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QUANTIZATION ON GROUPS AND GÅRDING INEQUALITY

LINO BENEDETTO, CLOTILDE FERMANIAN KAMMERER, AND VÉRONIQUE FISCHER

Abstract. In this paper, we introduce Wick’s quantization on groups and discuss its links with
Kohn-Nirenberg’s one. By quantization, we mean an operation that associates an operator to a
symbol. The notion of symbols for both quantizations is based on representation theory via the
group Fourier transform and the Plancherel theorem. As an application, we give a simple proof of
G̊arding inequalities for three globally symbolic pseudo-differential calculi on groups.
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1. Introduction

On Rn, the links between the Kohn-Nirenberg and Wick quantizations provide a simple proof
of G̊arding inequalities; this is briefly sketched in Appendix A for the Hörmander calculus on Rn

while a reference for the semi-classical is for instance Jean-Marc Bouclet’s lecture notes [2], see
also [26, 20]. In this paper, we show how these ideas extend readily to groups.

We start by explaining that, as for the Kohn-Nirenberg quantization, the definition of the Wick
quantization extend naturally to groups that satisfy some hypotheses allowing for the definition
of the group Fourier transform (based on representation theory) and the associated Plancherel

Key words and phrases. Abstract harmonic analysis, Pseudo-differential calculus on compact and nilpotent Lie
groups, G̊arding inequality.

1



theorem. Using this observation, we then prove G̊arding inequalities for three globally symbolic
pseudo-differential calculi on compact and graded nilpotent Lie groups. This topic, that is, G̊arding
inequalities for global pseudo-differential calculi on groups, has been the subject of many papers in
recent years, see e.g. [14, 22, 3, 4].

Our results regarding G̊arding inequalities are summarised in the three following theorems, al-
though their statement will use the notation for the settings and the calculi recalled later on in the
paper. Our approach provides a simple proof of strong G̊arding inequalities, that is, with gain of
one derivative, in a context where the symbols are not scalar-valued but operator-valued. Moreover,
these G̊arding inequalities are sharp in the sense that the lower bound involves only one term (here,
given with gain of one derivative).

The first inequality is set on compact Lie groups and considers the symbolic pseudo-differential
calculus proposed in [21, 23], studied in [10] and briefly recalled in Section 3.1. We obtain the
following G̊arding inequality.

Theorem 1.1. Let G be a connected compact Lie group. Let m ∈ R. Assume that the symbol

σ ∈ S2m+1(G) satisfies the elliptic condition σ ≥ c(id + L̂) 2m+1
2 for some constant c > 0. Then

there exists a constant C > 0 such that

∀f ∈ C∞(G), ℜ
(
OpKN(σ)f, f

)
L2(G)

≥ −C‖f‖2Hm(G).

Above, the spaces Hm(G) denote the usual Sobolev spaces defined on any compact manifold,
here G, while the definitions of the symbol classes Sm(G) and the Laplace-Beltrami operator L as
well as its Fourier transform are recalled in Section 3.1. We also discuss below what the method of
proof gives regarding (ρ, δ)-generalisation of the latter G̊arding inequality (see Theorem 3.6).

The next result concerns the symbolic pseudo-differential calculus on a graded Lie group G

[12, 7], briefly recalled in Section 4.2. The Sobolev space L2
s(G) will be the ones adapted to this

setting [12, 13]. We obtain the following G̊arding inequality.

Theorem 1.2. Let G be a graded nilpotent Lie group. Let m ∈ R. Assume that σ ∈ S2m+1(G)

satisfies the elliptic condition σ ≥ c(id + R̂)
2m+1

ν for some constant c > 0 where R is a positive
Rockland operator of homogeneous degree ν. Then there exists a constant C > 0 such that

∀f ∈ C∞
c (G), ℜ

(
OpKN(σ)f, f

)
L2(G)

≥ −C‖f‖2L2
m(G).

We also discuss below what the method of proof gives regarding (ρ, δ)-generalisation of the latter
G̊arding inequality (see Theorem 4.3).

Still in the context of graded Lie groups, our method is particularly adapted to the semi-classical
counter-part of Theorem 1.2:

Theorem 1.3. Let σ ∈ A0, that is, the symbol σ is a smoothing symbol with x-compact support.
If σ is non-negative, then there exists a constant C > 0 such that

∀f ∈ L2(G), ∀ε ∈ (0, 1], ℜ
(
OpKN

ε (σ)f, f
)
L2(G)

≥ −Cε‖f‖2L2(G).

The semi-classical calculus in this setting [8, 9] is recalled in Section 5.1, as well as the definitions
for A0 and OpKN

ε .

On a compact Lie group G, the pseudo-differential calculus mentioned above with ρ > δ and
ρ ≥ 1−δ coincides with Hörmander’s pseudo-differential calculus defined via charts on the compact
Lie group G viewed as a compact manifold [10, 23]. However, the notion of symbols are not the
same in these two calculi: the one presented here or in [10, 21, 23] is global and based on the
representations of the group. For a graded nilpotent Lie group G, the pseudo-differential calculus
mentioned above coincides with the (global) Hörmander calculus only when G is abelian, that is,
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only when G is the abelian group (Rn,+) with n = dimG. Otherwise, although a graded nilpotent
Lie group is globally diffeomorphic to Rn as a manifold, the calculi will not be comparable. At this
point, we ought to clarify what we mean by pseudo-differential calculus on a smooth manifold M
in this paper:

Definition 1.4. For each m ∈ R, let Ψm(M) be a given Fréchet space of continuous operators
D(M) → D(M). We say that the space Ψ∞(M) := ∪mΨm(M) form a pseudo-differential calculus
when it is an algebra of operators satisfying:

(1) The continuous inclusions Ψm(M) ⊂ Ψm′
(M) hold for any m ≤ m′.

(2) Ψ∞(M) is an algebra of operators. Furthermore if T1 ∈ Ψm1(M), T2 ∈ Ψm2(M), then
T1T2 ∈ Ψm1+m2(M), and the composition is continuous as a map Ψm1(M) × Ψm2(M) →
Ψm1+m2(M).

(3) Ψ∞(M) is stable under taking the adjoint. Furthermore if T ∈ Ψm(M) then T ∗ ∈ Ψm(M),
and taking the adjoint is continuous as a map Ψm(M) → Ψm(M).

The paper is organised as follows. We start with recalling the definition of the Kohn-Nirenberg
quantization on groups and introducing Wick’s (Section 2). Then we show that a link between
these two quantizations in the symbolic calculi provides a proof of G̊arding inequalities in the cases
of compact Lie groups G (Section 3), and of graded nilpotent Lie groups G (Section 4). In the
latter case, we also study the semi-classical analogue in Section 5. In Appendix A, we develop the
same strategy of proof in the Euclidean case; to our knowledge, the proof which is the closest to
ours is Folland’s one [17, Chapter 2, Section 6].

Acknowledgements. Clotilde Fermanian Kammerer thanks the Erwin Schrödinger Institut for
its hospitality when writing this paper and acknowledge the support of the Connect Talent Pays
de la Loire project HiFrAn 2022-27. Clotilde Fermanian Kammerer and Veronique Fischer gladly
acknowledge the support of The Leverhulme Trust via Research Project Grant RPG 2020-037.

2. Quantizations on groups

In this section, we discuss two quantizations of operators on groups that are based on the
group Fourier transform and the associated Plancherel theorem. These latter notions require some
hypotheses on the group we now list. The group G is a separable locally compact group. We
assume that it is unimodular, that is, its left (resp. right) Haar measures are also right (resp. left)
invariant. We also assume that it is of type I. The paper may be read without understanding these
technical hypotheses. It suffices to know that they ensure that the Plancherel theorem holds, and
that they are naturally satisfied on Lie groups that are compact or nilpotent.

2.1. Fourier analysis.

2.1.1. The dual set. Recall that a (unitary) representation (Hπ, π) of G is a pair consisting in a
Hilbert space Hπ and a group morphism π from G to the set of unitary transforms on L2(Hπ).
In this paper, the representations will always be assumed (unitary) strongly continuous, and their
Hilbert spaces separable. A representation is said to be irreducible if the only closed subspaces of
Hπ that are stable under π are {0} and Hπ itself. Two representations π1 and π2 are equivalent if
there exists a unitary transform U called an intertwining map that sends Hπ1 on Hπ2 with

π1 = U
−1 ◦ π2 ◦U.

The dual set Ĝ is obtained by taking the quotient of the set of irreducible representations by this

equivalence relation. We may still denote by π the elements of Ĝ and we keep in mind that different
representations of the class are equivalent through intertwining operators.
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2.1.2. Fixing a Haar measure. We fix a Haar measure that we denote dx when the variable of
integration is x ∈ G, or dy if the variable is y.

The non-commutative convolution is given via

(f1 ∗ f2)(x) :=
∫

G
f1(y)f2(y

−1x)dy, x ∈ G.

for f1, f2 ∈ Cc(G); here Cc(G) denotes the space of continuous complex-valued functions on G with
compact support.

2.1.3. The Fourier transform. The Fourier transform of an integrable function f ∈ L1(G) at a
representation π of G is the operator acting on Hπ via

f̂(π) := F(f)(π) :=

∫

G
f(z) (π(z))∗ dz.

Note that if f1, f2 ∈ Cc(G) then
(2.1) f̂1 ∗ f2 = f̂2f̂1.

If π1, π2 are two equivalent representations of G with π1 = U−1 ◦ π2 ◦ U for some intertwining
operator U, then

F(f)(π1) = U
−1 ◦ F(f)(π2) ◦U.

