Frédéric Loulergue
email: frederic.loulergue@univ-orleans.fr

Ali Ed -Dbali
email: ali.eddbali@univ-orleans.fr

PREPRINT Verified High Performance Computing: the SyDPaCC Approach

Keywords: Verified High Performance Computing: the SyDPaCC Approach program transformation, scalable parallel computing, functional programming, interactive theorem proving

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Our everyday activities generate extremely large volume of data. Big data analytics offer opportunities in a variety of domains [START_REF] Cao | Data science: A comprehensive overview[END_REF][START_REF] Fang | Computational health informatics in the big data age: A survey[END_REF].

While there are many challenges in the design and implementation of big data analytics applications, we focus on the programming aspects. Due to the large scale, scalable parallel computing is a necessity. Most approaches either cite Bulk Synchronous Parallelism 1 (BSP) [START_REF] Valiant | A bridging model for parallel computation[END_REF] as an inspiration, that is the case of Pregel [START_REF] Malewicz | Pregel: a system for large-scale graph processing[END_REF] and related frameworks such as Apache Giraph, or are related to, even if it is not often acknowledged, algorithmic skeletons [START_REF] Cole | Algorithmic Skeletons: Structured Management of Parallel Computation[END_REF]. This is the case of Hadoop MapReduce [START_REF] Dean | MapReduce: Simplified Data Processing on Large Clusters[END_REF] and Spark [START_REF] Armbrust | Scaling Spark in the Real World: Performance and Usability[END_REF].

Both BSP and algorithmic skeletons are structured and high-level approaches to parallelism which free the developers from tedious details of the implementation of parallel algorithms found for example in MPI programming, a de facto standard for writing HPC programs. While BSP is a general purpose parallel programming model, algorithmic skeletons approaches as well as the mentioned big data frameworks are limited to what is expressible by the build blocks they provide. This lack of generality is both a strength making them easier to use in classes of applications they naturally cover, but also a weakness in that expressing one's algorithm with these building blocks may become very convoluted or even impossible.

SyDPaCC [START_REF] Loulergue | Calculating Parallel Programs in Coq using List Homomorphisms[END_REF][START_REF] Loulergue | A verified accumulate algorithmic skeleton[END_REF] is a framework for the Coq proof assistant to systematically develop correct and efficient parallel programs from specifications. Currently, SyDPaCC provides sequential program optimizations via transformations based on list homomorphism theorems [START_REF] Gibbons | The third homomorphism theorem[END_REF] and the diffusion theorem [START_REF] Hu | Diffusion: Calculating Efficient Parallel Programs[END_REF]. It also provides automated parallelization via verified correspondences between sequential higher-order functions and algorithmic skeletons implemented using the parallel primitives of BSML [START_REF] Loulergue | A BSPlib-style API for Bulk Synchronous Parallel ML[END_REF] a library for scalable parallel programming with the multi-paradigm (including functional) programming language OCaml [START_REF] Leroy | The OCaml system release 5[END_REF]. In this paper, we develop a new verified parallel algorithm for the maximum segment sum problem, which is for example a component of computer vision applications to detect the brightest area of an image.

The remaining of the paper is organized as follows. Functional bulk synchronous parallel programming with the BSML library is introduced in Section 2. Section 3 is devoted to an overview of the SyDPaCC framework. In Section 4, we develop a verified scalable Bulk Synchronous Parallel algorithm of the maximum segment sum problem and experiment (Section 5) on a parallel machine the extracted code from the Coq proof assistant. We compare our approach to related work in Section 6 and conclude in Section 7.

Functional Bulk Synchronous Parallelism

In the Bulk Synchronous Parallel model, the BSP computer is seen as a homogeneous distributed memory machine with a point-to-point communication network and a global synchronization unit. It runs BSP programs which are sequences of so-called super-steps. A super-step is where the parallelism is. The computation phase is concerned with each processor-memory pair computing using only the data available locally. In the communication phase, each processor may request data from other processors and send requested data to other processors. Finally, during the synchronization phase, the communication exchanges are finalized and the super-step ends with a global synchronization of all the processors.

