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Introducing benchmarks for evaluating user-privacy
vulnerability in WiFi

Abhishek Kumar Mishra∗, Aline Carneiro Viana∗, Nadjib Achir∗†
∗ Inria, France † University Sorbonne Paris Nord, France

Abstract—WiFi-based crowdsensing is a major source of data
in a variety of domains such as human-mobility, pollution-level
estimation, and, opportunistic networks. MAC randomisation is a
backbone for preserving user-privacy in WiFi, as devices change
their identifiers (MAC addresses). MAC association frameworks
in the literature are able to associate randomized MAC addresses
with a device. Such frameworks facilitate the continuation and
validity of works based on device-based identifiers. In this paper,
we first question and verify the reliability of these frameworks
with respect to the datasets (scenarios) used for their valida-
tion. Indeed, we observe a substantial discrepancy between the
performances obtained by these frameworks when confronting
them with different contextual environments. We identify that the
device heterogeneity in the input scenario is privacy-preserving.
Henceforth, we propose a novel metric: randomization complexity,
capable of successfully catching the degree of randomization in
evaluated datasets. Existing and new frameworks can thus be
benchmarked using this metric to ensure their reliability for
any datasets with similar or lower randomization complexities.
Finally, we open discussions on the potential impact of the
benchmarks in the domain of MAC randomization.

Index Terms—Crowdsensing, MAC randomisation, MAC as-
sociation frameworks, Privacy-preserving

I. INTRODUCTION

The growth and ubiquity of smart devices supporting WiFi
brought meaningfulness and higher reliability to crowdsensing
and consequently, improved effectiveness of related services
and applications [1]–[4]. In this context, passive sniffing con-
sisting of deployed wireless and static sensing devices – i.e.,
referred here as sniffers – in a geographical area is considered
as a powerful crowdsensing technique for users’ mobility
data collection. Indeed, passive wireless measurements are
non-intrusive and cheaper to be implemented. Such passive
measurements rely on the collection of WiFi frames, called
probe-requests, sent by mobile smart devices looking for close-
by networks (e.g., WiFi access points), also known as active
scanning. Probe-requests serve as the source of data in WiFi-
based crowdsensing.

In order to preserve user-privacy, WiFi standards force
mobile devices to periodically change (randomize) their MAC
addresses [5] announced during their active scanning. The
MAC randomization process hardens the users’ device identi-
fication in the crowd, i.e., association between MAC addresses
broadcasted in probe-requests and the emitting device.

This work has been partially funded by the ANR MITIK project, French
National Research Agency (ANR), PRC AAPG2019.

MAC randomization affects the continuation and validity
of important works in domains relying on device-based iden-
tifiers, such as user trajectory inference [6], [7] and crowd
flow estimation [8], from public packets. Recent literature
heavily investigates the MAC address association, i.e. co-
relating randomised MAC addresses emitted by a particular
device [9]–[13].

MAC association opens critical issues on users privacy and
henceforth bringing the necessity for the understanding of such
association, giving insights on the potential improvement to
currently vulnerable WiFi standards, thus bringing stronger
user privacy protection. The challenging issue concerning
association strategies is identifying their weaknesses and ef-
fectiveness, which are not available. This paper deals with this
lack, which for the best of our knowledge, is the first work in
literature.

Broad strategies for association utilise from probe-requests:
i) their sequence numbers (i.e., SEQ) [9], [10], ii) their fields
(e.g., information elements(IE)) [10]–[12], iii) parameters
identified from the communication patterns (e.g., inter-burst
time (IBT)) [13], and iv) their RSSI values [10].

All these frameworks claim to associate randomized MAC
addresses to the same device with high accuracy measures in
their respective evaluation datasets. For instance, [10] obtain a
discrimination accuracy > 80% inside a shopping mall while
[13] get accuracy of up to 75% in laboratory settings. [12]
construct transmitter fingerprint that is 80% to 67.6% percent
unique for 50 to 100 observed devices in a music festival and
laboratory scenarios with a varied number of devices.

