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Riemannian optimization for non-centered mixture
of scaled Gaussian distributions

Antoine Collas, Arnaud Breloy, Chengfang Ren, Guillaume Ginolhac, Jean-Philippe Ovarlez

Abstract—This paper studies the statistical model of the non-
centered mixture of scaled Gaussian distributions (NC-MSG).
Using the Fisher-Rao information geometry associated with this
distribution, we derive a Riemannian gradient descent algorithm.
This algorithm is leveraged for two minimization problems.
The first is the minimization of a regularized negative log-
likelihood (NLL). The latter makes the trade-off between a
white Gaussian distribution and the NC-MSG. Conditions on the
regularization are given so that the existence of a minimum to
this problem is guaranteed without assumptions on the samples.
Then, the Kullback-Leibler (KL) divergence between two NC-
MSG is derived. This divergence enables us to define a second
minimization problem. The latter is the computation of centers
of mass of several NC-MSGs. Numerical experiments show the
good performance and the speed of the Riemannian gradient
descent on the two problems. Finally, a Nearest centroı̈d classifier
is implemented leveraging the KL divergence and its associated
center of mass. Applied on the large-scale dataset Breizhcrops,
this classifier shows good accuracies and robustness to rigid
transformations of the test set.

Index Terms—Non-centered mixture of scaled Gaussian distri-
butions, Robust location and scatter estimation, Riemannian op-
timization, Fisher Information Metric, Classification, Kullback-
Leibler divergence, Center of mass

I. INTRODUCTION

The first and second-order statistical moments of the sample
set {xi}ni=1 ∈ (Rp)n are ubiquitous features in signal pro-
cessing and machine learning algorithms. Classically, these
parameters are estimated using the empirical mean and the
sample covariance matrix (SCM), which correspond to the
maximum likelihood estimators (MLE) of the multivariate
Gaussian model. However, these estimates tend to perform
poorly in the context of heavy-tailed distributions, or when the
sample set contains outliers. In such setups, one can obtain a
better fit to empirical distributions by considering more gen-
eral statistical models, such as the elliptical distributions [1].
Within this broad family of distributions, M -estimators of the
location and scatter [2] appear as generalized MLEs and have
been leveraged for their robustness properties in many fields
(cf. [3] for an extensive review).

An important subfamily of elliptical distributions is the
compound Gaussian distributions, which models samples as
x

d
= µ +

√
τui, where µ ∈ Rp is the center (also re-

ferred to as location) of the distribution, ui ∼ N (0,Σ) is
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the speckle (centered Gaussian distribution with covariance
matrix Σ), and τ ∈ R+

∗ is an independent random scaling
factor called the texture. The flexibility regarding the choice
of the probability density function for τ results in various
models for x. Compound Gaussian distributions encompass
the t-distribution (including the Cauchy distribution), and
the K-distribution. In practice, the underlying distribution is
generally unknown, which is why the textures have often
been modeled as unknown and deterministic in the centered
case, i.e., xi ∼ N (0, τiΣ). Such model will be referred
to as mixture of scaled Gaussian distributions (MSG) [4].
The MLE of the scatter matrix Σ of this model coincides
with Tyler’s M -estimator of the scatter [5], which attracted
considerable activity due to its robustness and distribution-
free properties over the elliptical distributions family [6]–[9].
However, its transposition to the non-centered case from the
model xi ∼ N (µ, τiΣ) received less interest. This might
be because the usual fixed-point iterations to evaluate its
maximum likelihood may diverge in practice, which motivated
the present work.