BSML offers a set of constants (giving access to the parameters of the BSP machine as they are discussed in [START_REF] Skillicorn | Questions and Answers about BSP[END_REF] but omitted here) including bsp_p the number of processors in the BSP machine and a set of four functions which are expressive enough to express any BSP algorithm. BSML is implemented as a library for the multi-paradigm and functional language OCaml [START_REF] Leroy | The OCaml system release 5[END_REF]. BSML is purely functional but using on each processor the imperative features of OCaml, it is possible to implement an imperative programming library [START_REF] Loulergue | A BSPlib-style API for Bulk Synchronous Parallel ML[END_REF] in the style of the BSPlib for C [START_REF] Hill | BSPlib: The BSP Programming Library[END_REF]. In this paper we are interested in the pure functional aspects of BSML as it is only possible to write pure functions within Coq.

Given any type α and a function f from int to α (which is written f: int→α in OCaml), the BSML primitive mkpar f (mkpar applied to f, application in OCaml and many other functional languages is simply denoted by a space) creates a parallel vector of type α par. Parallel vectors are therefore a polymorphic data-structure. In such a parallel vector, processor number i with 0 ≤ i <bsp_p, holds the value of f i. For example, mkpar(fun i→i) is the parallel vector ⟨0, . . . , bsp p -1⟩ of type int par. In the following, this parallel vector is denoted by this. The function replicate has type α →α par and can be defined as: let replicate = fun x →mkpar(fun i →x). In expression replicate x, all the processors will contain the value of x.

(+)1 is the partial application of addition seen in prefix notation, it is equivalent to fun x→1+x. Therefore replicate ((+)1) is a parallel vector of functions and its type is (int→int)par. A parallel vector of functions is not a function and cannot be applied directly. That is why BSML provides the primitive apply that can apply a parallel vector of functions to a parallel vector of values. For example, apply (replicate ((+)1)) this is the parallel vector ⟨1, . . . , bsp p⟩. Using apply and replicate in such a way is common. The function parfun is also part of the BSML standard library and is defined as: let parfun f = apply(replicate f).

The primitive proj can be seen as a partial inverse of mkpar, its type is α par →(int →α). However, proj(mkpar f) is in general different from f. Indeed f may be defined on all the values of type int, but proj(mkpar f) is defined only on {0, . . . , bsp p -1}.

To transform a parallel vector into a list, one can define to_list as follows: let to_list v = List.map (proj v) processors where processors has type int list and contains the integers from 0 (included) to bsp_p (excluded).

While mkpar and apply do not require any communication or synchronization to run, proj needs communications and a global synchronization. The value of each processor is sent to all the other processors (it is a total exchanged). For a finer control over communications the primitive put should be used. It is the most complex operation of BSML and its type is (int→α)par →(int→α)par. The functions in the input vector contain the messages to be sent to other processors. The functions in the output vector contain the messages received from other processors. For example if the input vector contains function in i at processor i, then the value v = in i i ′ will be sent to processor i ′ . After executing the put, processor i ′ contains a function out i ′ such that out i ′ i = v. Some OCaml values are considered to be empty messages so an application of put does mean that each processor communicates with every other processors. For the sake of conciseness we do not detail put further but we refer to [START_REF] Loulergue | Bulk Synchronous Parallel ML: Modular Implementation and Performance Prediction[END_REF].

(fun i →f (findex + i))); size; } let map (f : α →β) (l : α dislist) : β dislist = { content = parfun (List. map f) l. content; size = l. size } let filter (p : α →bool) (l : α dislist) : α dislist = let sum : int list →int = List. fold_left (+) 0 in let new_content = parfun (List. filter p) l. content in let local_sizes = parfun List. length new_content in let new_size = sum (to_list local_sizes) in { content = new_content; size = new_size } let count (l : α dislist) = l. size
As an example, we implement in Figure 2 the set of algorithmic skeletons on a datastructure of distributed lists whose module type is shown in Figure 1.