Hence, this defines the measurable field of operators {F(f)(π), π ∈ Ĝ} modulo equivalence. Here,

the unitary dual Ĝ is equipped with its natural Borel structure, and the equivalence comes from
quotienting the set of irreducible representations of G together with understanding the resulting
fields of operators modulo intertwiners.

2.1.4. The Plancherel Theorem. Here, we recall the Plancherel Theorem due to Dixmier [6, Ch.
18]. Among other results, it states the existence and uniqueness of the Plancherel measure, that is,

the positive Borel measure µ on Ĝ such that the Plancherel formula

(2.2)

∫

G
|f(x)|2dx =

∫

Ĝ
‖f̂(π)‖2HS(Hπ)

dµ(π),

holds for any f ∈ Cc(G). Here ‖ · ‖HS(Hπ) denotes the Hilbert-Schmidt norm on Hπ. This implies

that the group Fourier transform is a unitary map from L1(G)∩L2(G) equipped with the norm of
L2(G) to the Hilbert space

L2(Ĝ) :=

∫

Ĝ
Hπ ⊗H∗

π dµ(π).

We identify L2(Ĝ) with the space of µ-square integrable Hilbert-Schmidt fields on Ĝ; its Hilbert
norm and scalar products are then given by

‖τ‖2
L2(Ĝ)

=

∫

Ĝ
‖τ(π)‖2HS(Hπ)

dµ(π), τ ∈ L2(Ĝ),

(τ1, τ2)L2(Ĝ) =

∫

Ĝ
trHπ (τ1(π) τ2(π)

∗)dµ(π), τ1, τ2 ∈ L2(Ĝ).

Here trHπ denotes the trace of operators on the Hilbert space Hπ. The group Fourier transform F
extends unitarily from L2(G) onto L2(Ĝ).

We denote by L∞(Ĝ) the space of measurable fields (modulo equivalence) of bounded operators

σ = {σ(π) ∈ L (Hπ) : π ∈ Ĝ} on Ĝ such that

‖σ‖L∞(Ĝ) := sup
π∈Ĝ

‖σ(π)‖L (Hπ)
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is finite; here the supremum refers to the essential supremum with respect to the Plancherel measure

µ of Ĝ. In fact, L∞(Ĝ) is naturally a Banach space and moreover a von Neumann algebra, sometimes

called the von Neumann algebra of the group G. It acts naturally on L2(Ĝ) by composition on the
left:

(στ)(π) = σ(π) τ(π), π ∈ Ĝ, σ ∈ L∞(Ĝ) and τ ∈ L2(Ĝ),

(it also acts on the right) and this action is continuous

‖στ‖L2(Ĝ) ≤ ‖σ‖L∞(Ĝ)‖τ‖L2(Ĝ).

Dixmier’s Plancherel theorem implies that L∞(Ĝ) is isomorphic to the von Neumann algebra
L (L2(G))G of linear bounded operators on G that are invariant under left translations. The
isomorphism is given by the fact that the the Fourier multiplier with symbol σ, i.e. the operator

f 7→ F−1(σf̂), is an operator in L (L2(G))G.

Note that FL1(G) ⊆ L∞(Ĝ) with

∀f ∈ L1(G), ‖f̂‖L∞(Ĝ) ≤ ‖f‖L1(G).

2.2. The Kohn-Nirenberg quantization. In this section, we recall some results related to the
symbolic quantization on groups introduced by Michael Taylor [24]. When G is the abelian group
Rn, this is the quantization often used in the field of Partial Differential Equations and called the
Kohn-Nirenberg quantization or classical quantization [19, 1]. We keep this vocabulary in the group
case.

2.2.1. The space L2(G × Ĝ). We may identify the tensor product L2(G) ⊗ L2(Ĝ) with the space

denoted by L2(G × Ĝ) of measurable fields τ = {τ(x, π) ∈ HS(Hπ) : (x, π) ∈ G× Ĝ} of Hilbert-
Schmidt operators (up to equivalence) such that the quantities

‖τ‖2
L2(G×Ĝ)

:=

∫

G×Ĝ
‖τ(x, π)‖2HS(Hπ)

dxdµ(π)

are finite. It is naturally a separable Hilbert space with norm ‖ · ‖L2(G×Ĝ) and scalar product given

by

(τ1, τ2)L2(G×Ĝ)
=

∫

G×Ĝ
trHπ (τ1(x, π) τ2(x, π)

∗) dxdµ(π), σ1, σ2 ∈ L2(G× Ĝ).

By the Plancherel theorem, the Hilbert space L2(G× Ĝ) and L2(G×G) are isomorphic via the
Fourier transform in the second variable:

L2(G×G) −→ L2(G× Ĝ), κ 7−→ (id⊗F)κ.

In other words, any τ ∈ L2(G× Ĝ) may be written as

τ(x, π) = κ̂τ,x(π)

for a unique function κτ : (x, y) 7→ κτ,x(y) = κ(x, y) in L2(G×G).

2.2.2. The quantization OpKN on L2(G × Ĝ). For any f ∈ Cc(G), the symbol

τ f̂ := {τ(x, π)π(f) : (x, π) ∈ G× Ĝ}
is measurable on G× Ĝ and satisfies

‖τ f̂‖L2(G×Ĝ) ≤ ‖τ‖L2(G×Ĝ)‖f̂‖L∞(Ĝ).

Hence τ f̂ ∈ L2(G× Ĝ) and we can define (id⊗F−1)(τ f̂) ∈ L2(G×G). By (2.1), we have:

(id⊗F−1)(τ f̂)(x, z) =

∫

G
f(y)κτ,x(y

−1z)dy =

∫

G
f(zy−1)κτ,x(y)dy = f ∗ κx(z).
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As f ∈ Cc(G), (id⊗F−1)(τ f̂)(x, z) is in fact continuous in z and it makes sense to define:

(2.3) OpKN(τ)f(x) := (id⊗F−1)(τ f̂)(x, x) = f ∗ κτ,x(x), f ∈ Cc(G), x ∈ G.
It follows from the formula above that the integral kernel of OpKN(τ) is given by

G×G ∋ (x, y) 7−→ κτ,x(y
−1x).

Hence, the operator OpKN(τ) extends uniquely into a Hilbert-Schmidt operator on L2(G) with
norm

‖OpKN(τ)‖HS(L2(G)) = ‖κτ‖L2(G×G) = ‖τ‖
L2(G×Ĝ)

Consequently, OpKN is an isometry from L2(G× Ĝ) onto HS(L2(G)).

2.2.3. Extension of OpKN to C(G,FL1(G)). Clearly, we can extend naturally OpKN via (2.3) to
C(G,FL1(G)), that is, to the symbols σ of the form σ(x, π) = κ̂x(π) with convolution kernel
κ ∈ C(G,L1(G)). By injectivity of the Fourier transform, the two possible definitions of OpKN on

symbols in L2(G× Ĝ) and C(G,FL1(G)) coincide. Note that OpKN(σ) with σ ∈ C(G,FL1(G)) will
act on Cc(G) and the Young convolution inequality implies the following estimate for the operator
norm as operators on L2(G).

Lemma 2.1. If σ ∈ C(G,FL1(G)) then

‖OpKN(σ)‖L (L2) ≤
∫

G
sup
x∈G

|κx(y)|dy

Proof. Let κ ∈ C(G,L1(G)) and f ∈ C(G). We have

|f ∗ κx(x)| ≤ |f | ∗ sup
x′∈G

|κx′ |(x),

so the Young convolution inequality yields
√∫

G
|f ∗ κx(x)|2dx ≤ ‖|f | ∗ sup

x′∈G
|κx′‖L2(G) ≤ ‖f‖L2(G)‖ sup

x′∈G
|κx′‖L1(G).

�

If σ ∈ C(G,L1(G)), we define

(2.4) ‖σ‖A0 :=

∫

G
sup
x∈G

|κx(y)|dy, σ(x, π) = Fκx(π),

and we denote by Cb(G,FL1(G)) the subspace of σ ∈ C(G,FL1(G)) such that ‖σ‖A0 is finite. We
also denote by Cb(G,L1(G)) the space of κ ∈ C(G,L1(G)) such that

∫
G supx∈G |κx(y)|dy is finite.

2.2.4. Extension of OpKN via the inversion formula. We can extend OpKN to a larger space of
symbols than C(G,FL1(G)) but acting on a smaller space of functions than Cc(G) under some

further technical assumptions. Indeed, let us consider the space C(G,L∞(Ĝ)) of symbols σ that

are continuous maps from G to L∞(Ĝ). A symbol σ in C(G,L∞(Ĝ)) is naturally identified with

a measurable field (up to equivalence) of operators σ = {σ(x, π) ∈ L (Hπ) : (x, π) ∈ G × Ĝ}
satisfying conditions of continuity in x and boundedness in π. We also consider, when it exists, a
space S of bounded, continuous and integrable functions satisfying:

• the space S ∩ Cc(G) is dense in L2(G), and

• for any f ∈ S, the operators f̂(π), π ∈ Ĝ, are trace-class and the following quantity is finite:
∫

Ĝ
trHπ |f̂(π)|dµ(π) <∞.
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As a consequence of the Plancherel formula, the following inversion formula holds:

f(x) =

∫

Ĝ
trHπ

(
π(x)f̂(π)

)
dµ(π), f ∈ S, x ∈ G,

provided that G is amenable. We will not discuss here these technical assumptions (existence of S
and amenability of G), but just comment on the fact that they are naturally satisfied for compact
or nilpotent Lie groups with S being the space of smooth functions with compact support; in the
nilpotent case, we can take S to be the space of Schwartz functions. With the inversion formula,

OpKN extends to the quantization given for symbols σ in C(G,L∞(Ĝ)) by:

OpKN(σ)f(x) =

∫

Ĝ
trHπ

(
π(x)σ(x, π)f̂ (π)

)
dµ(π), f ∈ S, x ∈ G.