Despite the promise shown by these address association
frameworks, we show in this paper their performances are
highly sensitive to the input datasets, also showing there is
space for WiFi standard’s improvement. In this context, the
unreliable nature of association frameworks call for the need
of benchmarks for measuring their real ability in providing a
certain level of performance with respect to any new datasets
(scenarios). This ensures WiFi users’ privacy in a given
scenario.

We introduce the benchmarks for WiFi privacy by giving a
general characterization for the effectiveness of MAC address
association. We illustrate the overview of the process of
obtaining benchmarks in Fig. 2. First, we explore and verify
this unreliability and identify their causes. Second, we show
the impact of such causes on MAC address randomization.
Third, we introduce a novel metric (conflict size) to ensure
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Fig. 1: Case studies: (a-b) Infocom2021 [10], (c) WiSec16 [13].

2. Characterise packets' behaviour (cf. Sec. III)

3. Define a global metric that catches the

"complexity" of the input network trace (cf. Sec. IV)

4. Formalise Min., Max., and, Avg.

randomisation complexities (cf. Sec. IV)

1. Identify critical metrics (cf. Sec. II)

W.r.t. Randomisation and Bursts

5. Benchmark Association Frameworks'

Performance (cf. Sec. V)

Device OS, Modes, and, Channels

Conflict size

Randomisation Complexity distributions

Fig. 2: Obtaining benchmarks for MAC address association

the reliability of frameworks. Fourth, we use this metric to
formalise the complexity that a framework is handling with
respect to an input dataset. Finally, we discuss and validate
the potential of randomisation complexities on acting as an
association framework’s performance-benchmarks.

The introduced randomisation complexity distributions in
the last step act as a yardstick for the level of user-privacy
breach, when an adversary utilises a particular address associ-
ation framework. Benchmarks enable the understanding of the
usefulness of MAC association frameworks, while knowing
their limitations, which is privacy preserving for users.

II. IDENTIFYING THE UNRELIABILITY

We identify and validate the unreliability in current MAC
association frameworks.

A. Case Studies

We consider two literature works as case studies for testing
the resilience of address association frameworks which we
refer as: 1) Infocom2021 [10] and ii) WiSec16 [13], against
various data-collection scenarios. The case studies cover all
association strategies: usage of SEQ, IE, packet-reception
timings, and RSSI - based signatures (cf. Sec. I).
Datasets used in the literature: Infocom2021 uses probe-
requests captured inside a shopping mall for evaluation by
deploying multiple sensors. It consists of around 5000 unique
MACs per hour. However, only the devices transmitting their
true (physical) MAC address are considered for evaluating the
framework. On the other hand, authors evaluate WiSec16 on

a dataset collected inside a laboratory consisting of probe-
requests with non-randomized addresses. They partially ran-
domized their dataset (100 out of 550 captured devices) by
manually changing MAC addresses four bursts (cf. Section
III-A) of probe-requests.
Evaluation with a common dataset: Both frameworks con-
sider different datasets, and to compare the two case studies,
we have to compare them with the same input probe-request
dataset. Moreover, we need a ground truth of randomized
MAC addresses emitted from the same device. Hence, we use
the public anonymized Sapienza trace 1, consisting of about 11
million probe-requests, passively collected in eight different
contextual scenarios. We choose datasets from five scenarios:
trainstation, themall, vatican 1, and, vatican 2. The first two
showcase highly frequented public spaces, while the remaining
denote dense outdoor environments. The dataset consists of
the true MAC addresses of devices. We randomize the dataset
by changing the addresses every 4 bursts, while considering
various percentages of captured MAC addresses and keeping
the ground truth of original addresses.
Infocom2021 case-study: Using diverse scenarios, we eval-
uate two major components of the signature introduced by
authors in [10]: the IE and the SEQ. We do not consider the
third component: RSSI, as it requires multiple geographically-
known sniffers around each transmitting device while con-
tributing very less (drops up to 10%) to the effectiveness of
the signature (Fig. 13, [10]). The effectiveness metric utilised
in Infocom2021 is discrimination accuracy. Authors define
discrimination accuracy as the ratio of the correct association,
estimated from 1000 randomly selected probes (Pi) and their
previous probes in the Period ([ti−τ, ti]). They vary the period
between (0, 600s).
WiSec16 case-study: Similarly, we proceed with the per-
formance analysis of the timing-based signature introduced
in [13], under different scenarios. They propose distance
metrics based on timing (inter-frame arrival time) and use
them together with an incremental learning algorithm to group
probes. It claims up to 75% partially randomized traces
collected in a laboratory environment.
Observations: Regarding Infocom2021, we can observe in
Fig. 1a and 1b that discrimination accuracy of IE and SEQ