We implement the distributed list type as a record type: its content is a parallel vector of lists and it also possesses a field for the global size of the distributed list. init is similar to mkpar, however for distributed lists the size is given by the user while it is always bsp_p for parallel vectors. We want the list to be distributed evenly: each processor contains size/bsp_p elements, or one more element than that.

map is similar to the List.map function on sequential lists: it applies a function f to all the elements of the lists. Here each processor takes care of the sub-list it holds locally. List.filter p l uses a predicate p to keep only the elements of l that satisfy this predicate. Our filter skeleton does the same: the part about the content is easy to write. But we also need to update the global size of the distributed list and communications are required to do so. Note that after a filter, the distributed list may no longer be evenly distributed.

An Overview of SyDPaCC

We present the use of SyDPaCC through a very simple example. In this case the specification is already quite efficient, but often the specification has a higher complexity than the optimized program. This is for example the case of the maximum prefix sum problem presented in [START_REF] Loulergue | Calculating Parallel Programs in Coq using List Homomorphisms[END_REF] and the maximum segment sum problem presented in the next section.

Our goal is to obtain a parallel algorithm for computing the average of a list of natural numbers. To do so, we use SyDPaCC to parallelize a function that sums the elements of a list and counts the number of elements of this list. This specification can be written as:

Fixpoint sum (l: list nat) : nat := match l with | [] ⇒ 0 | n:: ns ⇒ n + sum ns end.
Definition count : list nat → nat := length (A:=nat).

Definition spec : list nat → nat * nat := (sum △ count).

sum is a recursive function defined by pattern matching on its list argument while count is just an alias for the pre-defined length function. The specification spec is defined as the tupling of these two functions.

We then try to show that this function has some simple properties: it is leftwards, meaning it can be written as an application of List.fold_right, rightwards, meaning it can be written as an application of List.fold_left, and finally it has a right inverse, which is a weak form of inverse.

For a list l = [x 1 ;. . .;

x n], binary operations ⊕ ⊗, and values e l e r , we have:

List.fold_left ⊕ e l l = (. . .((e l ⊕ x 1) ⊕ x 2) . . .)⊕ x n List.fold_right ⊗ e r l = x 1 ⊗ (x 2 (. . .(x n ⊗ e r). . .))
spec is indeed leftwards, rightwards and has a right inverse:

Definition opr := fun n acc ⇒ (n + fst acc, 1 + snd acc).

Instance spec_leftwards: Leftwards spec opr (0,0). Instance spec_inverse: Right_inverse spec spec_inv.

Each of these properties are expressed as instances of type-classes defined in SyDPaCC.

Basically type-classes are just record types (in these cases with only one field that holds a proof of the property of interest) and the values of these types are called instances. The difference with record types is that instances are recorded in a database. Coq functions can have implicit arguments: when such arguments have a type that is a type-class, each time the function is applied Coq searches for an instance that fits the implicit argument.

Instances may have other instances as parameters. In this situation to build an instance the system first needs to build instances for the parameters. Such parametrized instances can be seen as Prolog rules while non-parametrized instances can be seen as Prolog facts. Coq searches for an instance with a Prolog-like resolution algorithm.

For the inverse, we need to build a list l such that for a sum s and a number of elements c, we have spec l = (s, c). One possible solution is to have l = [s; 0; . . .; 0]. An application of function repeatv builds the list of zeros. If c = 0 then the list should be empty. The omitted proofs are short: from 3 to 9 lines with calls to a couple one-liner lemmas.

These instances are enough for the system to automatically parallelize the specification, as follows:

Definition par_average : par(list nat) → nat := Eval sydpacc in (uncurry Nat.div) • (parallel spec).

In this example, parallel spec will produce a composition of a parallel reduce and a parallel map. The automated sequential optimization of spec,then the automated parallelization is triggered by the call to parallel that has several implicit arguments whose types are type-classes.