Naturally, this coincides with the quantization defined above for σ ∈ L2(G × Ĝ) and for σ ∈
C(G,FL1(G)).

2.3. The Wick quantization. Another natural symbolic quantization appears on the (locally
compact, unimodular, type I) group G, in the same flavour as Wick’s quantization (see [20]). For
this, we start by defining the transformation B = Ba associated with a continuous, square-integrable
and bounded function a satisfying ‖a‖L2 = 1.

2.3.1. The transformation B. First, for each x ∈ G, we define the symbol Fx on G× Ĝ via

Fx := {Fx,π(y) : (y, π) ∈ G× Ĝ}, Fx,π(y) = a(yx−1)π(y)∗.

We check readily that Fx ∈ C(G,L∞(Ĝ)) with

sup
y∈G

‖Fx(y, ·)‖L∞(Ĝ) ≤ ‖a‖L∞(G).

We can now define the operator B = Ba on Cc(G) via

B[f ](x, π) =
∫

G
f(y)Fx,π(y)dy, f ∈ Cc(G), (x, π) ∈ G× Ĝ.

We observe that B[f ] is the field of operators on G× Ĝ given by

(2.5) B[f ](x, π) = F
(
f a(·x−1)

)
(π), (x, π) ∈ G× Ĝ.

This map has frame’s properties:

Proposition 2.2. (1) For any f ∈ Cc(G), B[f ] defines an element of L2(G× Ĝ) with norm

‖B[f ]‖
L2(G×Ĝ)

= ‖f‖L2(G).

(2) The map B extends uniquely to an isometry from L2(G) to L2(G × Ĝ) for which we keep

the same notation. Its adjoint map B∗ : L2(G× Ĝ) → L2(G) is given by

B∗[τ ](y) =
∫

G×Ĝ
trHπ (τ(x, π)(Fx,π(y))

∗) dxdµ(π), τ ∈ L2(G× Ĝ), y ∈ G,

in the sense that for any f ∈ L2(G),

(B∗[τ ], f)L2(G) =

∫

G×Ĝ
trHπ

(
τ(x, π)

(
F
(
fa(·x−1)

)
(π)

)∗)
dxdµ(π).

If τ = (id ⊗F)κ, κ ∈ L2(G×G), then

B∗[τ ](y) =
∫

G
κx(y)ā(yx

−1)dx = (ā ∗ κ · (y))(y).
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(3) We have B∗B = idL2(G) while BB∗ is a projection on a closed subspace of L2(G× Ĝ).

Proof. From (2.5) and the Plancherel formula (2.2), we obtain
∫

Ĝ
‖B[f ](x, π)‖2HS(Hπ)

dµ(π) = ‖f a(·x−1)‖2L2(G), x ∈ G.

Integrating against dx yields Part (1). Parts (2) and (3) follow readily. �

2.3.2. The quantization OpWick. We can now define the quantization

OpWick = OpWick,a, with OpWick(σ)f = B∗σB[f ], f ∈ L2(G), σ ∈ L∞(G× Ĝ).

Here, L∞(G× Ĝ) denotes the space of symbols σ = {σ(x, π) : (x, π) ∈ G× Ĝ} which are bounded

in (x, π) ∈ G× Ĝ, i.e. a measurable field of operators in (x, π) ∈ G× Ĝ such that

‖σ‖
L∞(G×Ĝ)

:= sup
(x,π)∈G×Ĝ

‖σ(x, π)‖L (Hπ)

is finite, the supremum referring to the essential supremum for the measure dxdµ on G× Ĝ. This is
naturally a Banach space (even a von Neumann algebra). Moreover, it acts naturally continuously

on L2(G× Ĝ) by left composition (and even right composition) with

‖στ‖
L2(G×Ĝ)

≤ ‖σ‖
L∞(G×Ĝ)

‖τ‖
L2(G×Ĝ)

, σ ∈ L∞(G× Ĝ), τ ∈ L2(G× Ĝ).

This implies that the quantization OpWick is well defined:

Proposition 2.3. The symbolic quantization OpWick is well defined on L∞(G× Ĝ) and satisfies

∀σ ∈ L∞(G× Ĝ), ‖OpWick(σ)‖L (L2(G)) ≤ ‖σ‖
L∞(G×Ĝ)

.

Proof. We have for any f ∈ L2(G):

‖OpWick(σ)f‖L2(G) = ‖B∗σB[f ]‖L2(G)

≤ ‖B∗‖
L (L2(G×Ĝ),L2(G))‖σ‖L∞(G×Ĝ)‖B‖L (L2(G),L2(G×Ĝ))‖f‖L2(G).

Since B is an isometry, the operator norms of B and B∗ are equal to 1. �

In the case of G = Rn and a being a Gaussian function, we recognize B as the Bargmann
transform and OpWick as the Wick quantization [17, 20, 5]. This explains the notation above. We
extend this vocabulary to the group case.

As an example, we check readily that OpWick(id) = idL2(G) where id is the symbol id =

{idHπ , (x, π) ∈ G× Ĝ)}.
The following computation will allow for the comparison between the Wick and Kohn-Nirenberg

quantizations on Cb(G,FL1(G)); note that a symbol in Cb(G,FL1(G)) is in L∞(G× Ĝ).

Lemma 2.4. If a symbol σ is in Cb(G,FL1(G)), then

OpWick(σ)f(x) = f ∗ κWick
x (x), f ∈ Cc(G), x ∈ G,

where κWick ∈ Cb(G,L1(G)) is given by:

κWick
x (w) =

∫

G
a(w−1xz−1)ā(xz−1)κz(w)dz

=

∫

G
a(w−1z′)ā(z′)κz′−1x(w)dz

′,

and κ ∈ Cb(G,L1(G)) is the convolution kernel of σ in the sense that σ(x, π) = Fκx(π).
We will call κWick the Wick convolution kernel of σ.
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Proof. We check readily that κWick ∈ Cb(G,L1(G)) with
∫

G
sup
x∈G

|κWick
x (w)|dw ≤

∫

G
sup
x′∈G

|κx′(w)|dw
∫

G
|a|(w−1z′)|a|(z′)dz′ ≤

∫

G
sup
x′∈G

|κx′(w)|dw,

by the Cauchy-Schwartz inequality since ‖a‖L2(G) = 1.
Let f ∈ Cc(G) and x ∈ G. Property (2.1) yields

σB[f ](x, π) = (κ̂xF(fa(·x−1)))(π) = F
(
(f a(x−1·)) ∗ κx

)
(π)

so with Part 2 of Proposition 2.2, we obtain

OpWick(σ)f(x) =

∫

G
(f a(· z−1)) ∗ κz(x) ā(xz−1)dz

=

∫

G×G
f(y)a(yz−1)κz(y

−1x) ā(xz−1)dydz,

and we recognise f ∗ κWick
x (x). �

2.3.3. Some properties of OpKN and OpWick. In our definitions of the quantizations, we choose to
act on the left by τ in (2.3) or equivalently to place κx on the right of the convolution product
in (2.3) while we made choices in the writing of Fx,π. These choices imply that our quantization
interact well with the left translations Lx0 by x0 on functions, i.e. Lx0f(x) = f(x0x) for any
function f defined on G, and also on symbols: Lx0σ(x, π) = σ(x0x, π). Indeed, we check readily
that

(2.6) OpWick,a(Lx0σ) = OpWick,Lx0a(σ) while OpKN(Lx0σ) = Lx0OpKN(σ)L−1
x0
.

The Wick quantization OpWick has the advantage of preserving self-adjointness and of being

naturally positive. Indeed, for any σ ∈ L∞(G× Ĝ), we have

(OpWick(σ))∗ = B∗σ∗B = OpWick(σ∗),

so if σ is self-adjoint in the sense that σ(x, π) = σ(x, π)∗ for almost all (x, π) ∈ G × Ĝ, then
OpWick(σ) is self-adjoint. Moreover, if σ is a non-negative symbol in the sense that the operator

σ(x, π) is bounded below by 0 for almost every (x, π) ∈ G × Ĝ, then the corresponding operator

acting on L2(G× Ĝ) is also non-negative so

(2.7) (OpWick(σ)f, f)L2(G) = (σB[f ],B[f ])
L2(G×Ĝ)

≥ 0 σ ∈ L∞(G× Ĝ), f ∈ S,

and OpWick(σ) is a non-negative operator on L2(G).
In general, the Kohn-Nirenberg quantization OpKN will not be positive. However, weaker prop-

erties of positivity may be recovered in certain cases via G̊arding inequalities in pseudo-differential
calculi. The rest of this paper is devoted to showing G̊arding inequalities in the case of graded
nilpotent Lie groups and compact Lie groups.

3. Gårding inequality on compact Lie groups

Here, G is a connected compact Lie group. Automatically, all the technical assumptions men-
tioned in Section 2 (locally compact, unimodular, type I, amenable) are satisfied. In this case,

every irreducible representation is finite dimensional, the dual set Ĝ is discrete and the Plancherel

measure is known explicitly: µ({π}) = dπ is the dimension of π ∈ Ĝ, so that we have the Plancherel
formula:

‖f‖2L2(G) =
∑

π∈Ĝ

dπ‖f̂(π)‖2HS(Hπ)
.
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A symbol is a family σ = {σ(x, π) ∈ L (Hπ) : (x, π) ∈ G × Ĝ} of finite dimensional linear maps
parametrised by (x, π), each acting on the (finite dimensional) space of the representation. We can
define the Fourier transform not only of integrable functions, but also of any distributions.