1 https://crawdad.org/sapienza/probe-requests/20130910



based signatures vary significantly across input datasets. For
instance, we can see that in relatively more static environments
(train-station) the performances are good for small periods.
However, when the environment starts to be more dynamic
the performances falls considerably. The accuracy of IE in
vatican2 drops to 23 percent while it goes close to zero when
considering probes in the period of 600s. The reported discrim-
ination accuracy for the same period, in Infocom2021 is 44%
and 19%, for IE and SEQ-based signatures, respectively. This
shows that the parameter period, highly impacts the results in
all scenarios.

Considering WiSec16, we notice in Fig. 1c that the proposed
association framework performs variably to the difference in
scenarios and the degree of MAC randomization present in the
collected probe-requests trace. Also, the achieved accuracy is
significantly lower than the claimed best performance (75%)
in fully randomized datasets.
Awareness requirement: We observe that the performance of
the studied association frameworks is considerably variable.
We argue this variability induces the unreliability in the
obtained accuracy. Such observation leads us to the essential
need for phenomena inference in input datasets, i.e., contextual
inference of scenarios.

B. No heterogeneity characterisation

We identify a major issue in the validation of current
association frameworks: a lack of characterization of the
heterogeneity in terms of the burst’s and the randomisation’s
behaviour (cf. Sec. III-A) in utilised probe-request datasets.
The model and the user-usage patterns of a device introduces
this heterogeneity that influences the generation of probe-
request packets (cf. Sec. III). The model of devices denote
the class of devices along with its manufacturer (e.g., smart
watches, mobile phones with Android, iOS) while the usage
patterns of users refer to the mode of the device when emitting
a probe-request (e.g., screen ON/OFF).

The reason for the variation in the probe-request sending
rates and the MAC randomization is that every manufacturer
independently decides these behaviors to ensure a good trade-
off between the network experience for users and the device’s
performance (e.g., battery life).

The main issues we identify are: First, the literature does
not use the same dataset (to ensure homogeneity) or any kind
of benchmark to show the trustworthiness of the obtained
framework’s performance (cf. Sec. IV). Second, there is
general lack of ground truth of randomized MAC addresses
with respect to the sending device. The first issue causes
looking only at a selective view to the framework’s perfor-
mance. In contrast, the second issue leads to the usage of
indirect accuracy metrics such as discrimination accuracy (as
in Infocom2021). Third, there is a lack of analysis of the
performance with respect to varying intensity of MAC address
changes that a data-collection scenario can capture (cf. Sec.
V). The more the intensity of address swaps, the more difficult,
in general, it is for a framework to associate MACs.

The need: We claim the need for a metric to characterize
the device heterogeneity in terms of the burst’s and random-
ization’s behaviors. Hence, we introduce the randomisation
complexity to bring the notion of benchmarks for validating
the reliability of association frameworks.