Two of them are notions of correspondence:

• A type T source corresponds to a type T target if there exists a surjective function join: T target → T source . We note T source ◀ T target such a type correspondence. Intuitively, the join function is surjective because we want the target type to have at least the same expressive power than the source type. If the source type is list A and target type is a distributed type such as par(list A), there are many ways a sequential list could be distributed into a parallel vector of lists.

• A function f: T 1 source → T 2 source corresponds to f target : T 1 target → T 2 target if T 1 source ◀ T 1 target
and T 2 source ◀ T 2 target and the following property holds:

∀(x : T 1 target), join 2 (f target x) = f source (join 1 x).
SyDPaCC provides type correspondences such as list A ◀ par(list A) as well as several function correspondences including List.map corresponds to par_map. It also offers parametrized instances for the composition of functions with •, △ and × (pairing). Finally while looking for such instances, SyDPaCC also checks if there are optmized versions of functions, captured by instances of type Opt f f' meaning f' is an optimized version of f.

These optimizations are based on transformation theorems expressed as instances. SyD-PaCC provides a variant of the third homomorphism theorem [START_REF] Gibbons | The third homomorphism theorem[END_REF] that states that a function is a list homomorphism when it is leftwards, rightwards and has a right inverse. The first homomorphism theorem states that a list homomorphism can be implemented as a composition of map and reduce. The other transformation theorem available for lists is the diffusion theorem [START_REF] Hu | Diffusion: Calculating Efficient Parallel Programs[END_REF].

In the example, parallel looks for a correspondence of spec that triggers the optimization of spec which is done thanks to the two homomorphism theorems mentioned above. At the end of the Prolog-like search, it is established (and verified) than spec corresponds to a composition of a parallel reduce and a parallel map.

To obtain a very efficient program, the user can try to simplify the binary operation and the function given respectively as arguments of the parallel reduce and the parallel map. Indeed, by default the former is: fun args⇒ let (p1,p2) in spec(spec_inv p1 ++ spec_inv p2) and the latter is fun a ⇒ spec[a]. To obtain optimized versions, one can use the type-classes Optimised_op and Optimised_f that only take as argument the specification. The optimized versions do not need to be known beforehand: they can be discovered while proving the instances. In our example, the operation is mostly the addition of the first components of the argument pairs (replaced by 0 if the second component is 0), and the function is fun a ⇒ (a, 1).

Finally, the extracted1 OCaml code (with calls to BSML functions in a module MapReduce similar to the functions of Figure 2) is given Figure 3. The SyDPaCC framework provided a guide towards the development of such a parallel program, but also the proof that this program is correct with respect to the initial specification.

Verified Parallel Maximum Segment Sum

The goal of maximum segment sum problem is to obtain the maximum value among the sums of all segments (i.e. sub-structures) of a structure. We consider here lists, but algorithms are equivalent for 1D arrays.

Basically, the specification for this problem can be written as follows: There are several derivations of parallel algorithms for the maximum segment sum problem. The first, informal one, was proposed by Cole [START_REF] Cole | Parallel Programming, List Homomorphisms and the Maximum Segment Sum Problem[END_REF]. Takeichi et al. [START_REF] Hu | Construction of List Homomorphisms by Tupling and Fusion[END_REF] gave a formal account of this construction using a theory of tupling and fusion. Their theory may be expressed in Coq, but it is not simple as theorems are stated for an arbitrary number of mutually recursive functions which are tupled, hence it is necessary to deal with of an arbitrary size. The algorithm they obtain (from a similar specification than the one above) is a list homomorphism and therefore SyDPaCC could automatically parallelized it. The GTA (generate-test-aggregate) approach [START_REF] Emoto | Filter-embedding semiring fusion for programming with MapReduce[END_REF] -which was implemented in Coq [START_REF] Emoto | A Verified Generate-Test-Aggregate Coq Library for Parallel Programs Extraction[END_REF], but this implementation is not compatible with the current version of SyDPaCC-is also applicable. Both solutions are not well suited as we want to consider in the future the variant problem of maximum segment sum with a bound on the segment lengths. Thus, we based our contribution on the calculation proposed by Morihata [START_REF] Morihata | Calculational developments of new parallel algorithms for size-constrained maximum-sum segment problems[END_REF].