In this paper, we tackle optimization problems related to
parameter estimation and classification for a non-centered
mixture of scaled Gaussian distributions (NC-MSG). The
contribution is threefold:

First, we derive a new Riemannian gradient descent al-
gorithm based on the Fisher-Rao information geometry of
the considered statistical model. Indeed the parameter space
(location, scatter, textures) is a product manifold that can
be endowed with a Riemannian metric to leverage the Rie-
mannian optimization framework [10], [11]. The Fisher-Rao
information geometry corresponds to the one induced by the
Fisher information metric. It is of particular interest since it is
inherently well suited to the natural geometry of the data [12].
In this scope, we derive the Riemannian gradient (also referred
to as the natural gradient) and a second-order retraction of this
geometry. These tools are enough to cast a gradient descent
applicable to any function of the parameters. We focus on two
prominent examples that are regularized maximum likelihood
estimation and center of mass computation. Simulations evi-
dence that the proposed approach allows for fast computation
of critical points, as it can converge with up to one order of
magnitude less of iterations compared to other Riemannian
descent approaches.

The second line of contributions concerns the problem of
maximum likelihood estimation, for which we propose a new
class of regularization penalties. A main issue with NC-MSGs
is that the existence of the maximum likelihood is not guar-
anteed. This is due to attraction points where the likelihood



function diverges. This also explains why standard fixed-point
algorithms to evaluate the solution may diverge in practice.
Related issues are well known in the context of M -estimators
because their existence is subject to strict conditions that are
not always met in practice [2], [3], [5], for example when
there is insufficient sample support (n < p). In such setups,
it is common to rely on regularization penalties to ensure
the existence of a solution, and the stability of corresponding
iterative algorithms. In the centered case of elliptical distri-
butions, several works considered shrinkage of M -estimators
to a target scatter matrix [13]–[15], and regularizing both
the mean and the scatter for the non-centered t-distribution
was studied in [16]. Other regularizations formulated on the
spectrum of the scatter matrix were proposed in [4], [17], [18]
for the centered case. For NC-MSGs, we propose here a family
of penalties that can be interpreted as a divergence between
the initial model and a white Gaussian one (i.e., that shrinks
both the textures and eigenvalues of the scatter matrix to a
pre-defined κ ∈ R+

∗ ). We derive the general conditions for
these penalties to ensure the existence of a solution for the
regularized MLE. Interestingly, we show that this existence is
only conditioned to the design of the penalty, and does not
depend on the size of the sample support. We also study the
invariance properties of the resulting estimators.

Finally, we apply the proposed algorithm to perform Rie-
mannian classification. We consider the framework where
statistical features of sample batches are used to discriminate
between classes [19]–[22]. The Riemannian approach then
consists in generalizing usual classification algorithms (e.g.,
the Nearest centroı̈d classifier) by replacing the Euclidean dis-
tance and arithmetic mean by divergence and its corresponding
center of mass [23]–[25]. In this setup, the information geome-
try can help design meaningful distances between the features,
and improve the output performance [19], [22]. Unfortunately,
the geodesic distance associated with the Fisher information
metric of the NC-MSG remains unobtainable in closed-form
(it is still unknown for the non-centered multivariate Gaussian
model [26]–[28]). Instead, we propose to rely on the Kullback-
Leibler (KL) divergence and its associated center of mass
(computed using the proposed Riemannian optimization algo-
rithm). We apply such Riemannian classification framework
to the Breizhcrops dataset [29]. Our experiments evidence
that regularizing the estimation greatly improves the accuracy.
Thanks to the invariance properties of the proposed estimators,
we also show that this process exhibits good robustness to rigid
transformations of the samples during the inference.

The rest of the paper is organized as follows. Section II
presents NC-MSGs and casts their parameter space as a man-
ifold. Section III presents elements of Riemannian geometry,
and studies the Fisher-Rao information geometry for this
model. Section IV derives a Riemannian gradient descent algo-
rithm following this geometry. Section V discusses parameter
estimation in the considered model, presents a new class of
regularized estimators, and studies some of their properties
(existence, invariances). Section VI derives the KL divergence
of the model and its associated center of mass. Section VII
concludes with validation simulations and an application to
Riemannian classification of the Breizhcrops dataset. For con-

ciseness, some technical proofs are in appendices that are
provided as supplementary materials.