III. IMPACT OF HETEROGENEITY

We investigate the variability of MAC randomization in
WiFi probe-requests with respect to heterogeneity introduced
by the pool of current mobile devices. The three identified fac-
tors that make the emission of probe-requests heterogeneous
and subsequently have an impact on the address randomization
in WiFi are: i) the device’s model, ii) the device’s mode, and,
iii) the transmission channel. While the model captures the
device heterogeneity with respect to randomisation behaviour,
we observe that the mode is the one that has the most impact
on the probe-request generation, and hence in the following,
we will focus mainly on the device mode for characterising
probe-requests.

The probe-requests are susceptible to fingerprinting due to:
1) the nature of its bursts and 2) the randomising strategy of its
MAC address. In the following, we evaluate probe-requests’
susceptibility with respect to heterogeneity introduced by
device’s models and modes.

A. Probe-request bursts

We can not analyze probe-requests’ behavior using Sapienza
datasets used for the case studies (Sec. II-A) as we need a wide
range of current mobile devices with additional information
such as device’s mode when transmitting. Therefore, we used a
probe-request dataset [14]. This dataset has 22 popular device
models in practice, which were sniffed when present in various
device modes (see Tab. I). This is the first open-source probe-
requests dataset, labelled with the ground truth of randomised
addresses. It contains 20-minute duration captures of known
devices using a Raspberry Pi based sniffer.

MAC2MAC1 MAC3

Burst

Time

Inter-burst

time (IBT)

Fig. 3: A device’s randomised probe-requests.

Mode Screen ON Power-saving ON WiFi ON

A Yes No Yes
S No No Yes

PA Yes Yes Yes
PS No Yes Yes
WA Yes No No
WS No No No

TABLE I: Device’s modes [14]

There are active-screen modes (A, PA, and WA) and
inactive-screen modes (S, PS, and WS). In power-saving
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Fig. 4: Analysis of probe-requests’ burst behaviours – i.e., size, duration, Inter-burst time, and Intra-burst time – under varying:
(a-d) Device model’s, (e-h) Device modes, and, (i-l) Channels.

modes (PA and PS), the device additionally keeps the power-
saving setting active, while in WA and WS modes, the device
also has the Wi-Fi interface switched off. Each device config-
uration is observed in the three non-overlapping channels (1,6,
and, 11) of the 2.4 GHz frequency band. The details of capture
conditions for each device modes can be found in [14]. In the
following, we discuss the metrics concerning Wi-Fi probe-
request emissions that facilitate the association.

Fig. 3 illustrates the probe-requests sent from a device
over time in the active scanning process. Devices send probes
on every available channel to discover available networks in
proximity. Each probing round consists of a burst of frames.
The burst size is variable, depending mainly on the number
of available channels. The period between successive bursts,
inter-burst time (IBT), is variable to device models and its
operating modes. In essence, the temporal behavior of WiFi
probe-requests can be characterized by four metrics:
Bursts’ size: The average number of frames in a burst when
considering all device types (models) varies considerably with
the mean value of 7 (see Fig. 4a). We further analyze a device’s
behavior per mode in Fig. 4e. We observe that devices send
many frames in modes (A and PS). Intuitively, devices reduce
the burst sizes to the minimum in the mode with active-screen
and power saving mode (PA).
Bursts’ duration: The average duration of a probe-request
burst, across device types varies around 1s− 3s, as shown in

Fig. 4b. It is interesting to note in Fig. 4f that burst duration
is relatively lower in active-screen modes (A and PA) than
in static-screen modes (S and WS). This can be attributed to
devices conserving energy when under constraints.
Inter-burst time (IBT): The inter-burst time is typical to
device manufacturer’s factory configurations. Hence, across all
metrics we consider to characterize probe-requests, it shows
the most variation across the device types. Fig. 4c illustrates
that IBT alters from a few seconds to more than 200 seconds.
Moreover, we notice in Fig. 4g that IBT is the lowest in active-
screen mode (A) while the highest when the power-saving
mode is additionally turned ON (PA).
Intra-burst time: Finally, we investigate the time between
frames in a single burst. We observe in Fig. 4d that it goes up
to 0.8s. When looking at the effect of device modes on the
intra-burst time, we could notice in Fig. 4h that devices tend
to send frames quickly in a burst in the active-screen mode
(A) than in the static-screen mode (S).