Definition mss_spec := maximum • (map sum) • segs.
Morihata only considered non-empty lists. There is support in SyDPaCC to deal with non-empty lists [START_REF] Loulergue | Calculating Parallel Programs in Coq using List Homomorphisms[END_REF], but it requires for example to use different function compositions that transport facts about the non-emptyness of lists across function composition. For example, segs is the function that generates all the segments of a list, and it returns a non-empty list even if its argument is an empty list. The map function preserves non-emptiness. Finally, if maximum returns a number then it is defined only on non-empty lists.

Here, we choose to deal with empty lists. Therefore, the function maximum used in the specification has type list N.t →option N.t where N.t is an abstract type of numbers that possess the required algebraic properties, and option is the Coq type: which basically adds a value None to the type given as argument to option. In the case of maximum we interpret None as -∞. The definition of sum and maximum follow: Definition max_option := optionize max. Definition maximum := reduce max_option • (map Some).

We proved that is f is associative then optionize f forms a monoid with the neutral element being None. If the original operation f forms a monoid with neutral element e, then the optionzed version forms a monoid with Some e. None is an absorbing element of optionize_none f.

The function generating all the segments is defined in terms of prefix and tails which are two functions already defined in SyDPaCC that respectively return the prefixes of a list and its suffixes (List.app is part of Coq's standard library and is list concatenation):

Definition segs {A}:= reduce (@List.app (list A)) • (map prefix) • tails.
We then prove the following instance of Opt to give an equivalent but optimized version of mss_spec:

Instance opt_mss :

Opt mss_spec ((reduce max_option) • (map fst) • (scanr (oslash add_option max_option) (None, Some 0)) • (map (fun x : t ⇒ (Some x, Some x)))).

The proof of this instance follows roughly the calculation of Morihata but for the treatment of empty lists. This proof is simple in term of structure: just a sequence of applications of rewriting steps, each step being the application of a transformation lemma. Most of the lemmas were already in Coq or SyDPaCC libraries but the definition of oslash and related lemma (and instances omitted here): Morihata used this operator and lemma based on a method first proposed by Smith [START_REF] Smith | Applications of a strategy for designing divide-and-conquer algorithms[END_REF].

The optimized version also uses scanr which is linear on the length of its list argument. We implemented a tail recursive version of scanr (as we do for all the function on lists that are supposed to be part of the final optimized code) and satisfies the following expected property for a scanr:

Lemma scanr_spec_monoid:

∀ A op e {Hm: @Monoid A op e} l, scanr op e l = map (reduce op) (tails l).

The optimized version has a linear complexity in the length of its argument while the specification has a cubic one. The goal of the transformations was to remove the calls to prefix and tails. These transformations are not automatic, but the support provided by SyDPaCC is a collection of already proved transformations.

Experiments

The Coq proof assistant offers an extraction mechanism [START_REF] Letouzey | Coq Extraction, an Overview[END_REF] able to generate compilable code from Coq definitions and proofs. In particular, it can generate OCaml code. Extracting the parametric module of Figure 4 generates an OCaml functor (which is basically a parametric module). To be able to execute the function par_mss, we first need to apply this functor. For the number part, we just wrote a module using OCaml native integers of type int for N.t. For the paramter Bsml we simply apply the actual parallel implementation of BSML primitives as provided by the BSML library for OCaml. This library is implemented on top of an API for parallel processing library in C named MPI [START_REF] Snir | MPI the Complete Reference[END_REF] (several implementations of this API exist). For the moment, the Bsml module of the BSML library cannot directly be given as argument to the Make functor. Indeed, processor identifiers are represented by mathematical natural numbers in Coq while they are encoded as OCaml bounded int values. SyDPaCC features a wrapper module BsmlWrapperN that performs number conversions when needed.