II. NON-CENTERED MIXTURE OF SCALED GAUSSIAN
DISTRIBUTIONS AND ITS PARAMETER SPACEMp,n

A. Data model

Let a set of n data points {xi}ni=1 belonging to Rp and
distributed according to the following statistical model

xi
d
= µ+

√
τi Σ

1
2 ui , (1)

where ui follows a white circular Gaussian distribution i.e.
ui ∼ N (0, Ip). The variables µ ∈ Rp and Σ ∈ S++

p (set
of p× p symmetric positive definite matrices) are respectively
named the location and scatter parameters. Then, the unknown
texture parameters {τi}ni=1 are stacked into the vector τ ∈
(R+

∗ )
n (set of strictly positive vectors). If these textures admit

a probability density function (p.d.f.), then the random vari-
ables (r.v.) xi follow a Compound Gaussian distribution [3],
[30]. However, in general, this p.d.f. is unknown. In order not
to rely on additional pdf assumptions on the textures, these
are often assumed to be unkown and deterministic [7], [31].
In this case, the r.v. xi follow a NC-MSG, i.e.

xi ∼ N (µ, τiΣ) . (2)

Thus xi admits a p.d.f. f defined from the Gaussian one fG

f (xi| (µ,Σ, τi)) = fG (xi| (µ, τiΣ)) , (3)

with ∀x ∈ Rp

fG (x|(µ,Σ)) =

(2π)−
p
2 |Σ|− 1

2 exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
. (4)

The negative log-likelihood (NLL) of the sample set
{xi}ni=1 is then defined on the set of parameters θ =
(µ,Σ, τ ) ∈ Rp × S++

p × (R+
∗ )

n as (neglecting terms not
depending on θ)

L (θ|{xi}ni=1) =

1

2

n∑

i=1

[
log |τiΣ|+

(xi − µ)TΣ−1(xi − µ)

τi

]
. (5)

One can observe an ambiguity between the textures τ and the
scatter matrix Σ. Indeed, ∀α > 0, we have

L
((
µ, αΣ, α−1τ

)
|{xi}ni=1

)
=

L ((µ,Σ, τ ) |{xi}ni=1) . (6)

Thus, to identify the textures and scatter matrix parameters, a
constraint on τ or Σ can be added. Here the choice is made
to constrain the textures by fixing their product to be equal to
one, i.e.

∏n
i=1 τi = 1. We point out that most of the results of

the paper could be obtained by constraining the scatter matrix
instead of the textures, with a unit determinant constraint, i.e.
|Σ| = 1 [32], [33]. Then, the parameter space of interest is

Mp,n = Rp × S++
p × S(R+

∗ )
n , (7)



where S(R+
∗ )

n is the set of textures with the unit product,

S(R+
∗ )

n =

{
τ ∈ (R+

∗ )
n :

n∏

i=1

τi = 1

}
. (8)

The choice of adding a constraint is motivated by two results
additional to the identifiability: (i) it reduces the dimension
of the parameter space by removing the indeterminacy (6),
(ii) the associated FIM (see Proposition 1) admits a simpler
expression, which will be instrumental in the rest of the paper
as it turns Mp,n into a Riemannian manifold. Its simple
formula could not have been obtained without adding this
constraint (either on τ or its counterpart on Σ).

B. Related works

When {xi}ni=1 is sampled from an underlying heavy-tailed
Compound Gaussian distribution, the empirical mean and
SCM do not provide robust and accurate estimates of µ and
Σ. In this setup, M -estimators [2], raised increasing interest in
the past decades (see e.g. [3]). These estimators are expressed
through the two joint fixed-point equations

µ =
( n∑

i=1

u1(ti)
)−1 n∑

i=1

u1(ti)x ≜ Hµ(µ,Σ) ,

Σ =
1

n

n∑

i=1

u2(ti)(x− µ)(x− µ)T ≜ HΣ(µ,Σ) ,

(9)

where ti ≜ (x − µ)TΣ−1(x − µ), u1 and u2 are functions
that respect Maronna’s conditions1 [2]. Under certain condi-
tions [2], these estimators can be computed with fixed-point
iterations