3.1. The pseudo-differential calculus. In this section, we set some notation and recall briefly
the global symbol classes defined on G together with some properties of the pseudo-differential
calculus. We refer to [10] for more details.

We fix a basis X1, . . . ,Xn for the Lie algebra g of the group G. We keep the same notation for
the associated left-invariant vector fields on G. For a multi-index α = (α1, . . . , αn) ∈ Nn

0 , we set
Xα = Xα1

1 . . . Xαn
n .

We fix a scalar product on g that is invariant under the adjoint action. The Laplace-Beltrami
operator is the differential operator L = −X2

1 − . . . −X2
n for any orthonormal basis X1, . . . ,Xn of

g. Identified with an element of the universal enveloping algebra and keeping the same notation for
a representation π of G and its infinitesimal counterpart for g, π(L) is scalar when π is irreducible.

L̂(π) := π(L) = λπidHπ ,

with λπ ≥ 0. In fact, λ1 = 0 when π is the trivial representation 1, while λπ > 0 when π 6= 1.
Let m ∈ R and 1 ≥ ρ ≥ δ ≥ 0. A symbol σ is in Sm

ρ,δ(G) when for any multi-indices α, β, there

exists C = C(α, β) ≥ 0 such that

‖Xβ∆ασ(x, π)‖L (Hπ) ≤ C(1 + λπ)
m−ρ|α|+δ|β|

2 ;

above, ∆α denotes the intrinsic difference operators (see [10, 11] for more details) or the RT-
difference operators (see (3.1) below). This yields the following semi-norm

‖σ‖Sm
ρ,δ

,a,b := max
|α|≤a,|β|≤b

sup
(x,π)∈G×Ĝ

(1 + λπ)
−m−ρ|α|+δ|β|

2 ‖Xβ∆ασ(x, π)‖L (Hπ).

If (ρ, δ) = (1, 0), we simply write Sm(G) = Sm
1,0(G).

The following theorem summarises the main property of the classes of operators obtained by the
OpKN-quantization of the classes Sm

ρ,δ(G):

Theorem 3.1. For each m ∈ R, and 1 ≥ ρ ≥ δ ≥ 0, equipped with the semi-norm ‖ · ‖Sm
ρ,δ,a,b

,

Sm
ρ,δ(G) becomes a Fréchet space. The space of operators Ψm

ρ,δ(G) := OpKN(Sm
ρ,δ(G)) inherits this

structure of Fréchet space. The classes of operators Ψ∞
ρ,δ(G) = ∪m∈RΨm

ρ,δ(G) is a pseudo-differential
calculus in the sense of Definition 1.4. Moreover, we have the following properties:

(1) The calculus Ψ∞
ρ,δ(G) acts continuously on the Sobolev spaces Hs(G) in the following sense:

if σ ∈ Sm
ρ,δ(G) then OpKN(σ) maps Hs(G) to Hs−m(G) for any s ∈ R. Furthermore, the

map σ 7→ OpKN(σ) is continuous Sm(G) → L (Hs(G),Hs−m(G)).
(2) For any σ1 ∈ Sm1

ρ,δ and σ2 ∈ Sm2
ρ,δ , we have

OpKN(σ1)OpKN(σ2)−OpKN(σ1σ2) ∈ Ψ
m1+m2−(ρ−δ)
ρ,δ (G).

Furthermore, the map (σ1, σ2) 7→ OpKN(σ1)OpKN(σ2) − OpKN(σ1σ2) is continuous Sm1
ρ,δ ×

Sm2
ρ,δ → Ψ

m1+m2−(ρ−δ)
ρ,δ (G).

(3) For any σ ∈ Sm
ρ,δ, we have

OpKN(σ)∗ −OpKN(σ∗) ∈ Ψ
m−(ρ−δ)
ρ,δ (G).

Furthermore, the map σ 7→ OpKN(σ)∗ −OpKN(σ∗) is continuous Sm
ρ,δ → Ψ

m−(ρ−δ)
ρ,δ (G).

Whenever it makes sense, this calculus coincides with Hörmander’s:
10



Theorem 3.2. When ρ > δ and ρ ≥ 1 − δ, Ψ∞
ρ,δ(G) coincides with the Hörmander pseudo-

differential calculus defined locally via charts.

Any σ ∈ Sm
ρ,δ(G) admits a distributional convolution kernel κ : z 7→ κx(z) ∈ C∞(G,D′(G)), i.e.

σ(x, π) = κ̂x(π) and OpKN(σ)f(x) = f ∗ κx(x), f ∈ D(G). This allows for an application of the
RT-difference operators. Let us recall that the RT-difference operator ∆q associated to q ∈ C∞(G)
is defined via:

(3.1) ∆qκ̂ = F(qκ), κ ∈ D′(G).

The following property of RT-difference operators follows readily from [10, Section 5]:

Lemma 3.3. Let m ∈ R and 1 ≥ ρ ≥ δ ≥ 0.

(1) If q ∈ D(G), then the map σ 7→ ∆qσ is continuous Sm
ρ,δ(G) → Sm

ρ,δ(G). Moreover, q 7→ ∆q

is continuous D(G) → L (Sm
ρ,δ(G)).

(2) The map σ 7→ ∆q−q(eG)σ is continuous Sm
ρ,δ(G) → S

m−(ρ−δ)
ρ,δ (G) for any m ∈ R. Moreover,

q 7→ ∆q is continuous D(G) → L (Sm
ρ,δ(G), S

m−(ρ−δ)
ρ,δ (G)).

We observe that translating a symbol will not affect its membership to a Sm
ρ,δ(G)-class or the

action of a difference operator:

Lemma 3.4. Let m ∈ R and 1 ≥ ρ ≥ δ ≥ 0. If x0 ∈ G, then for any σ ∈ Sm
ρ,δ(G), the symbol

Lx0σ = {σ(x0x, π) : (x, π) ∈ G× Ĝ)} is in Sm
ρ,δ(G) with

‖Lx0σ‖Sm
ρ,δ

,a,b = ‖σ‖Sm
ρ,δ

,a,b.

Moreover, the map (x0, σ) 7→ Lx0σ is continuous G× Sm
ρ,δ(G) → Sm+δ

ρ,δ (G).

Proof. Taylor estimate yields for any (x, π) ∈ G× Ĝ,

‖σ(xx0, π)− σ(x, π))‖L (Hπ) .G |x0| sup
x′∈G

‖Xx′σ(x′, π)‖L (Hπ),

where |x0| denotes the Riemann distance of x0 ∈ G to the neutral element eG. More generally for
any semi-norm ‖ · ‖Sm

ρ,δ,a0,b0
, we have

‖Lx0σ − σ‖Sm+δ
ρ,δ ,a0,b0

.G |x0|‖σ‖Sm
ρ,δ ,a0,b0+1.

�

This implies readily the following property of convolution in the x-variable of a symbol:

Corollary 3.5. If σ ∈ Sm
ρ,δ(G) and ϕ ∈ C∞(G), then denoting by ϕ ∗ σ the symbol

ϕ ∗ σ = {ϕ ∗ σ(x, π) : (x, π) ∈ G× Ĝ}, ϕ ∗ σ(x, π) =
∫

G
ϕ(z)σ(z−1x, π)dz,

we have ϕ ∗ σ ∈ Sm
ρ,δ(G) with

‖ϕ ∗ σ‖Sm
ρ,δ

,a,b ≤ ‖ϕ‖L1(G)‖σ‖Sm
ρ,δ

,a,b.
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3.2. Proof of the G̊arding inequality. Here, we prove the following (ρ, δ)-generalisation of
Theorem 1.1:

Theorem 3.6. Let G be a connected compact Lie group. Let m ∈ R and 1 ≥ ρ > δ ≥ 0. Assume
that the symbol σ ∈ Sm

ρ,δ(G) satisfies the positivity condition σ ≥ 0. Then, for all η > 0, there exists
a constant Cη > 0 such that

(3.2) ∀f ∈ C∞(G), ℜ
(
OpKN(σ)f, f

)
L2(G)

≥ −η ‖f‖2
H

m+δ
2 (G)

− Cη‖f‖2
H

m−(ρ−δ)
2 (G)

.

Moreover, if δ = 0 and σ ∈ Sm
ρ,δ(G) satisfies the ellipticity condition σ ≥ c(id + L̂)m/2, that is,

σ(x, π) ≥ c(1 + λπ)
m
2 idHπ , (x, π) ∈ G× Ĝ,

for some constant c > 0. Then, there exists a constant C > 0 such that

∀f ∈ C∞(G), ℜ
(
OpKN(σ)f, f

)
L2(G)

≥ −C‖f‖2
H

m−(ρ−δ)
2 (G)

.

When δ = 0 and ρ = 1, the second part of Theorem 3.6 is Theorem 1.1. Note that when
δ = 0 and ρ ∈ (0, 1) the term involving ‖f‖2

H
m−δ

2 (G)
in the right hand-side of the weak G̊arding

inequality (3.2) disappears.

The main step in our proof is the following analysis of the Wick quantization in the Ψ∞
ρ,δ-calculus:

Lemma 3.7. Here, we consider the Wick quantization OpWick,a with a smooth function a : G→ C.
Let m ∈ R and 1 ≥ ρ ≥ δ ≥ 0.

(1) If σ ∈ Sm
ρ,δ(G) with m ≤ 0, then σ ∈ L∞(G × Ĝ) and OpWick(σ) ∈ Ψm

ρ,δ(G). Moreover, the

map σ 7→ OpWick(σ) is continuous Sm
ρ,δ(G) → Ψm

ρ,δ(G).

(2) If σ ∈ Sm
ρ,δ(G) with m ≤ 0, then we have

OpWick(σ)−OpKN(|a|2 ∗ σ) ∈ Ψ
m−(ρ−δ)
ρ,δ (G).