The application of the verified extracted function and aspects such as input/output operations and command line argument management are not verified and written in plain OCaml. The final program was run on a shared memory parallel machine, but it could run on large scale distributed memory machines.

We ran the program on a machine having an Intel Xeon Gold 5218 processor with 32 cores. The operating system was Ubuntu 22.04. To compile we used OCaml 4.14.1. The MPI implementation was OpenMPI 4.1.2. We ran par_mss on a list of length 64•10 6 and measured the time required for this computation 30 times. The results for the relative speed-up are presented in Figure 5 for an increasing number of cores. The speedup is fine but of course as the number of cores increases the relative impact of communication and synchronization time becomes bigger. The variance increases to reach a maximum for 4 cores then decreases again. We do not have an explanation for this behavior yet.

Related Work

The literature on constructive algorithmics, introduced by Bird [2], is extensive and includes studies on parallel programming [START_REF] Hu | Formal derivation of efficient parallel programs by construction of list homomorphisms[END_REF][START_REF] Gorlatch | Formal Derivation of Divide-and-Conquer Programs: A Case Study in the Multidimensional FFT's[END_REF][START_REF] Dosch | List Homomorphisms with Accumulation and Indexing[END_REF][START_REF] Morihata | The third homomorphism theorem on trees: downward & upward lead to divide-and-conquer[END_REF][START_REF] Cole | Parallel Programming, List Homomorphisms and the Maximum Segment Sum Problem[END_REF]. While most of the work in this field has been done on paper, recent advancements have seen the use of interactive theorem proving, as demonstrated in works like [START_REF] Mu | Algebra of programming in Agda: Dependent types for relational program derivation[END_REF]. However, interactive theorem proving has not been extensively explored in the context of parallel programming.

From a functional programming perspective, the study of frameworks such as Hadoop MapReduce [START_REF] Lämmel | Google's MapReduce programming model -Revisited[END_REF][START_REF] Matsuzaki | Functional Models of Hadoop MapReduce with Application to Scan[END_REF] and Apache Spark [START_REF] Armbrust | Scaling Spark in the Real World: Performance and Usability[END_REF][START_REF] Chen | An executable sequential specification for Spark aggregation[END_REF] is relevant to our SyDPaCC framework, as we can adopt a similar approach to extract MapReduce or Spark programs from Coq. Ono et al. [START_REF] Ono | Using Coq in specification and program extraction of Hadoop MapReduce applications[END_REF] employed Coq to verify MapReduce programs and extract Haskell code for Hadoop Streaming or directly write Java programs annotated with JML, utilizing Krakatoa [START_REF] Filliâtre | The Why/Krakatoa/Caduceus Platform for Deductive Program Verification[END_REF] to generate Coq lemmas. However, their work is less systematic and automated than SyD-PaCC.

There have been contributions that formalize certain aspects of parallel programming, but as far as we know, these approaches do not directly yield executable code like our SyD-PaCC framework. Swierstra [START_REF] Swierstra | More dependent types for distributed arrays[END_REF] formalized mutable arrays with explicit distributions in Agda, while BSP-Why [START_REF] Gava | Deductive Verification of State-Space Algorithms[END_REF] allows for deductive verification of imperative BSP programs, although they represent models of C BSPlib [START_REF] Hill | BSPlib: The BSP Programming Library[END_REF] programs rather than executable code. Another example is the formalization of the Data Parallel C programming language using Isabelle/HOL [START_REF] Daum | Reasoning on Data-Parallel Programs in Isabelle/Hol[END_REF], where Isabelle/HOL expressions representing parallel programs were generated.

Conclusion

We developed a verified parallel implementation of a functional scalable parallel program for solving the maximum segment sum problem and studied its parallel performances. Experiments on a larger number of processors are ongoing.