µk+1 = Hµ(µk,Σk) ,

Σk+1 = HΣ(µk+1,Σk) ,
(10)

that converge towards a unique solution satisfying (9). In-
terestingly, some M -estimators also appear as MLE when
u1(t) = u2(t) is linked to the p.d.f. of an elliptical distri-
bution [3]. Expressing these estimators as the solution of an
optimization problem drove a more recent line of work lever-
aging optimization theory allowing, e.g., for generalizations
to structured scatter matrix matrices [34]–[36] or regularized
location and scatter matrix estimation [16].

In the context of scatter matrix estimation, Tyler’s M -
estimator [5] is especially interesting thanks to its robustness
and “distribution-free” properties over the elliptical distribu-
tions family. Tyler’s M -estimator is obtained for µ = 0
and u2(t) = p/t, and also coincide with the MLE of the
centered MSG [6], [7]. However, this estimator cannot triv-
ially be transposed to the case of joint mean-scatter matrix
estimation. Indeed, the MLE solution associated with NC-
MSG is obtained with u1(t) = u2(t) = p/t, which does not
satisfy Maronna’s conditions [2], and for which the fixed-point
iterations (10) generally diverge. Thus, Tyler’s M -estimator of
the scatter matrix is usually applied on demeaned data, where

1Notice that [2] rather uses a formulation of (9) involving “u1(ti)” and

“u2(t2i )”, with ti =
√

(x− µ)TΣ−1(x− µ). Without loss of generality,
this paper uses the present notation to simplify some discussions.

the mean is estimated in a prior step2. It was yet experienced
that the MLE of NC-MSG could be evaluated in practice
with Riemannian optimization rather than potentially unstable
fixed-point iterations in [37] (still, without any theoretical
guarantees). The following of this paper builds upon this
finding in several directions: optimization in sections III-B
and IV, regularized estimation with theoretical guarantees in
section V, and classification in sections VI and VII.

III. RIEMANNIAN GEOMETRY OFMp,n

The objective of this section is to present the information
geometry of the NC-MSG (2); i.e. the Riemannian geometry
ofMp,n with the FIM as a Riemannian metric. This Rieman-
nian geometry is leveraged to optimize several cost functions
h :Mp,n → R. Notably, two cost functions will be studied: a
regularized NLL in Section V, and a cost function to compute
centers of mass of sets of points {θi} ⊂ Mp,n in Section VI.
Before turning Mp,n into a Riemannian manifold, a brief
introduction to Riemannian geometry is made. For a complete
introduction to the topic, see [10], [11].

A. Riemannian geometry

Let E be a linear space of dimension d. Informally, a smooth
embedded manifoldM⊂ E of dimension l ≤ d is a nonempty
set that locally resembles a l-dimensional linear space. Indeed,
M is a smooth embedded manifold of E if and only if it is
locally diffeomorphic3 with open sets of a l-dimensional linear
subspace in Rd. Then, smooth curves c are smooth functions
from open intervals I of R to M; i.e. c : I →M. Collecting
velocities of the curves passing through x ∈ M, we get the
tangent space at x:

TxM = {c′(0) | c : I →M is smooth and c(0) = x} . (11)

This tangent space corresponds to a linearization of M
at x. The tangent bundle of M is then the disjoint
union of all the tangent spaces of M, i.e., TM =
{(x, ξ) : x ∈M and ξ ∈ TxM}.

