressive power than the source type. If the source type is list A and target type is a
distributed type such as par(list A), there are many ways a sequential list could be
distributed into a parallel vector of lists.

6



• A function f: T1source → T2source corresponds to ftarget: T
1
target → T2target if T

1
source◀ T1target

and T2source◀ T2target and the following property holds:

∀(x : T1target), join
2(ftarget x) = fsource(join

1 x).

SyDPaCC provides type correspondences such as list A ◀ par(list A) as well as sev-
eral function correspondences including List.map corresponds to par_map. It also offers
parametrized instances for the composition of functions with ◦, △ and × (pairing). Finally
while looking for such instances, SyDPaCC also checks if there are optmized versions of
functions, captured by instances of type Opt f f’ meaning f’ is an optimized version of f.

These optimizations are based on transformation theorems expressed as instances. SyD-
PaCC provides a variant of the third homomorphism theorem [16] that states that a function
is a list homomorphism when it is leftwards, rightwards and has a right inverse. The first
homomorphism theorem states that a list homomorphism can be implemented as a composi-
tion of map and reduce. The other transformation theorem available for lists is the diffusion
theorem [20].

In the example, parallel looks for a correspondence of spec that triggers the optimiza-
tion of spec which is done thanks to the two homomorphism theorems mentioned above. At
the end of the Prolog-like search, it is established (and verified) than spec corresponds to a
composition of a parallel reduce and a parallel map.

To obtain a very efficient program, the user can try to simplify the binary operation and
the function given respectively as arguments of the parallel reduce and the parallel map.
Indeed, by default the former is:
fun args⇒ let (p1,p2) in spec(spec_inv p1 ++ spec_inv p2) and the latter is fun a ⇒ spec[a].
To obtain optimized versions, one can use the type-classes Optimised_op and Optimised_f

that only take as argument the specification. The optimized versions do not need to be
known beforehand: they can be discovered while proving the instances. In our example, the
operation is mostly the addition of the first components of the argument pairs (replaced by
0 if the second component is 0), and the function is fun a ⇒ (a, 1).

Finally, the extracted1 OCaml code (with calls to BSML functions in a module MapReduce
similar to the functions of Figure 2) is given Figure 3. The SyDPaCC framework provided
a guide towards the development of such a parallel program, but also the proof that this
program is correct with respect to the initial specification.

4 Verified Parallel Maximum Segment Sum

The goal of maximum segment sum problem is to obtain the maximum value among the sums
of all segments (i.e. sub-structures) of a structure. We consider here lists, but algorithms
are equivalent for 1D arrays.

Basically, the specification for this problem can be written as follows:

Definition mss_spec := maximum ◦ (map sum) ◦ segs.

1The type annotations have been added manually and the argument renamed to increase readability

7



let par_avg (numbers : (nat list) par) : nat =
uncurry div

(MapReduce.par_reduce
(fun a b →

(add (match snd a with | O →O | S _ →fst a)
(match snd b with | O →O | S _ →fst b),

add (snd a) (snd b)))
(spec Nil)
(MapReduce.par_map (fun a →(a, 1))) numbers)

Figure 3: OCaml Code Extracted from Coq

There are several derivations of parallel algorithms for the maximum segment sum prob-
lem. The first, informal one, was proposed by Cole [6]. Takeichi et al. [19] gave a formal
account of this construction using a theory of tupling and fusion. Their theory may be
expressed in Coq, but it is not simple as theorems are stated for an arbitrary number of
mutually recursive functions which are tupled, hence it is necessary to deal with tuples of an
arbitrary size. The algorithm they obtain (from a similar specification than the one above)
is a list homomorphism and therefore SyDPaCC could automatically parallelized it. The
GTA (generate-test-aggregate) approach [10] – which was implemented in Coq [11], but this
implementation is not compatible with the current version of SyDPaCC– is also applicable.
Both solutions are not well suited as we want to consider in the future the variant prob-
lem of maximum segment sum with a bound on the segment lengths. Thus, we based our
contribution on the calculation proposed by Morihata [33].