We also observe a slight variation in the burst’s size and
duration as well as IBT and intra-burst time with respect to
transmission channels (see Fig. 4i - 4l).

B. Behavior of WiFi MAC addresses

The randomization strategy of a device’s MAC address is
equally critical to the temporal behavior of probe-request that
we just discovered. In WiFi, most of the current devices change
their MAC identifiers after a period of time. We notice that



18 of 22 considered major device types in the dataset [14] do
randomize their MAC addresses. Fig. 5a illustrates that most
devices change their MAC address after a burst, irrespective
of device modes. Moreover, the average address swap times
is low and almost similar across device modes, except when
the WiFi interface is switched OFF (WA and WS), as shown
in Fig. 5b.
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Fig. 5: Behaviour of MAC addresses

We have two key conclusions:
1st conclusion: The device heterogeneity does play a major
role in WiFi MAC address randomisation. We could see that
all broad types of signatures are based on metrics that vary
with device types and modes. Signatures based on temporal-
information of probe-requests [13] rely upon the behavior of
bursts, while those based on frame fields [10] depend upon
device-specific frame fields. Finally, sequence numbers-based
signatures [9], [10] also subsequently depends upon the burst’s
size and IBT of individual devices, as it dictates the probability
of sniffers recording a device’s frames.
2nd conclusion: MAC association frameworks need a rep-
resentative evaluation. As we just discussed, we must catch
device’s population (models) as well as modes present at
the time of dataset collection. We have to ensure that the
this dataset used for the evaluation of a address associa-
tion framework, should maintain the performance in similar
scenarios. We need a metric that quantifies this similarity
between data collection scenarios. In the following section,
we introduce randomisation complexity, a metric that enables
us to compare two datasets with respect to the difficulty that
a framework has to face, while associating contained MAC
addresses. This metric hence allows the evaluation of various
association frameworks to be comparable.

IV. INTRODUCING BENCHMARKS

We build upon our conclusions to introduce the formaliza-
tion on benchmarks for the evaluation of MAC association
frameworks. The proposed benchmarks are generic and are
representative of the complexity in the used input dataset.

We believe such formalization: (i) Brings new ways of
interpreting devices’ randomisation behavior, (ii) Opens paths
for designing adaptive randomisation techniques by the stan-
dard. For instance, devices can randomise more frequently in
situations with sparse nearby device population to maintain
a high complexity for a adversary, and, (iii) And off-course
allow association frameworks to be more robust and reliable.

MAC association as resolution of conflicts: Conflicts (C)
refer to changing MAC addresses in a given time period. They
are either caused by devices which stop emitting during the
MAC changing process or due to their entry/exit from the
sniffing range. We refer to this time period as conflict period
(Tc). We illustrate conflict periods in Fig. 6. Dotted lines in
different colors represent different appearing and disappearing
MAC addresses sent by devices, in a Tc.

Any address association framework in essence has to resolve
these conflicts and perform correct assignment between the
disappearing and appearing MAC from individual devices.
Each MAC address M is a bunch of probe-requests with a
start (Mstart) and a stop (Mstop). For instance, a disappearing
MAC, Mj is said to be in conflict (illustrated in Fig. 6) with
an appearing MAC, Mk if:

C : Mk,Mj 7→ (i− 1)Tc < Mstop
j ,Mstart

k ≤ iTc (1)

Fig. 6: An illustration of conflict periods (Tc)

We obtain benchmarks from the following three steps:
1. Determining the conflict period: We denote set of modes
as M, the set of device models D, and the transmitting
channels (frequency bands) as F . The conflict period (Tc)
should be such that we let the association framework consider
possible associations. We observe in Sec. III-B that a device
is likely to change its MAC after a burst. Hence, we must
consider Tc to be at least of the inter-burst time (IBT).