So far, we have defined the notion of the smooth embedded
manifold of a linear space. To turnM into a Riemannian man-
ifold, its tangent spaces TxM are equipped with a Riemannian
metric which is an inner product4 ⟨., .⟩Mx : TxM×TxM→ R
that varies smoothly with respect to x.5

Then, to move on M, a geodesic is a smooth curve on M
with zero acceleration along its path. In a Euclidean space E
the acceleration is classically defined as the second derivative.
Thus, a geodesic c : I → E is such that γ̈(t) = 0 ∀t ∈ I . If
γ(0) = x and γ̇(0) = ξ, then, by integrating, we recover the

2We point out that a closely related estimator proposed in [5] uses
u1(t) =

√
p/t and u2(t) = p/t, which yields converging fixed-point

iterations in practice despite being a limit case of Maronna’s conditions.
This estimate, however, is not obtained as the solution of an underlying
optimization problem, i.e., has no MLE interpretation.

3A diffeomorphism is a bijective map f : U → V where U, V are open
sets and such that both f and f−1 are smooth (or infinitely differentiable).

4An inner product is a bilinear, symmetric, positive definite function on a
R-vector space.

5For all smooth vector fields ξ, η on M the function x 7→ ⟨ξ, η⟩Mx is
smooth.



classical straight line γ(t) = x+t ξ. This notion of acceleration
is generalized to manifolds using the Levi-Civita connection
denoted by∇. This notion requires first defining smooth vector
fields, which are smooth mappings that associate a vector in
TM for each point of the manifold M, i.e.:

ξ : M → TM
x 7→ ξ(x).

(12)

Notice that given this definition, ξ(x) ∈ TxM ∀ x ∈ M, so
we also use the symbol ξ (respectively η) to denote a tangent
vector when there is no ambiguity. Now, the Levi-Civita
connection itself is defined as an operator that generalizes
the directional derivative of vectors fields to Riemannian
manifolds, and associates to every couple of smooth vector
fields (ξ, η) on M a new vector field ∇ξη on M. Given a
Riemannian manifoldM, the Levi-Civita connection is unique
and defined by the Koszul formula. It should be noted that
the Levi-Civita connection depends on the chosen Riemannian
metric. Using this object, a geodesic γ : I →M with initial
conditions γ(0) = x and γ̇(0) = ξ is defined as a smooth
curve having zero acceleration as defined by the Levi-Civita
connection

∇γ̇(t)γ̇(t) = 0γ(t), ∀t ∈ I (13)

where γ̇(t) = d
dtγ(t) and 0γ(t) is the zero element of Tγ(t)M.

Let γ be a geodesic defined on [0, 1] with initial conditions
γ(0) = x and γ̇(0) = ξ. Then, the Riemannian exponential
mapping expMx : TxM → M at x ∈ M is defined as
expMx (ξ) = γ(1). For x, y ∈ M, its inverse function, the
Riemannian logarithm mapping, is defined as logMx (y) =
argminξ∈TxM ∥ξ∥

2
x subject to expMx (ξ) = y with ∥ξ∥2x =

⟨ξ, ξ⟩Mx . Finally, the Riemannian distance between two points
x, y ∈M is computed as dM(x, y) = ∥logMx (y)∥x.

B. Description of the Riemannian manifold Mp,n

This subsection gives the Riemannian structure, induced by
the FIM, of the parameter set Mp,n. To specify the latter, we
begin by defining the ambient space

Ep,n = Rp × Rp×p × Rn. (14)

Therefore, the tangent space of Mp,n at θ is a subspace of
the ambient space Ep,n

TθMp,n =
{
ξ = (ξµ, ξΣ, ξτ ) ∈ Rp × Sp × Rn :

ξTτ τ
⊙−1 = 0

}
, (15)

where Sp is the set of symmetric matrices and .⊙−1 is the
elementwise inverse operator. To turnMp,n into a Riemannian
manifold, we must equip Mp,n with a Riemannian metric.
Many possibilities are available to us, however, a preferable
one is the FIM [38] derived in Proposition 1. Indeed, it is
calculated using the NLL (5) and thus is associated with the
statistical model (1).