Moreover, the map σ 7→ OpWick(σ)−OpKN(|a|2 ∗σ) is continuous Sm
ρ,δ(G) → Ψ

m−(ρ−δ)
ρ,δ (G).

Proof of Lemma 3.7. We may rephrase Lemma 2.4 as OpWick(σ) = OpKN(σWick) with

σWick(x, π) =

∫

G
∆qzσ(z

−1x, π)dz

where qz(w) = a(w−1z)ā(z). By Lemma 3.4, Corollary 3.5 and Lemma 3.3 (1), this implies Part 1.
We observe that∫

G
∆qz(0)σ(z

−1x, π) dz =

∫

G
|a|2(z)σ(z−1x, π) dz = |a|2 ∗ σ(x, π).

Hence, Lemma 3.3 (2) implies Part 2. �

The choice of the functions a for the Wick quantization is at the core of our proof of the G̊arding
inequality. We do it in relation to an approximation of the identity. By an approximation of the
identity on a compact Lie group G, we mean a family of functions ϕt ∈ D(G), t > 0, satisfying
ϕt(z) ≥ 0,

∫
G ϕt(z)dz = 1 for any t > 0 and for any neighbourhood V of the neutral element eG,

limt→0

∫
z∈V ϕt(z)dz = 1. We then have

lim
t→0

max
x∈G

|ψ(x) − ϕt ∗ ψ(x)| = 0,

for any continuous function ψ : G → C; this extends to continuous functions ψ that are Banach
valued. From this, we obtain the properties regarding the approximation of the identity that we
will use in our proof of G̊arding inequalities below and summarised in the following lemma:
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Lemma 3.8. Let ϕt, t > 0, be an approximation of the identity on G. There exists C > 0 such
that for all t > 0,

∀σ ∈ Sm
ρ,δ(G), ‖σ − ϕt ∗ σ‖Sm+δ

ρ,δ
(G),a0,b0

≤ Ct‖σ‖Sm
ρ,δ,a0,b0+1,

for any a0, b0 > 0, m ∈ R, 1 ≥ ρ ≥ δ ≥ 0.

Proof of Lemma 3.8. We observe that for any ϕ ∈ C∞(G), we have

‖ϕ ∗ σ − σ‖Sm+δ
ρ,δ

,a0,b0
≤

∫

G
‖Ly−1σ − σ‖Sm+δ

ρ,δ
,a0,b0

|ϕ(y)|dy .G

∫

G
|y||ϕ(y)|dy‖σ‖Sm

ρ,δ
,a0,b0+1,

by Lemma 3.4 and its proof. Hence, we have

‖ϕt ∗ σ − σ‖Sm
ρ,δ,a0,b0

.G

∫

G
|y||ϕt(y)|dy ‖σ‖Sm

ρ,δ ,a0,b0+1,

for any σ ∈ Sm
ρ,δ. �

In the proof of the G̊arding inequality for symbol of order 0 below, we will choose an approxi-
mation of the identity ϕt, t > 0, that never vanishes, i.e. ϕt(x) > 0 for any x ∈ G and t > 0, and
then take a :=

√
ϕt. Such an approximation of the identity ϕt is obtained by considering the heat

kernel pt [25, 10], that is, the convolution kernel of e−tL .

Proof of Theorem 3.6 for m = 0. Let σ ∈ S0
ρ,δ(G) satisfying σ(x, π) = σ(x, π)∗ for any (x, π) ∈

G × Ĝ. The link between the Wick and Kohn-Nirenberg quantizations (Lemma 3.7) and the
properties of the pseudo-differential calculus (Theorem 3.1) imply

1

2
(OpKN(σ) + OpKN(σ)∗) = OpWick(σ) + OpKN(σ − |a|2 ∗ σ) + OpKN(ρ),

with ρ ∈ S
−(ρ−δ)
ρ,δ (G). Hence, we obtain:

ℜ(OpKN(σ)f, f)L2(G) ≥ (OpWick(σ)f, f)L2(G) −
∣∣∣
(
OpKN(σ − |a|2 ∗ σ)f, f

)
L2(G)

∣∣∣

− ‖OpKN(ρ)‖
L (H− ρ−δ

2 (G),H
ρ−δ
2 (G))

‖f‖2
H− ρ−δ

2 (G)
.

The property (2.7) of the Wick quantization and the hypothesis σ(x, π) ≥ 0 for any (x, π) ∈ G× Ĝ

yield

(OpWick(σ)f, f)L2(G) ≥ 0

while the properties of the pseudo-differential calculus (Theorem 3.1) imply that the operator
norm ‖OpKN(ρ)‖

L (H− ρ−δ
2 (G)),H

ρ−δ
2 (G))

is finite. We then choose a :=
√
ϕt with ϕt(x) > 0 an

approximation of the identity. By Lemma 3.8, one can find t = t(η) such that
∣∣∣
(
OpKN(σ − |a|2 ∗ σ)‖L (L2(G))f, f

)
L2(G)

∣∣∣ ≤ η‖f‖
H

δ
2 (G)

.

This concludes the first part of the Theorem, in the case σ ∈ S0
ρ,δ(G). The second part of the

Theorem, with δ = 0, is obtained in a similar manner by observing that the property (2.7) of the

Wick quantization and the hypothesis σ(x, π) ≥ c for any (x, π) ∈ G× Ĝ yield

(OpWick(σ)f, f)L2(G) ≥ c‖f‖2L2(G).

One then choose η ≤ c so that the term η‖f‖
H

δ
2 (G)

= η‖f‖L2(G) is absorbed by c‖f‖2L2(G). �

In the proof above, we observe that ‖OpKN(ρ)‖
L (H− ρ−δ

2 (G),H
ρ−δ
2 (G))

depends on our choice of

a :=
√
ϕt, and thus of η.
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Proof of Theorem 3.6 for any m ∈ R. Let σ ∈ Sm
ρ,δ(G) be such that σ ≥ 0. By the properties of

the pseudo-differential calculus, we may write

(id + L)−m/4OpKN(σ) (id + L)−m/4 = OpKN(σ1) + OpKN(ρ1),

with σ1 ∈ S0
ρ,δ(G) given via σ1(x, π) := (1+λπ)

−m/2σ(x, π), and ρ1 ∈ S
−(ρ−δ)
ρ,δ (G). We observe that

σ1 satisfies the hypothesis of Theorem 3.6 with m = 0.
For any f ∈ C∞(G), setting f1 = (id + L)m/4f , we have

ℜ(OpKN(σ)f, f)L2(G) = ℜ((id + L)−m
4 OpKN(σ) (id + L)−m

4 f1, f1)L2(G)

= ℜ(OpKN(σ1)f1, f1)L2(G) + ℜ(OpKN(ρ1)f1, f1)L2(G)

≥ −η‖f1‖
H

δ
2 (G)

− Cη‖f1‖
H− ρ−δ

2 (G)
,

by Theorem 3.6 with m = 0 applied to σ1 and the properties of the pseudo-differential calculus
applied to ρ1. The conclusion follows from ‖f1‖

H− ρ−δ
2 (G)

≍ ‖f‖
H

m−(ρ−δ)
2 (G)

. �

4. Gårding inequality on graded nilpotent Lie groups

Here, we prove the G̊arding inequality on a graded nilpotent Lie group G. Before this, we recall
some definitions and notations about this class of groups and the associated pseudo-differential
calculus.

4.1. Preliminaries on graded nilpotent groups. A graded group G is a connected simply
connected nilpotent Lie group whose (finite dimensional, real) Lie algebra g admits an N-gradation
into linear subspaces,

g = ⊕∞
j=1gj with [gi, gj] ⊆ gi+j, 1 ≤ i ≤ j,

where all but a finite number of subspaces gj are trivial. We denote by j = nG the smallest integer
such that all the subspaces gj , j > nG, are trivial. If the first stratum g1 generates the whole Lie
algebra, then gj+1 = [g1, gj ] for all j ∈ N0 and nG is the step of the group; the group G is then
said to be stratified, and also (after a choice of basis or inner product for g1) Carnot.

The product law on G is derived from the exponential map expG : g → G which is a global
diffeomorphism from g onto G. Once a basis X1, . . . ,Xn for g has been chosen, we may identify the
points (x1, . . . , xn) ∈ Rn with the points x = exp(x1X1 + · · · + xnXn) in G. It allows us to define
the (topological vector) spaces C∞(G) and S(G) of smooth and Schwartz functions on G identified
with Rn; note that the resulting spaces are intrinsically defined as spaces of functions on G and do
not depend on a choice of basis.

The exponential map induces a Haar measure dx on G which is invariant under left and right
translations and defines Lebesgue spaces on G.

We now construct a basis adapted to the gradation. Set dj = dim gj for 1 ≤ j ≤ nG. We choose
a basis {X1, . . . ,Xn1} of g1 (this basis is possibly reduced to ∅), then {Xn1+1, . . . ,Xn1+n2} a basis
of g2 (possibly {0}) and so on. Such a basis B = (X1, · · · ,Xd1+···+dnG

) of g is said to be adapted
to the gradation.

The Lie algebra g is a homogeneous Lie algebra equipped with the family of dilations {δr, r > 0},
δr : g → g, defined by δrX = rℓX for every X ∈ gℓ, ℓ ∈ N [16, 12]. We re-write the set of integers
ℓ ∈ N such that gℓ 6= {0} into the increasing sequence of positive integers υ1, . . . , υn counted with
multiplicity, the multiplicity of gℓ being its dimension. In this way, the integers υ1, . . . , υn become
the weights of the dilations and we have δrXj = rυjXj, j = 1, . . . , n, on the chosen basis of g. The
associated group dilations are defined by

δr(x) = rx := (rυ1x1, r
υ2x2, . . . , r

υnxn), x = (x1, . . . , xn) ∈ G, r > 0.
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In a canonical way, this leads to the notions of homogeneity for functions and operators. For
instance, the Haar measure is homogeneous of degree

Q :=
∑

ℓ

υℓ dim gℓ,

which is called the homogeneous dimension of the group. Another example is the vector field
corresponding to an element X ∈ gℓ: it is ℓ-homogeneous.