Morihata only considered non-empty lists. There is support in SyDPaCC to deal with
non-empty lists [27], but it requires for example to use different function compositions that
transport facts about the non-emptyness of lists across function composition. For example,
segs is the function that generates all the segments of a list, and it returns a non-empty list
even if its argument is an empty list. The map function preserves non-emptiness. Finally, if
maximum returns a number then it is defined only on non-empty lists.

Here, we choose to deal with empty lists. Therefore, the function maximum used in the
specification has type list N.t →option N.t where N.t is an abstract type of numbers
that possess the required algebraic properties, and option is the Coq type:

Inductive option (A: Type) : Type := | Some: A→ option A | None: option A.

which basically adds a value None to the type given as argument to option. In the case of
maximum we interpret None as −∞. The definition of sum and maximum follow:

Definition sum : list t → t := reduce add.
Definition optionize ‘(f:A→ A→ A) (a b: option A) : option A :=
match (a,b) with
| (None, None) ⇒ None

| (None, _ ) ⇒ b

| (_, None) ⇒ a

| (Some a, Some b) ⇒ Some(f a b)
end.

8



Definition max_option := optionize max.
Definition maximum := reduce max_option ◦ (map Some).

We proved that is f is associative then optionize f forms a monoid with the neutral element
being None.

During the transformations of mss_spec, a version of add that deals with option N.t

values instead of N.t values is needed. The add_option function is:

Definition optionize_none ‘(f:A→ A→ A)(a b: option A) : option A :=
match (a,b) with
| (Some a, Some b) ⇒ Some(f a b)
| _ ⇒ None

end.
Definition add_option := optionize_none N.add.

If the original operation f forms a monoid with neutral element e, then the optionzed version
forms a monoid with Some e. None is an absorbing element of optionize_none f.

The function generating all the segments is defined in terms of prefix and tails which
are two functions already defined in SyDPaCC that respectively return the prefixes of a list
and its suffixes (List.app is part of Coq’s standard library and is list concatenation):

Definition segs {A}:= reduce (@List.app (list A)) ◦ (map prefix) ◦ tails.

We then prove the following instance of Opt to give an equivalent but optimized version
of mss_spec:

Instance opt_mss :
Opt mss_spec

( (reduce max_option) ◦ (map fst) ◦
(scanr (oslash add_option max_option) (None, Some 0)) ◦
(map (fun x : t ⇒ (Some x, Some x))) ).

The proof of this instance follows roughly the calculation of Morihata but for the treatment
of empty lists. This proof is simple in term of structure: just a sequence of applications
of rewriting steps, each step being the application of a transformation lemma. Most of the
lemmas were already in Coq or SyDPaCC libraries but the definition of oslash and related
lemma (and instances omitted here):

Definition oslash [A] otimes oplus

‘{Monoid A otimes e_t} ‘{Monoid A oplus e_p}: (A∗A)→ (A∗A)→ (A∗A) :=
fun a_b c_d ⇒
( oplus (fst a_b)(otimes (snd a_b)(fst c_d)),
otimes (snd a_b) (snd c_d) ).

Lemma distributivity_reduce_scanl A

‘{Ht: Monoid (A:=A) otimes e_t} ‘{Hp: Monoid (A:=A) oplus e_p}
{Ha: RightAbsorbing otimes e_p} {Hd: LeftDistributive otimes oplus}:
∀ l,
(reduce oplus) (scanl otimes e_t l) =
fst(reduce (oslash otimes oplus) (map dup l)).

Morihata used this operator and lemma based on a method first proposed by Smith [38].

9



The optimized version also uses scanr which is linear on the length of its list argument.
We implemented a tail recursive version of scanr (as we do for all the function on lists that
are supposed to be part of the final optimized code) and satisfies the following expected
property for a scanr:

Lemma scanr_spec_monoid:
∀ A op e {Hm: @Monoid A op e} l,
scanr op e l = map (reduce op) (tails l).

The optimized version has a linear complexity in the length of its argument while the specifi-
cation has a cubic one. The goal of the transformations was to remove the calls to prefix and
tails. These transformations are not automatic, but the support provided by SyDPaCC
is a collection of already proved transformations.

Module Make (Import Bsml: Core.BSML)(N: Number).
(* ... application of a few parametric modules omitted *)

Definition par_mss : par(list N.t) → option N.t :=
Eval sydpacc in

parallel (Mss.mss_spec).
End Make.