Proposition 1 (Fisher Information Metric). Let θ ∈Mp,n and
ξ, η ∈ TθMp,n, the Fisher Information Metric at θ associated
with the NLL (5) is

⟨ξ, η⟩Mp,n

θ =
n∑

i=1

(
1

τi

)
ξTµΣ

−1ηµ +
n

2
Tr
(
Σ−1ξΣΣ

−1ηΣ

)

+
p

2
(ξτ ⊙ τ⊙−1)T (ητ ⊙ τ⊙−1) ,

where ⊙ is the elementwise product operator.

Proof. See supplementary material A.

Then, the orthogonal projection according to the FIM from
Ep,n onto TθMp,n is given in Proposition 2.

Proposition 2 (Orthogonal projection). The orthogonal pro-
jection associated with the FIM of Proposition 1 from Ep,n
onto TθMp,n is

P
Mp,n

θ (ξ) =

(
ξµ, sym(ξΣ), ξτ −

ξTτ τ
⊙−1

n
τ

)
,

where sym(ξ) = 1
2

(
ξ + ξT

)
.

Proof. See supplementary material B.

The orthogonal projection proves helpful to derive elements in
tangent spaces such as the Riemannian gradient or the Levi-
Civita connection. The latter is given for the manifold Mp,n

in Proposition 3.

Proposition 3 (Levi-Civita connection). Let θ ∈Mp,n and ξ,
η be smooth vector fields ofMp,n, the Levi-Civita connection
of Mp,n evaluated at θ is

∇ξη = P
Mp,n

θ

(
∇ξη

)
,

where

∇ξη = D η[ξ] +

(
− 1

2

[(
ξTτ τ

⊙−2

∑n
i=1

1
τi

Ip + ξΣΣ
−1

)
ηµ

+

(
ηT
τ τ

⊙−2

∑n
i=1

1
τi

Ip + ηΣΣ
−1

)
ξµ

]
,

1

n

n∑

i=1

(
1

τi

)
ηµξ

T
µ − ξΣΣ

−1ηΣ,

1

p
ξTµΣ

−1ηµ1n − ξτ ⊙ ητ ⊙ τ⊙−1

)
.

Proof. See supplementary material C.

As detailed in Subsection III-A the Levi-Civita connection
defines geodesics on a Riemannian manifold. Indeed, for I
an open interval of R, a geodesic γ : I → Mp,n with
initial position γ(0) = θ ∈ Mp,n and initial velocity
γ̇(0) = ξ ∈ TθMp,n must respect

∇γ̇(t)γ̇(t) = 0γ(t), ∀t ∈ I. (16)

However, an analytical solution of (16) remains unknown. A
retraction (approximation of the geodesic) can still be obtained
(see Proposition 5) which allows us to optimize functions on



Algorithm 1: Riemannian gradient descent on Mp,n

Input: Initialization θ(0) ∈Mp,n

Output: Iterates θ(k) ∈Mp,n

for k = 0 to convergence do
Compute a step-size α using Algorithm 2
Set θ(k+1) ← R

Mp,n

θ(k)

(
−α gradMp,n

h(θ(k))
)

Algorithm 2: Riemannian backtracking on Mp,n

Input: Current iterate θ(k) ∈Mp,n, and constants
α ∈]0, tmax[, c ∈]0, 1[ and ε ∈ R+

∗
Output: Step-size α
Set θ(α)← R

Mp,n

θ(k)

(
−α gradMp,n

h(θ(k))
)

while h(θ(k))−h(θ(α))<εα|| gradMp,n
h(θ(k))||2

θ(k)do
Set α← c α
Set θ(α)← R

Mp,n

θ(k)

(
−α gradMp,n

h(θ(k))
)

Mp,n. Moreover, the geodesic between two points θ1 and
θ2 is unknown. This implies that the geodesic distance is
also unknown. This is not surprising since the geodesic and
the Riemannian distance between two Gaussian distributions
with different locations are unknown [26]–[28], [39], [40]. To
alleviate this problem, a divergence associated with the NC-
MSG (2) is proposed in Section VI.

