

* CORS * NANO-PHOT

Recrystallization of thin 4H-SiC films deposited by PVD techniques, a way for new emerging fields

E. Vuillermet¹, E. Usureau¹, F. Jomard², L. Le Joncour³, A. Andrieux⁴, A. Jacquemot⁵, M.Lazar¹

¹Light, nanomaterials & nanotechnologies (L2n), CNRS EMR 7004, UTT, France
 ²GEMaC, UFR des sciences, University Versailles St-Quentin en Yvelines, France
 ³Laboratory of Mechanical & Material Engineering (LASMIS), UTT, France
 ⁴Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS, University Bourgogne Franche-Comté, France
 ⁵MICROTEST, Z.A. La Garrigue du Rameyron, France

INTRODUCTION

SiC is a wide bandgap semiconductor \rightarrow application in power electronics but also in optoelectronics, and nano-photonics

-

Advantages

A lot of polytypes are available with different properties Great thermal resistance and conductivity High-critical electrical field

Limits

Homo-epitaxial growth of SiC layers (CVD) :

- SiC growth only possible on SiC substrate
- High-temperature growth (1500-1650°C)
- Bottom-up growth → limitations of devices' architecture

→ Idea : Top-down growth of low cost SiC layers realized by Physical Vapor Deposition (PVD)

1. SIC THIN FILMS GROWTH

1. SIC THIN FILMS GROWTH

Temperature and pressure profiles

AET RTP graphite resistive furnace

a) Raman Spectroscopy - Theory

- Inelastic diffraction of light
- Depends on the vibrational states of the atoms
- Identification of the PVD layer and its crystallinity

4H-SiC

b) Raman Spectroscopy - Results

- No C-C bonds in the e-beam deposited layer → great recrystallization
- Lasers go deeper in crystallized 4H-SiC compared to amorphous SiC \rightarrow signal from the 4H-SiC substrate ?
- \rightarrow 4H-SiC formed with defects such as C interstitials : mono or polycrystalline material ?

- 2D scanning
- Height determined by detector dimensions
- Length determined by scanning range
- Each pattern corresponds to a crystalline plane

c) 2D XRD - Theory

Bragg's Law : $n\lambda = 2dsin\theta$

• 2D scanning

- Height determined by detector dimensions
- Length determined by scanning range
- Each pattern corresponds to a crystalline plane

2D XRD patterns

d) 2D XRD (Bruker D8 Discover) - Results

Grazing incident XRD : 5°

4H-SiC substrate Razing XRD : dots look like ellipses → mono-crystal

150nm thick e-beam deposited layer on
4H-SiC substrate
Rings appear → polycrystalline SiC

1,5µm thick sputtered layer on 4H-SiC substrate More intense rings

 \rightarrow Rings are observed for all PVD layers: we have formed 4H-SiC with inclusions of other polytypes

a) Secondary ion mass spectroscopy (SIMS) - Theory

b) Secondary ion mass spectroscopy (SIMS) - Results

After annealing at 1700°C for 30min of sputtered layers

- Resistive layers (low-doped SiC) \rightarrow thin Au deposition on the samples' surface before SIMS measurements
- N, O and H impurities are present in all PVD layers
- The concentration of these impurities doesn't change with the temperature of deposition or layers' thickness

b) Secondary ion mass spectroscopy (SIMS) - Results

400nm thick sputtered layer deposited at 400°C

 \rightarrow After annealing at 1700°C the concentration of hydrogen decreases but the oxygen and nitrogen concentrations stay still

Before annealing

b) Secondary ion mass spectroscopy (SIMS) - Results

After annealing at 1700°C for 30min

→ Less nitrogen impurities with e-beam deposition compared to sputtering (more intense vacuum)

4. ELECTRICAL CONDUCTIVITY

Sputtered layers after annealing at 1700°C for 30min

Lateral I-V measurements

Vertical I-V measurements

0,000

0.003

0,006

- Incorporation of nitrogen in the PVD layers \rightarrow n-type doping
- Linear I-V curves obtained for sputtered layers : good electrical conductivity
- I-V measurements for the ebeam layer : I-V curves are not linear \rightarrow not enough nitrogen impurities (n-type doping)

CONCLUSION

- The e-beam PVD layer has a better crystallinity compared to sputtered ones but the layers are not perfectly mono-crystalline.
- Nitrogen, oxygen, and hydrogen impurities are present in the PVD layers (SIMS)
 - Hydrogen concentration decreases after high-temperature annealing
 - The e-beam deposited layer has less nitrogen than the sputtered ones due to the higher vacuum during deposition
 - > Thickness and temperature of deposition do not influence the impurities concentrations
- Good electrical conductivity is obtained for nitrogen-doped layers
- > Sputtered layers: electrical and thermal conductive substrates
- > E-beam evaporated layers: better quality insulating layers

 \rightarrow Local and low-cost 4H-SiC deposition methods

Thank you for your attention !

Do you have any questions ?