Figure 4: Automatic parallelization of MSS

The last step is fully automatic and very simple as shown in Figure 4. With the call to
parallel, SyDPaCC uses the instance opt_mss as well as instances of types and functions
correspondences that are part of the framework to generate a parallel version of mss_spec
by replacing the list functions by their algorithmic skeletons counter-parts: par_reduce,
par_map and par_scanr.

5 Experiments

The Coq proof assistant offers an extraction mechanism [24] able to generate compilable code
from Coq definitions and proofs. In particular, it can generate OCaml code. Extracting the
parametric module of Figure 4 generates an OCaml functor (which is basically a parametric
module). To be able to execute the function par_mss, we first need to apply this functor. For
the number part, we just wrote a module using OCaml native integers of type int for N.t. For
the paramter Bsml we simply apply the actual parallel implementation of BSML primitives
as provided by the BSML library for OCaml. This library is implemented on top of an API
for parallel processing library in C named MPI [39] (several implementations of this API
exist). For the moment, the Bsml module of the BSML library cannot directly be given as
argument to the Make functor. Indeed, processor identifiers are represented by mathematical
natural numbers in Coq while they are encoded as OCaml bounded int values. SyDPaCC
features a wrapper module BsmlWrapperN that performs number conversions when needed.

The application of the verified extracted function and aspects such as input/output oper-
ations and command line argument management are not verified and written in plain OCaml.

10



Figure 5: Time and relative speed-up (64 · 106 elements, median of 30 measures)

The final program was run on a shared memory parallel machine, but it could run on large
scale distributed memory machines.

We ran the program on a machine having an Intel Xeon Gold 5218 processor with 32
cores. The operating system was Ubuntu 22.04. To compile we used OCaml 4.14.1. The MPI
implementation was OpenMPI 4.1.2. We ran par_mss on a list of length 64·106 and measured
the time required for this computation 30 times. The results for the relative speed-up are
presented in Figure 5 for an increasing number of cores. The speedup is fine but of course
as the number of cores increases the relative impact of communication and synchronization
time becomes bigger. The variance increases to reach a maximum for 4 cores then decreases
again. We do not have an explanation for this behavior yet.

6 Related Work

The literature on constructive algorithmics, introduced by Bird [2], is extensive and includes
studies on parallel programming [21, 17, 9, 32, 6]. While most of the work in this field has
been done on paper, recent advancements have seen the use of interactive theorem proving,
as demonstrated in works like [34]. However, interactive theorem proving has not been
extensively explored in the context of parallel programming.

From a functional programming perspective, the study of frameworks such as Hadoop
MapReduce [22, 31] and Apache Spark [1, 4] is relevant to our SyDPaCC framework, as we

11



can adopt a similar approach to extract MapReduce or Spark programs from Coq. Ono et
al. [36] employed Coq to verify MapReduce programs and extract Haskell code for Hadoop
Streaming or directly write Java programs annotated with JML, utilizing Krakatoa [13] to
generate Coq lemmas. However, their work is less systematic and automated than SyD-
PaCC.

There have been contributions that formalize certain aspects of parallel programming,
but as far as we know, these approaches do not directly yield executable code like our SyD-
PaCC framework. Swierstra [40] formalized mutable arrays with explicit distributions in
Agda, while BSP-Why [14] allows for deductive verification of imperative BSP programs,
although they represent models of C BSPlib [18] programs rather than executable code.
Another example is the formalization of the Data Parallel C programming language us-
ing Isabelle/HOL [7], where Isabelle/HOL expressions representing parallel programs were
generated.

7 Conclusion

We developed a verified parallel implementation of a functional scalable parallel program for
solving the maximum segment sum problem and studied its parallel performances. Experi-
ments on a larger number of processors are ongoing.

Often in applications, the domain is 2D rather than 1D, and it may be interesting to
consider segments of a given bounded size, for example in genomics. We therefore plan
to systematically develop parallel algorithms for these problems starting from the work of
Morihata [33].