IV. RIEMANNIAN OPTIMIZATION ONMp,n

The objective of this subsection is to propose tools to
perform optimization on the Riemannian manifold Mp,n.
Indeed, we aim to minimize smooth functions h :Mp,n → R,

minimize
θ∈Mp,n

h(θ). (17)

An example of such a function is the NLL (5). As mentioned
in Section III, two additional cost functions are studied in
Sections V and VI. To realize (17), we consider a Riemannian
steepest gradient descent on Mp,n. Only the tools required
for this algorithm are derived here. For a detailed intro-
duction to optimization on Riemannian manifolds, see [10],
[11]. Two optimization tools are needed: (i) the Riemannian
gradient of h, (ii) a retraction that maps tangent vectors from
TθMp,n ∀θ ∈ Mp,n onto Mp,n. Once these are defined, the
Riemannian steepest gradient descent retracts iteratively minus
the gradient of h times a step size onto the manifold.

We begin with the Riemannian gradient of h at θ. For every
θ ∈Mp,n, it is defined through the Riemannian metric as the
unique tangent vector in TθMp,n such that, ∀ξ ∈ TθMp,n,

Dh(θ)[ξ] = ⟨gradMp,n
h(θ), ξ⟩Mp,n

θ , (18)

where Dh(θ)[ξ] is the directional derivative of h at θ in the
direction ξ. In the case where for every θ ∈ Mp,n, there
exists an open U of Ep,n, with θ ∈ U , and a differentiable
function h̄ : U → R such that h̄ restricted to Mp,n is equal
to h, this Riemannian gradient can be computed from the
Euclidean gradient of h at θ. In particular, this assumption is

met by the different cost functions considered in the rest of the
manuscript and the transformation of the Euclidean gradient
into the Riemannian one is given in Proposition 4. The latter is
very convenient since this Euclidean gradient can be computed
using automatic differentiation libraries such as Autograd [41]
or JAX [42].

Proposition 4 (Riemannian gradient). Let θ ∈ Mp,n and h
be a real-valued function defined on Mp,n. The Riemannian
gradient of h at θ is

gradMp,n
h(θ) =

P
Mp,n

θ

((
n∑

i=1

1

τi

)−1

ΣGµ,
2

n
ΣGΣΣ,

2

p
τ⊙2 ⊙Gτ

)
,

where gradh(θ) = (Gµ,GΣ,Gτ ) is the Euclidean gradient
of h in Rp × Rp×p × Rn.

Proof. See supplementary material D.

Then, it remains to define a retraction for every θ on
Mp,n. A retraction R

Mp,n

θ maps every ξ ∈ TθMp,n to
a point RMp,n

θ (ξ) ∈ Mp,n and is such that RMp,n

θ (ξ) =
θ + ξ + o(∥ξ∥). Several retractions could be obtained from
this definition. Furthermore, it should be noted that a map
respecting this definition is not necessarily related to the
Riemannian metric of Mp,n. Thus, we choose to enforce an
additional property: the desired retraction must have a zero
initial acceleration, i.e.

∇ṙ(t)ṙ(t)
∣∣∣
t=0

= 0 , (19)

where ṙ(t) = d
dtR

Mp,n

θ (tξ) and ∇ is the Levi-Civita con-
nection from Proposition 3. Such a retraction is called a
second-order retraction. Furthermore, the property of zero
initial acceleration is linked to the definition of the geodesic.
Indeed, a geodesic has a zero acceleration ∀t along its path
(see (13)) whereas here this condition is only needed at t = 0.
By respecting this property, the retraction is associated with
the Riemannian metric of Proposition 1 since the Levi-Civita
connection is derived from this Riemannian metric. Such a
retraction is presented in Proposition 5.