Often in applications, the domain is 2D rather than 1D, and it may be interesting to consider segments of a given bounded size, for example in genomics. We therefore plan to systematically develop parallel algorithms for these problems starting from the work of Morihata [START_REF] Morihata | Calculational developments of new parallel algorithms for size-constrained maximum-sum segment problems[END_REF].

The development of SyDPaCC started in 2015 while preparing a graduate course for a summer school, on the predecessor of SyDPaCC named SDPP. There are SDPP theories, namely BSP homomorphisms [START_REF] Gesbert | Systematic Development of Correct Bulk Synchronous Parallel Programs[END_REF][START_REF] Loulergue | Formal Derivation and Extraction of a Parallel Program for the All Nearest Smaller Values Problem[END_REF] and generate, test, aggregate [START_REF] Emoto | Filter-embedding semiring fusion for programming with MapReduce[END_REF][START_REF] Emoto | A Verified Generate-Test-Aggregate Coq Library for Parallel Programs Extraction[END_REF] that have not been ported to SyDPaCC yet. We also plan to work on additional data-structures such as trees. For the moment, SyDPaCC only targets BSML+OCaml but it will be extended to generate Scala [START_REF] Odersky | Programming in Scala[END_REF] code with Apache Spark for parallel processing.

Figure 1 :

 1 Figure 1: A Signature for Algorithmic Skeletons on Distributed Lists

 type α dislist = { content : α list par; size : int } let init (size : int) (f : int →α) : α dislist = let rem = size mod bsp_p in let ajust pid = if pid < rem then 1 else 0 in let local_size pid = (size / bsp_p) + ajust pid in let first_index pid = if pid < rem then pid * (local_size pid + 1) else (pid * local_size pid) + rem in { content = mkpar (fun pid → let lsize = local_size pid in let findex = first_index pid in List. init lsize

Figure 2 :

 2 Figure 2: A BSML Example

 Proof. (* omitted *) Defined. Definition opl := fun acc n ⇒ (n + fst acc, 1 + snd acc). Instance spec_rightwards: Rightwards spec opl (0,0). Proof. (* omitted *) Defined. Definition spec_inv (p: nat * nat) : list nat := let (s, c):= p in match c with 0 ⇒ [] | S c ⇒ s::(repeatv c 0) end.

Figure 3 :

 3 Figure 3: OCaml Code Extracted from Coq

 Inductive option (A: Type) : Type := | Some: A→ option A | None: option A.

 Definition sum : list t → t := reduce add. Definition optionize '(f:A→ A→ A) (a b: option A) : option A := match (a,b) with | (None, None) ⇒ None | (None, _) ⇒ b | (_, None) ⇒ a | (Some a, Some b) ⇒ Some(f a b) end.

 During the transformations of mss_spec, a version of add that deals with option N.t values instead of N.t values is needed. The add_option function is: Definition optionize_none '(f:A→ A→ A)(a b: option A) : option A := match (a,b) with | (Some a, Some b) ⇒ Some(f a b) | _ ⇒ None end. Definition add_option := optionize_none N.add.

 Definition oslash [A] otimes oplus '{ Monoid A otimes e_t} '{Monoid A oplus e_p}: (A * A)→ (A * A)→ (A * A) := fun a_b c_d ⇒ (oplus (fst a_b)(otimes (snd a_b)(fst c_d)), otimes (snd a_b) (snd c_d)). Lemma distributivity_reduce_scanl A '{ Ht: Monoid (A:=A) otimes e_t} '{Hp: Monoid (A:=A) oplus e_p} {Ha: RightAbsorbing otimes e_p} {Hd: LeftDistributive otimes oplus}: ∀ l, (reduce oplus) (scanl otimes e_t l) = fst(reduce (oslash otimes oplus) (map dup l)).

Figure 4 :

 4 Figure 4: Automatic parallelization of MSS

Figure 5 :

 5 Figure 5: Time and relative speed-up (64 • 10 6 elements, median of 30 measures)

The type annotations have been added manually and the argument renamed to increase readability