In the rest of the paper, we assume that we have fixed a basis X1, . . . ,Xn of g adapted to
the gradation. We keep the same notation for the associated left-invariant vector fields on G,
and we denote the corresponding right invariant vector fields by X̃1, . . . , X̃n. For a multi-index
α = (α1, . . . , αn) ∈ Nn

0 , we set X
α = Xα1

1 . . . Xαn
n and X̃α = X̃α1

1 . . . X̃αn
n . The differential operators

Xα and X̃α are homogeneous of degree

[α] = υ1α1 + . . .+ υnαn.

4.2. The pseudo-differential calculus. In this section, we set some notation and recall briefly
the global symbol classes defined on G together with some properties of the pseudo-differential
calculus. We refer to [12] for more details.

A symbol σ is in Sm
ρ,δ(G) when for any multi-indices α, β ∈ Nn

0 and γ ∈ R, there exists C = C(α, β)

such that we have for almost (x, π) ∈ G× Ĝ,

(4.1) ‖π(id +R)−
m−ρ[α]+δ[β]+γ

ν Xβ∆ασ(x, π)π(id +R)
γ
ν ‖L (Hπ) ≤ Cα,β,γ ,

where R is a (and then any) positive Rockland operator of homogeneous degree ν; we may assume
γ ∈ Z. The difference operator ∆α is the difference operator ∆xα for the monomial xα in the
coordinates xj . Generalising the definition in the compact setting, the difference operator ∆q

associated to q ∈ C∞(G) is defined as in (3.1) via ∆qκ̂ = F(qκ) for any κ ∈ S ′(G) for which κ and
qκ admits a Fourier transform (see [12]). We set ‖σ‖Sm,a,b,c := max|α|≤a,|β|≤b,|γ|≤cCα,β,γ for the
best constants Cα,β,γ in (4.1) and a, b, c ∈ N0. If (ρ, δ) = (1, 0), we simply write Sm(G) = Sm

1,0(G).

The following theorem summarises the main property of the classes of operators obtained by the
OpKN-quantization of the classes Sm(G); the Sobolev spaces L2

s(G) adapted to the graded nilpotent
Lie group G were studied in [12, 13] generalising slightly the stratified case [15].

Theorem 4.1. Theorem 3.1 holds for G a graded nilpotent Lie group when replacing the symbol
classes with the ones defined above and the Sobolev spaces with L2

s(G).

Any σ ∈ Sm(G) admits a distributional convolution kernel κ : z 7→ κx(z) ∈ C∞(G,S ′(G)),
i.e. σ(x, π) = κ̂x(π) and OpKN(σ)f(x) = f ∗ κx(x), f ∈ S(G). The statement of Lemma 3.3 for
difference operators also holds in the context of graded Lie groups if a ∈ D(G) is replaced with
a ∈ S(G).

Sketch of the proof for Lemma 3.3 for graded G. The properties of the convolution kernels of sym-
bols in Sm(G), for instance being Schwartz away from the origin, implies that we may assume
q ∈ D(G) with compact support near the origin. Let χ ∈ D(G) be such that χ ≡ 1 on the support
of q. Let P q

N (z) be the Taylor polynomial at order N in the sense of Folland-Stein [16, 12] for q.
The estimates of the convolution kernel κ of σ imply that

sup
x,y∈G

|χ(q − P
q
N )κx|(y)

will be finite for N large enough, with a constant given by semi-norms in σ, and similarly for with

X
β′
2

y X̃
β′
2

y yαχ(q − P
q
N )Xβ

xκx. This implies the statement. �
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Remark 4.2. It is straightforward to check that Lemma 3.4 on the left-translations of a symbol,
Corollary 3.5 on the x-convolution with a symbol and then Lemma 3.7 on the Wick quantization
in the calculus Ψ∞

ρ,δ(G) with a ∈ S(G) hold on a graded group G.

4.3. Proof of the G̊arding inequality. Here, we prove the following (ρ, δ)-generalisation of
Theorem 1.2:

Theorem 4.3. Let G be a graded nilpotent Lie group. Let m ∈ R and 1 ≥ ρ > δ ≥ 0. Assume that
the symbol σ ∈ Sm

ρ,δ(G) satisfies the positivity condition σ ≥ 0 Then, for all η > 0, there exists a
constant Cη > 0 such that

∀f ∈ S(G), ℜ
(
OpKN(σ)f, f

)
L2(G)

≥ −η‖f‖2L2
m+δ

2

(G) − Cη‖f‖2L2
m−(ρ−δ)

2

(G).

Moreover, if δ = 0 and σ ∈ Sm
ρ,δ(G) satisfies the elliptic condition σ ≥ c(id + R̂)

m
ν , for some

constant c > 0 where R is a positive Rockland operator of homogeneous degree ν. Then there exists
a constant C > 0 such that

∀f ∈ S(G), ℜ
(
OpKN(σ)f, f

)
L2(G)

≥ −C‖f‖2L2
m−(ρ−δ)

2

(G).

The proof of Theorem 4.3 is a simple modification of the case of compact groups given in
Section 3.2. We will need to replace the Sobolev spaces Hs(G) with the Sobolev space L2

s(G)
adapted to the graded nilpotent case. Moreover, in the final argument showing that the case of a
symbol σ ∈ Sm

ρ,δ(G) follows from the case of a symbol of order 0, we need to replace σ1 with

σ1 = (id + R̂)−
m
2ν σ(id + R̂)−

m
2ν .

Below, we will detail the proof for a symbol σ ∈ S0
ρ,δ(G) of order 0. The main difference with the

compact case will come from the construction of a suitable approximation of the identity. Before
starting the proof, let us recall some properties of the approximations of the identity constructed
using dilations on nilpotent Lie groups. In the proof of G̊arding inequalities below, we will crucially
use Part (3):

Lemma 4.4. Let ϕ1 ∈ S(G) with
∫
G ϕ1 = 1. Consider the family of integrable functions ϕt =

t−Qϕ1 ◦ δt−1 , t > 0.

(1) The family of functions ϕt, t > 0, form an approximation of identity on Lp(G), p ∈ [1,∞)
and on the space C0(G) of continuous functions vanishing at infinity, that is,

lim
t→0

‖ψ − ϕt ∗ ψ‖Lp(G) = 0,

for ψ ∈ Lp(G) (resp. C0(G)) for p ∈ [1,∞) (resp. p = ∞).
(2) There exist constants C,C ′ > 0, depending on the group and on ϕ1, such that for any

ψ ∈ C∞(G), we have

∀t ∈ (0, 1], x ∈ G, |ψ(x) − ϕt ∗ ψ(x)| ≤ Ct max
j=1,...,n

sup
x′∈G

|X̃jψ(x
′)|,

and

∀t ∈ (0, 1], x ∈ G, |ψ(x)− ϕt ∗ ψ(x)| ≤ C ′t max
j=1,...,n

sup
x′∈G

|Xjψ(x
′)|.

(3) There exists C > 0 such that for all T > 0

∀σ ∈ Sm
ρ,δ(G), ‖σ − ϕt ∗ σ‖Sm+δ

ρ,δ
(G),a0,b0

≤ C t ‖σ‖Sm
ρ,δ

(G),a0,b0+1,

for any a0, b0 > 0, m ∈ R, 1 ≥ ρ > δ ≥ 0.
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The heat kernels pt of a positive Rockland operators R, i.e. the convolution kernels of e−tR,
t > 0, provides such an approximation of the identity [12, 16]. When G is stratified and R is a
sub-Laplacian, the heat kernels will be non-negative and never vanishing. We observe that the heat
kernel being positive and never vanishing was used in the proof of the compact case in Section 3.2.
These properties of the heat kernel for a general positive Rockland operator are not guaranteed in
the graded case. However, in the graded case, Lemma 4.4 does not require an approximation of the
identity that is non-negative and never vanishing, and this lemma will be sufficient in our proof of
Theorem 4.3.

Proof of Lemma 4.4. Part 1 is well known (see [16, 12]) but will not be used in this paper. In
Part 2, the first estimate follows by the Taylor estimates due to Folland and Stein [16, 12]. As

Xj may be expressed as a sum of X̃k with polynomial coefficients, we obtain the second inequality
only for ψ with compact support, and a constant depending on this support. We now extend this
to any function ψ with an argument of partition of unity.

From the partition of unity due to Folland and Stein [16], there exist a function χ ∈ D(G) and
a sequence (xj)j∈N of points in G such that

∑
j∈N χj(x) = 1 for all x ∈ G, where χj(x) = χ(xxj);

moreover, this sum is finite for every x ∈ G, and in fact uniformly finite on any compact set of G.
We now observe setting ψj(x) := ψ(xx−1

j )

ψ(x)− ϕt ∗ ψ(x) =
∑

j

(ψχj)(x)− ϕt ∗ (ψχj)(x) =
∑

j

((ψjχ)− ϕt ∗ (ψjχ)) (xxj).

We obtain the second estimates of Part (2) with the estimate for functions with a fixed compact
support and the sum being uniformly finite.