First, we vary the device types (dj) and channels (f ) while
keeping the mode fixed to obtain the min., max. and, avg.
values of IBT per mode (IBTm) [Eq. 2]. Then, we vary
modes and take the corresponding min., max. and, avg. of
the union set, to obtain the Tc’s minimum, maximum and,
average values [Eq. 3]. We find the T

(min.,avg.,max.)
c to be

(5.00s, 95.72s, 365.42s) using the labelled dataset [14].

IBTm
(min.,avg.,max.) = (min., avg.,max.)

⋃
dj∈D,f∈F

IBT(dj ,f)m

(2)
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Fig. 7: Randomisation complexities

T (min.,avg.,max.)
c = (min., avg.,max.)

⋃
m∈M

IBTm
(min.,avg.,max.)

(3)

2. Obtaining the conflict size: We introduce a global metric:
conflict size (CS), which is capable of catching the ”complex-
ity” of the any input network trace. We define conflict size as
half the number of address trails (Mstart’s and Mstop’s), in
a conflict period (Tc). For instance, as shown in Fig. 6, the
conflict size (CS) is 6 for Tc

ti . Higher CS makes it difficult
for frameworks to resolve conflicts.

3. Inferring the randomisation complexity: We define the
corresponding minimum, maximum, and, average: randomisa-
tion complexities (RC(min.,avg.,max.)) as the set of conflict
sizes ( CS(T (min.,avg.,max.)

c ) ) when considering correspond-
ing conflict periods (ti), over all slots (S) in the considered
dataset [Eq. 4].

RC(min.,avg.,max.) =
⋃
i∈S

CS(T (min.,avg.,max.)
c )

ti (4)

Benchmarks: The randomisation complexities act as a bench-
mark for the lower, upper, and, average performance limits
of address association frameworks. The calculated values of
T

(min.,avg.,max.)
c in this paper can be used to obtain randomi-

sation complexities of any input dataset by just following the
steps (2) and (3) above. New frameworks in literature, can
accompany their frameworks with our benchmarks to ensure
their reliability for any new scenarios with similar or lower
complexities.

V. DISCUSSING BENCHMARKS

In Fig. 7, we report the min., max., and avg. values
in complexity of Infocom2021 dataset and of the Sapienza
datasets. We notice that the randomisation complexity and
the framework’s performance are inversely proportional, as
expected. We observe that scenarios: vatican2 and mall have
relatively higher complexities than the other ones.

When considering Infocom2021, we can clearly observe in
Fig. 1a and 1b that the discrimination accuracy obtained by
both signature metrics: IE and SEQ, degrade with increas-
ing randomisation complexities. The scenario trainstation for
instance, obtains the best relative performance as it exhibits
the lowest randomisation complexity in Fig. 7. We observe

a similar trend of the high and low accuracy in WiSec16,
for the scenarios: trainstation and vatican2 as shown in Fig.
1c. These two scenarios show a relatively lower and greater
randomisation complexities respectively, as expected.

This certifies our benchmarks of adequately catching the
complexity of the dataset. Both frameworks are expected
to have the same association accuracy when evaluated with
another input dataset with similar randomisation complexity.

Future work: First, we plan to demonstrate the complex-
ities of other address association frameworks in literature
in order to benchmark its performance over different data-
collection scenarios. Second, currently the ground-truth for
MAC addresses emitted from the same device is also lacking
for passively collected datasets, which hinders the usage
of a direct association accuracy’s metric. We need a data
generation methodology to vary these devices’ modes and
models. We aim to demonstrate our ongoing solution to the
issue of ground-truth, by linearly combining traces (in time)
of different individual devices captured inside the Faraday
cage, while considering realistic packet losses and sojourn
time of devices. This will facilitate obtaining direct accuracy
metric and benchmarks, over custom scenarios, by varying
the linear combinations. Finally, we plan to investigate the
rate of degradation of a association framework’s performance
with respect to randomisation complexities in future, when
considering various classes of MAC association strategies.
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