The development of SyDPaCC started in 2015 while preparing a graduate course for a
summer school, on the predecessor of SyDPaCC named SDPP. There are SDPP theories,
namely BSP homomorphisms [15, 29] and generate, test, aggregate [10, 11] that have not
been ported to SyDPaCC yet. We also plan to work on additional data-structures such as
trees. For the moment, SyDPaCC only targets BSML+OCaml but it will be extended to
generate Scala [35] code with Apache Spark for parallel processing.

References

[1] Armbrust, M., Das, T., Davidson, A., Ghodsi, A., Or, A., Rosen, J., Stoica, I.,
Wendell, P., Xin, R., Zaharia, M.: Scaling Spark in the Real World: Performance
and Usability. PVLDB 8(12), 1840–1851 (2015), http://www.vldb.org/pvldb/vol8/
p1840-armbrust.pdf

[2] Bird, R.: An introduction to the theory of lists. In: Broy, M. (ed.) Logic of Programming
and Calculi of Discrete Design. pp. 5–42. Springer-Verlag (1987)

[3] Cao, L.: Data science: A comprehensive overview. ACM Comput. Surv. 50(3) (jun
2017). https://doi.org/10.1145/3076253

12

http://www.vldb.org/pvldb/vol8/p1840-armbrust.pdf
http://www.vldb.org/pvldb/vol8/p1840-armbrust.pdf
https://doi.org/10.1145/3076253


[4] Chen, Y., Hong, C., Lengál, O., Mu, S., Sinha, N., Wang, B.: An executable sequential
specification for Spark aggregation. In: Networked Systems (NETSYS). LNCS, vol.
10299, pp. 421–438 (2017). https://doi.org/10.1007/978-3-319-59647-1_31

[5] Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press (1989)

[6] Cole, M.: Parallel Programming, List Homomorphisms and the Maximum Segment
Sum Problem. In: Joubert, G.R., Trystram, D., Peters, F.J., Evans, D.J. (eds.) Parallel
Computing: Trends and Applications, PARCO 1993. pp. 489–492. Elsevier (1994)

[7] Daum, M.: Reasoning on Data-Parallel Programs in Isabelle/Hol. In: C/C++ Verifi-
cation Workshop (2007). https://doi.org/http://www.cse.unsw.edu.au/~rhuuck/
CV07/program.html

[8] Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters.
In: OSDI. pp. 137–150. USENIX Association (2004)

[9] Dosch, W., Wiedemann, B.: List Homomorphisms with Accumulation and Indexing.
In: Michaelson, G., Trinder, P., Loidl, H.W. (eds.) Trends in Functional Programming.
pp. 134–142. Intellect (2000)

[10] Emoto, K., Fischer, S., Hu, Z.: Filter-embedding semiring fusion for programming with
MapReduce. Formal Aspects of Computing 24(4-6), 623–645 (2012). https://doi.
org/10.1007/s00165-012-0241-8

[11] Emoto, K., Loulergue, F., Tesson, J.: A Verified Generate-Test-Aggregate Coq Library
for Parallel Programs Extraction. In: Interactive Theorem Proving (ITP). pp. 258–
274. No. 8558 in LNCS, Springer, Wien, Austria (2014). https://doi.org/10.1007/
978-3-319-08970-6_17

[12] Fang, R., Pouyanfar, S., Yang, Y., Chen, S.C., Iyengar, S.S.: Computational health
informatics in the big data age: A survey. ACM Comput. Surv. 49(1) (2016). https:
//doi.org/10.1145/2932707

[13] Filliâtre, J.C., Marché, C.: The Why/Krakatoa/Caduceus Platform for Deductive Pro-
gram Verification. In: Damm, W., Hermanns, H. (eds.) 19th International Conference
on Computer Aided Verification. LNCS, Springer (2007)

[14] Gava, F., Fortin, J., Guedj, M.: Deductive Verification of State-Space Algorithms.
In: IFM. LNCS, vol. 7940, pp. 124–138. Springer (2013). https://doi.org/10.1007/
978-3-642-38613-8_9

[15] Gesbert, L., Hu, Z., Loulergue, F., Matsuzaki, K., Tesson, J.: Systematic Develop-
ment of Correct Bulk Synchronous Parallel Programs. In: Parallel and Distributed
Computing, Applications and Technologies (PDCAT). pp. 334–340. IEEE (2010).
https://doi.org/10.1109/PDCAT.2010.86