We show Part (3) by modifying the proof of Lemma 3.8. We write for any ϕ ∈ S(G)
‖σ − ϕ ∗ σ‖Sm+δ

ρ,δ
,a0,b0,c0

= max
[α]≤a0,[β]≤b0,|γ|≤c0

max
x∈G

‖σα,β,γ(x, · ) − ϕ ∗ σα,β,γ(x, · ))‖L∞(Ĝ)
,

where the symbol σα,β,γ ∈ L∞(Ĝ) is defined via

σα,β,γ(x, π) := π(id +R)−
m+δ−ρ[α]+δ[β]+γ

ν Xβ∆ασ(x, π)π(id +R)
γ
ν .

This and the second estimate in Part (2) extended to Banach valued functions ψ imply

‖ϕt ∗ σ − σ‖Sm+δ
ρ,δ

,a0,b0
.G,ϕ1 t‖σ‖Sm

ρ,δ
,a0,b0+1.

for any σ ∈ Sm
ρ,δ. �

Proof of Theorem 4.3. As explained above, it suffices to show the statement for σ ∈ S0
ρ,δ(G) satis-

fying σ(x, π) ≥ 0. We fix a function a1 ∈ S(G) with ‖a1‖L2(G) = 1, and set at(x) := t−Q/2a1(δ
−1
t x),

x ∈ G, t > 0. We observe that |at|2 = t−Q|a1|2 ◦ δ−1
t , t > 0, is an approximation of the identity

in the sense of Lemma 4.4. We now consider the Wick quantization OpWick,a with a = at to be
chosen at the end of the proof. The properties of the Wick quantization (see (2.7) and Lemma 3.7
with Remark 4.2) imply

ℜ(OpKN(σ)f, f)L2(G) ≥ −
∣∣∣
(
OpKN(σ − |a|2 ∗ σ)f, f

)
L2(G)

∣∣∣− C‖f‖2L2

− ρ−δ
2

(G),

for some constant C > 0. We now choose a = at with t > 0 small enough so that, by Lemma 4.4
(3), ∣∣∣

(
OpKN(σ − |a|2 ∗ σ)f, f

)
L2(G)

∣∣∣ ≥ η‖f‖2L2
δ
2

(G).

This shows the case of σ ∈ S0
ρ,δ(G) and one can conclude the proof of Theorem 4.3 in a similar

manner as for Theorem 3.6. �
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5. Semi-classical Gårding inequality on graded nilpotent Lie groups

In this section, we show the semi-classical inequality stated in Theorem 1.3. The proof is inspired
by Lemma 1.2 in [18]. Before this, we recall the definition of the semi-classical calculus and we
introduce the Wick quantization adapted to the semi-classical setting.

5.1. Semi-classical pseudodifferential calculus. The set A0 is the space of symbols σ =

{σ(x, π) : (x, π) ∈ G× Ĝ} of the form

σ(x, π) = Fκx(π) =
∫

G
κx(y)(π(x))

∗dx,

where (x, y) 7→ κx(y) is a function of the set C∞
c (G,S(G)) of smooth and compactly supported

functions on U valued in the set of Schwartz class functions. As before, x 7→ κx is called the
convolution kernel of σ.

With the symbol σ ∈ A0, we associate the (family of) semi-classical pseudodifferential operators

Opε(σ) = OpKNσ(·, δε·), ε ∈ (0, 1],

where the Kohn-Nirenberg quantization OpKN was defined in Section 2.2.2 and δr denotes the

action of R+ on Ĝ given via

δrπ(x) = π(δrx), x ∈ G, π ∈ Ĝ, r > 0.

In other words, we have

Opε(σ)f(x) =

∫

π∈Ĝ
TrHπ (π(x)σ(x, δεπ)FGf(π)) dµ(π), f ∈ S(G), x ∈ G,

or equivalently, in terms of the convolution kernel κx = F−1
G σ(x, ·),

Opε(σ)f(x) = f ∗ κ(ε)x (x), f ∈ S(G), x ∈ U,

where κ
(ε)
x is the following rescaling of the convolution kernel:

κ(ε)x (y) := ε−Qκx(δ
−1
ε y).

5.2. The semi-classical Wick quantization. Let a ∈ S(G) such that ‖a‖L2 = 1. We set

aε := ε−
Q
4 a ◦ δ

ε−
1
2
, ε > 0,

so that aε ∈ S(G) with ‖aε‖L2(G) = 1. We also set

F
ε
x := {F ε

x,π(y) : (y, π) ∈ G× Ĝ}, F
ε
x,π(y) = aε(yx

−1)δ−1
ε π(y)∗,

and define the operator Bε on S(G) via

Bε[f ](x, π) = ε−
Q
2

∫

G
f(y)F ε

x,π(y)dy, f ∈ S(G), (x, π) ∈ G× Ĝ.

Note that, with respect to the operator Ba defined in Section 2.3.1, we have

Bε[f ](x, π) = ε−
Q
2 Baε [f ](x, δ

−1
ε π).

Hence, by Proposition 2.2, the map Bε extends uniquely to an isometry from L2(G) to L2(G× Ĝ)

for which we keep the same notation. Denoting by Bε,∗ : L2(G × Ĝ) → L2(G) its adjoint map, we

have Bε,∗Bε = idL2(G) while BεBε,∗ is a projection on a closed subspace of L2(G × Ĝ). We also

define the semi-classical Wick quantization for σ ∈ L∞(Ĝ)

OpWick
ε (σ) := Bε,∗σ Bε

We can compute the convolution kernel of OpWick
ε (σ) as in Lemma 2.4:

18



Lemma 5.1. If σ ∈ A0, then

OpWick
ε (σ) = OpKN

ε (σε,Wick),

where σε,Wick ∈ A0 has the following convolution kernel

κε,Wick
x (w) =

∫

G
aε(δεw

−1xz−1)āε(xz
−1)κz(w)dz

=

∫

G
aε(δεw

−1z′)āε(z
′)κz′−1x(w)dz

′

=

∫

G
a(δ√εw

−1y)ā(y)κδ√εy
−1x(w)dy,

Corollary 5.2. We choose a function a ∈ D(G) that is even, i.e. a(x−1) = a(x), and real valued.
Then for any σ ∈ A0, there exists C > 0 such that for all ε ∈ (0, 1],

‖OpKN
ε (σ)−OpWick

ε (σ)‖L (L2(G)) ≤ Cε.

Proof. By Lemma 2.1, using the A0-norm defined in (2.4), we have

‖OpKN
ε (σ) −OpWick

ε (σ)‖L (L2(G)) ≤ ‖σ − σε,Wick‖A0 ≤ I1(ε) + I2(ε),

where

I1(ε) :=

∫

G
sup
x∈G

∣∣∣∣
∫

G
|a(z)|2

(
κx(w)− κδ√εz

−1x(w)
)
dz

∣∣∣∣ dw

I2(ε) :=

∫

G
sup
x∈G

∣∣∣∣
∫

G
(a(z)− a(δ√εw

−1z))ā(z)κδ√εz
−1x(w)dz

∣∣∣∣ dw.

By the Taylor estimates due to Folland and Stein [16, 12], we have:

I1(ε) =
√
ε

∫

G
sup
x∈G

∣∣∣∣∣∣

∑

[α]=1

∫

G
|a(z)|2qα(z−1)dz X̃α

x κx(w)

∣∣∣∣∣∣
dw +O(ε)

I2(ε) =
√
ε

∫

G
sup
x∈G

∣∣∣∣∣∣

∑

[α]=1

∫

G
X̃αa(z)ā(z)qα(w)κxδ√εz

−1(w)dz

∣∣∣∣∣∣
dw +O(ε)

≤ √
ε

∫

G
sup
x′∈G

∑

[α]=1

∣∣∣∣
∫

G
X̃αa(z)ā(z)dz

∣∣∣∣ |qα(w)κx′(w)| dw +O(ε).

As a is even, for any polynomial q satisfying q(z−1) = −q(z) such as the coordinate polynomials
qα with [α] = 1, we have

∫
G |a(z)|2q(z)dz = 0. As a is real valued, for any left or right invariant

vector field X, an integration by parts shows
∫
GXa(z)ā(z)dz = 0. Consequently, I1(ε) = O(ε) and

I2(ε) = O(ε). �

5.3. Proof of the semi-classical G̊arding inequality. We write

ℜ
(
OpKN

ε (σ)f, f
)
L2(G)

≥
(
OpWick

ε (σ)f, f
)
L2(G)

− ‖OpKN
ε (σ)−OpWick

ε (σ)‖L (L2(G))‖f‖L2(G).

By the properties of the semi-classical Wick quantisation, if σ ≥ 0, then
(
OpWick

ε (σ)f, f
)
L2(G)

= (σBεf,Bεf)L2(G×Ĝ) ≥ 0,

while by Corollary 5.2, ‖OpKN
ε (σ) − OpWick

ε (σ)‖L (L2(G)) = O(ε). This concludes the proof of
Theorem 1.3.
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We point out that the semi-classical case is more straightforwards because we restrict ourselves
to the use of L2-norm and to a gain in the semi-classical parameter ε. The proof of Theorem 1.3
is analogous to the one of Theorem 4.3, by taking the dilation parameter t as

√
ε.

Appendix A. The Euclidean case

In this section, we recall the definitions and some properties of the Kohn-Nirenberg and Wick
quantizations in the Euclidean case Rn. We develop the same chain of arguments that show the
G̊arding inequality for the Hörmander calculus on Rn as in the core of the paper. This leads to a
proof which is close to the one of [17, Chapter 2, section 6].

A.1. Kohn-Nirenberg and Wick quantizations. On Rn, the Kohn-Nirenberg quantization
may be defined for any symbols σ ∈ S ′(Rn × Rn) via the formula

OpKN(σ)f(x) =

∫

Rn

e2iπxξσ(x, ξ) f̂(ξ) dξ, x ∈ R
n, f ∈ S(Rn),

where f̂ = Ff denotes the Euclidean Fourier transform of f :

Ff(ξ) = f̂(ξ) =

∫

Rn

e−2iπxξf(x)dx, ξ ∈ R
n.