13

https://doi.org/10.1007/978-3-319-59647-1_31
https://doi.org/http://www.cse.unsw.edu.au/~rhuuck/CV07/program.html
https://doi.org/http://www.cse.unsw.edu.au/~rhuuck/CV07/program.html
https://doi.org/10.1007/s00165-012-0241-8
https://doi.org/10.1007/s00165-012-0241-8
https://doi.org/10.1007/978-3-319-08970-6_17
https://doi.org/10.1007/978-3-319-08970-6_17
https://doi.org/10.1145/2932707
https://doi.org/10.1145/2932707
https://doi.org/10.1007/978-3-642-38613-8_9
https://doi.org/10.1007/978-3-642-38613-8_9
https://doi.org/10.1109/PDCAT.2010.86


[16] Gibbons, J.: The third homomorphism theorem. J Funct Program 6(4), 657–665 (1996).
https://doi.org/10.1017/S0956796800001908

[17] Gorlatch, S., Bischof, H.: Formal Derivation of Divide-and-Conquer Programs: A Case
Study in the Multidimensional FFT’s. In: Mery, D. (ed.) Formal Methods for Parallel
Programming: Theory and Applications. pp. 80–94 (1997)

[18] Hill, J.M.D., McColl, B., Stefanescu, D.C., Goudreau, M.W., Lang, K., Rao, S.B.,
Suel, T., Tsantilas, T., Bisseling, R.: BSPlib: The BSP Programming Library. Parallel
Computing 24, 1947–1980 (1998)

[19] Hu, Z., Iwasaki, H., Takeichi, M.: Construction of List Homomorphisms by Tupling
and Fusion. In: International Symposium on Mathematical Foundations of Computer
Science (MFCS’96). LNCS, vol. 1113, pp. 407–418. Springer (1996)

[20] Hu, Z., Takeichi, M., Iwasaki, H.: Diffusion: Calculating Efficient Parallel Programs.
In: ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM’99). pp. 85–94. ACM (January 22-23 1999)

[21] Hu, Z., Iwasaki, H., Takeichi, M.: Formal derivation of efficient parallel programs by
construction of list homomorphisms. ACM Trans Program Lang Syst 19(3), 444–461
(1997). https://doi.org/10.1145/256167.256201

[22] Lämmel, R.: Google’s MapReduce programming model – Revisited. Sci Comput Pro-
gram 70(1), 1–30 (2008). https://doi.org/10.1016/j.scico.2007.07.001

[23] Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml
system release 5.00. https://v2.ocaml.org/manual/ (2022)

[24] Letouzey, P.: Coq Extraction, an Overview. In: Beckmann, A., Dimitracopoulos, C.,
Löwe, B. (eds.) Logic and Theory of Algorithms, Fourth Conference on Computability
in Europe, CiE 2008. LNCS, vol. 5028. Springer (2008). https://doi.org/10.1007/
978-3-540-69407-6_39

[25] Loulergue, F.: A BSPlib-style API for Bulk Synchronous Parallel ML. Scalable Comput-
ing: Practice and Experience 18, 261–274 (2017). https://doi.org/10.12694/scpe.
v18i3.1306

[26] Loulergue, F.: A verified accumulate algorithmic skeleton. In: Fifth International Sym-
posium on Computing and Networking (CANDAR). pp. 420–426. IEEE, Aomori, Japan
(November 19-22 2017). https://doi.org/10.1109/CANDAR.2017.108

[27] Loulergue, F., Bousdira, W., Tesson, J.: Calculating Parallel Programs in Coq using
List Homomorphisms. Int J Parallel Prog 45, 300–319 (2017). https://doi.org/10.
1007/s10766-016-0415-8

14

https://doi.org/10.1017/S0956796800001908
https://doi.org/10.1145/256167.256201
https://doi.org/10.1016/j.scico.2007.07.001
https://v2.ocaml.org/manual/
https://doi.org/10.1007/978-3-540-69407-6_39
https://doi.org/10.1007/978-3-540-69407-6_39
https://doi.org/10.12694/scpe.v18i3.1306
https://doi.org/10.12694/scpe.v18i3.1306
https://doi.org/10.1109/CANDAR.2017.108
https://doi.org/10.1007/s10766-016-0415-8
https://doi.org/10.1007/s10766-016-0415-8


[28] Loulergue, F., Gava, F., Billiet, D.: Bulk Synchronous Parallel ML: Modular Im-
plementation and Performance Prediction. In: International Conference on Compu-
tational Science (ICCS). LNCS, vol. 3515, pp. 1046–1054. Springer (2005). https:

//doi.org/10.1007/11428848_132

[29] Loulergue, F., Robillard, S., Tesson, J., Légaux, J., Hu, Z.: Formal Derivation and
Extraction of a Parallel Program for the All Nearest Smaller Values Problem. In: ACM
Symposium on Applied Computing (SAC). pp. 1577–1584. ACM, Gyeongju, Korea
(2014). https://doi.org/10.1145/2554850.2554912

[30] Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski,
G.: Pregel: a system for large-scale graph processing. In: SIGMOD. pp. 135–146. ACM
(2010). https://doi.org/10.1145/1807167.1807184

[31] Matsuzaki, K.: Functional Models of Hadoop MapReduce with Application to Scan. Int
J Parallel Prog (2016). https://doi.org/10.1007/s10766-016-0414-9

[32] Morihata, A., Matsuzaki, K., Hu, Z., Takeichi, M.: The third homomorphism the-
orem on trees: downward & upward lead to divide-and-conquer. In: Shao, Z., Pierce,
B.C. (eds.) POPL’09. pp. 177–185. ACM (2009). https://doi.org/10.1145/1480881.
1480905

[33] Morihata, A.: Calculational developments of new parallel algorithms for size-constrained
maximum-sum segment problems. In: Functional and Logic Programming (FLOPS).
LNCS, vol. 7294, pp. 213–227. Springer, Berlin, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29822-6_18

[34] Mu, S., Ko, H., Jansson, P.: Algebra of programming in Agda: Dependent types for
relational program derivation. J Funct Program 19(5), 545–579 (2009). https://doi.
org/10.1017/S0956796809007345

[35] Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Artima, second edn. (2010)

[36] Ono, K., Hirai, Y., Tanabe, Y., Noda, N., Hagiya, M.: Using Coq in specification and
program extraction of Hadoop MapReduce applications. In: SEFM. pp. 350–365. LNCS,
Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24690-6_
24

[37] Skillicorn, D.B., Hill, J.M.D., McColl, W.F.: Questions and Answers about BSP. Sci-
entific Programming 6(3), 249–274 (1997)

[38] Smith, D.R.: Applications of a strategy for designing divide-and-conquer algo-
rithms. Sci. Comput. Program. 8(3), 213–229 (1987). https://doi.org/10.1016/

0167-6423(87)90034-7

[39] Snir, M., Gropp, W.: MPI the Complete Reference. MIT Press (1998)

15

https://doi.org/10.1007/11428848_132
https://doi.org/10.1007/11428848_132
https://doi.org/10.1145/2554850.2554912
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1007/s10766-016-0414-9
https://doi.org/10.1145/1480881.1480905
https://doi.org/10.1145/1480881.1480905
https://doi.org/10.1007/978-3-642-29822-6_18
https://doi.org/10.1007/978-3-642-29822-6_18
https://doi.org/10.1017/S0956796809007345
https://doi.org/10.1017/S0956796809007345
https://doi.org/10.1007/978-3-642-24690-6_24
https://doi.org/10.1007/978-3-642-24690-6_24
https://doi.org/10.1016/0167-6423(87)90034-7
https://doi.org/10.1016/0167-6423(87)90034-7


[40] Swierstra, W.: More dependent types for distributed arrays. Higher-Order and Symbolic
Computation 23(4), 489–506 (2010). https://doi.org/10.1007/s10990-011-9075-y

[41] Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8), 103
(1990). https://doi.org/10.1145/79173.79181

16

https://doi.org/10.1007/s10990-011-9075-y
https://doi.org/10.1145/79173.79181

	Introduction
	Functional Bulk Synchronous Parallelism
	An Overview of SyDPaCC
	Verified Parallel Maximum Segment Sum
	Experiments
	Related Work
	Conclusion