With the convolution kernel κx := F−1σ(x, · ) of σ, this may be rewritten as

OpKN(σ)f(x) = f ∗ κx(x), x ∈ R
n, f ∈ S(Rn).

Fixing a continuous, bounded and square-integrable function a with ‖a‖L2(Rn) = 1, we set for

any f ∈ L2(Rn) and (x, ξ) ∈ Rn

Ba[f ](x, ξ) := F(f a(· − x))(ξ) =

∫

Rn

f(y) a(y − x) e−2iπyξdy.

This defines the generalised Bargmann transform Ba = B. The function a is usually chosen as

the Gaussian function a(x) = π−
d
4 e−

|x|2
2 [5]. The map B is a unitary transformation L2(Rn) →

L2(Rn ×Rn). Denoting by B∗ its adjoint, we define the Wick quantization OpWick = OpWick,a, for
any symbol σ ∈ L∞(Rn × Rn) via:

OpWick(σ)f = B∗σB[f ], f ∈ L2(Rn).

This quantization has the advantage of yielding bounded operators on L2, of preserving self-
adjointness:

‖OpWick(σ)‖L (L2(Rn)) ≤ ‖σ‖L∞(Rn×Rn), OpWick(σ)∗ = OpWick(σ̄),

and of preserving positivity:

σ(x, ξ) ≥ 0 for all (x, ξ) ∈ R
n × R

n =⇒ (OpWick(σ)f, f)L2(Rn) ≥ 0.

The link between the Kohn-Nirenberg and Wick quantization for a bounded symbol is the fol-
lowing:

Lemma A.1. Let a ∈ S(Rn) with ‖a‖L2(Rn) = 1, and consider the associated Wick quantization.
For any symbol σ ∈ L∞(Rn × Rn), we have:

OpWick(σ)f(x) = f ∗ κWick
x (x), f ∈ S(Rn), x ∈ R

n,

where κWick ∈ S ′(Rn × Rn) is given by

κWick
x (y) =

∫

Rn

a(z − y)ā(z)κx−z(y)dz,
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where κx = F−1σ(x, ·) denotes the convolution kernel of σ. Hence, OpWick(σ) = OpKN(σWick)
where σWick ∈ S ′(Rn × Rn) is the symbol given by σWick(x, ξ) = FκWick

x (ξ).

A.2. G̊arding inequality for Hörmander symbols. First, let us recall the definition of the
Hörmander classes of symbols.

Definition A.2. A function σ ∈ C∞(Rn × Rn) is a Hörmander symbol of order m ∈ R and index
(ρ, δ) when

∀α, β ∈ N
n
0 , ∃Cα,β > 0, ∀(x, ξ) ∈ R

n × R
n, |∂βx∂αξ σ(x, ξ)| ≤ Cα,β(1 + |ξ|2)

m−ρ|α|+δ|β|
2 .

The space of Hörmander symbols of order m and index (ρ, δ) is denoted by Sm
ρ,δ(R

n).

The space Sm
ρ,δ(R

n) is naturally equipped with a structure of Fréchet space, with semi-norms:

‖σ‖Sm
ρ,δ ,a,b

= max|α|≤a,|β|≤bCα,β with Cα,β the best constant as above. The resulting class of opera-

tors Ψm
ρ,δ(R

n) := OpKN(Sm
ρ,δ(R

n)) inherits the structure of Fréchet space. Moreover, the Hörmander

calculus ∪m∈RΨm
ρ,δ(R

n) is a calculus in the sense of Definition 1.4. In this context, the link between

the Kohn-Nirenberg and Wick quantizations is given in Part (2) of the following statement.

Proposition A.3. (1) Let m ∈ R and 1 ≥ ρ ≥ δ ≥ 0. If ϕ ∈ S(Rn) and σ ∈ Sm
ρ,δ(R

n) then

ϕ ∗ σ : (x, ξ) 7−→
∫

Rn

ϕ(z)σ(x − z, ξ)dz = ϕ ∗ σ( · , ξ) (x),

defines a symbol in Sm
ρ,δ(R

n).

(2) We assume that a ∈ S(Rn) with ‖a‖L2(Rn) = 1. If σ ∈ S0
ρ,δ(R

n), then

OpWick(σ)−OpKN(|a|2 ∗ σ) ∈ Ψ
−(ρ−δ)
ρ,δ (Rn).

Sketch of the proof of Proposition A.3. Part (1) is easily checked. For Part (2), we may rephrase
Lemma A.1 using the notion of difference operators ∆q defined formally via:

(∆qσ)(x, ξ) = F
(
qF−1σ(x, ·)

)
(ξ) = F(qκx)(ξ) = q̂ ∗ σx (ξ),

with κx = F−1σ(x, ·) the convolution kernel of σ. We have:

OpWick(σ) = OpKN(σWick) with σWick(x, ξ) =

∫

Rn

∆qzσ(x− z, ξ)dz,

where qz(w) = a(z − w)ā(z). We then conclude with the following asymptotic expansion in any
symbol class Sm

ρ,δ(R
n) for a difference operator associated with q ∈ S(Rn)

∆qσ ∼ q(0)σ +
∑

α>0

cα∂
α
x q(0)∂

α
ξ σ,

with explicit coefficients cα. �

The properties of the Kohn-Nirenberg and Wick quantizations imply the following G̊arding
inequality:

Theorem A.4. Let m ∈ R and 1 ≥ ρ > δ ≥ 0. Assume that the symbol σ ∈ Sm
ρ,δ(R

n) satisfies the

positivity condition σ(x, ξ) ≥ 0, Then, for all η > 0, there exists a constant Cη > 0 such that

∀f ∈ S(Rn), ℜ
(
OpKN(σ)f, f

)
L2 ≥ −η‖f‖2

H
m+δ

2
− Cη‖f‖2

H
m−(ρ−δ)

2

.

Moreover, if δ = 0 and σ ∈ Sm
ρ,0(R

n) satisfies the elliptic condition σ(x, ξ) ≥ c, for some constant
c > 0, then, there exists a constant C > 0 such that

∀f ∈ S(Rn), ℜ
(
OpKN(σ)f, f

)
L2 ≥ −C‖f‖2

H
m−(ρ−δ)

2

.
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We will use the following property of approximation of the identity. The proof relies in crucial
ways on the fact that the convolution is in x only.

Lemma A.5. Let ϕ1 ∈ S(Rn). Set ϕt(x) := t−nϕ1(t
−1x). Let m ∈ Rn and 1 ≥ ρ > δ ≥ 0. For

any σ ∈ Sm
ρ,δ(R

n), ϕt ∗σ converges to σ in Sm
ρ,δ(R

n) as t→ 0. This means that given any semi-norm

‖ · ‖Sm
ρ,δ

,a,b, we have

lim
t→0

‖σ − ϕt ∗ σ‖Sm
ρ,δ,a,b

= 0.

Proof. We observe that

|σ(x, ξ)− ϕt ∗ σ(x, ξ)| ≤
∫

Rn

|σ(x, ξ) − σ(x− ty, ξ)| |ϕ1|(y)dy

≤ t sup
x′∈Rn

|∇xσ(x
′, ξ)|

∫

Rn

|y| |ϕ1(y)|dy.

Since

∂βx∂
α
ξ (σ − ϕt ∗ σ) (x, ξ) = ∂βx∂

α
ξ σ(x, ξ)− ϕt ∗ ∂βx∂αξ σ(x, ξ),

we have a similar result applying ∂βx∂αξ . Consequently, if σ ∈ Sm
ρ,δ(R

n)

‖σ − ϕt ∗ σ‖Sm+δ
ρ,δ

,a,b ≤ Cϕ1t‖σ‖Sm
ρ,δ

,a,b+1, with Cϕ1 :=

∫

Rn

|y||ϕ1(y)|dy.

�

Sketch of the proof of Theorem A.4. It suffices to show the case m = 0. Let σ ∈ S0
ρ,δ(R

n) satis-

fying σ(x, ξ) ≥ c. The properties of the Wick quantization (especially preserving positivity and
Proposition A.3) imply

ℜ(OpKN(σ)f, f)L2 ≥ c‖f‖2L2 −
∣∣(OpKN(σ − |a|2 ∗ σ)f, f

)
L2

∣∣− C‖f‖2
H

ρ−δ
2
,

for some constant C > 0. We fix a function a1 ∈ S(Rn) with ‖a1‖L2(Rn) = 1 and set at(x) :=

t−n/2a1(t
−1x). Applying Lemma A.5 to |at|2 = t−n|a1(t−1·)|2, t > 0, we then choose a = at with

t > 0 small enough so that
∣∣∣
(
OpKN(σ − |a|2 ∗ σ)f, f

)
L2(G)

∣∣∣ ≤ η‖f‖
H

δ
2
.

The second part of the Theorem is proved as for Theorem 3.6. �
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[19] Lars Hörmander. The Analysis of Linear Partial Differential Operators I-III Springer Verlag (1983-85).
[20] Nicolas Lerner, Metrics on the phase space and non-selfadjoint pseudo-differential operators, Pseudo-Differential

Operators. Theory and Applications 3, Birkhäuser Verlag, Basel, 2010,
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[22] Michael Ruzhansky & Ville Turunen. Sharp G̊arding inequality on compact Lie groups, J. Funct. Anal., 260,

2011, No 10, pp. 2881–2901.
[23] Michael Ruzhansky, Ville Turunen, and Jens Wirth. Hörmander class of pseudo-differential operators on compact
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