Proposition 5 (Second order retraction). Let θ ∈ Mp,n

and ξ ∈ TθMp,n. There exists tmax > 0 (specified in the
Supplementary material) such that ∀t ∈ [0, tmax[, a second
order retraction on Mp,n at θ is

R
Mp,n

θ (tξ) =

(
µ+ tξµ +

t2

2

[
ξTτ τ

⊙−2

∑n
i=1

1
τi

Ip + ξΣΣ
−1

]
ξµ,

Σ+ tξΣ +
t2

2

(
ξΣΣ

−1ξΣ −
1

n

n∑

i=1

(
1

τi

)
ξµξ

T
µ

)
,

N

(
τ + tξτ +

t2

2

(
ξ⊙2
τ ⊙ τ⊙−1 − 1

p
ξTµΣ

−1ξµ1n

)))
,

where ∀x = (xi)1≤i≤n ∈ (R+
∗ )

n, N(x) = (
∏n

i=1 xi)
− 1

n x.

Proof. See supplementary material E.



With this retraction and the Riemannian gradient from Propo-
sition 4, we have all the tools required to derive a Riemannian
steepest descent. The latter is presented in Algorithm 1. It
should be noted that, in practice, the step size is chosen using
a backtracking algorithm [11, Ch. 4]. Given an initial step-size
α ∈]0, tmax[ with tmax defined in Proposition 5, the algorithm
reduces α by a factor c ∈]0, 1[ until the Armijo–Goldstein
condition is satisfied. Given ε ∈ R+

∗ (generally fixed at 10−4)
and the tentative next iterate

θ(α) = R
Mp,n

θ(k)

(
−α gradMp,n

h(θ(k))
)
, (20)

the Armijo–Goldstein condition writes

h(θ(k))− h(θ(α)) ≥ εα
∥∥∥gradMp,n

h(θ(k))
∥∥∥
2

θ(k)
. (21)

This procedure is presented in Algorithm 2.

V. PARAMETER ESTIMATION OF THE NON-CENTERED
MIXTURE OF SCALED GAUSSIAN DISTRIBUTIONS

In the previous subsection, tools to perform optimization on
Mp,n have been developed. In this subsection, the objective
is to leverage these tools to estimate the parameters of an
NC-MSG (2). In the following, we assume having n ≥ 1
data points {xi}ni=1 ⊂ Rp. The estimation of the parameters
of the statistical model (2) is performed by maximizing the
associated likelihood on Mp,n:

minimize
θ∈Mp,n

L (θ|{xi}ni=1) , (22)

where L is the NLL (5). However, the existence of a solution to
this problem is not guaranteed. To build intuition, we present
a short example of a problematical case where µ gets attracted
by one data point xj . Let k be the current iteration of a given
optimizer of (22). For k → +∞, if µ(k) → xj faster than
τ
(k)
j → 0 and ∀i ≠ j, τ (k)i → +∞, then the quadratic form

in L (5) tends to zero, which is its minimum,

n∑

i=1

(xi − µ(k))T
(
Σ(k)

)−1

(xi − µ(k))

τ
(k)
i

−−−−−→
k→+∞

0 . (23)

Then, if an eigenvalue λ(k) of Σ(k) tends 0 slower than
the respective limits of µ(k), τ

(k)
i and τ

(k)
j and since∑n

i=1 log |τiΣ| = n log |Σ|, we obtain

L(θ(k)|{xi}ni=1) −−−−−→
k→+∞

−∞ . (24)

Hence, depending on the data points {xi}ni=1, a solution of
the problem (22) does not necessarily exist.

To overcome this issue, we propose a regularization ap-
proach to the NLL. Firstly, we prove that this allows the
existence of a solution depending on some assumptions on
the regularization term in V-A. Some interpretations on the
chosen regularization are next given in V-B, and finally, we
study the robustness of the solution to rigid transformations in
V-C.

A. Existence of solution with a regularized version of the NLL

We present a regularized version of the NLL (5):

LRκ
(θ|{xi}ni=1) = L (θ|{xi}ni=1) + βRκ(θ) , (25)

where β ∈ R+
∗ and Rκ :Mp,n → R is a regularization. Thus,

the minimization problem (22) becomes

minimize
θ∈Mp,n

LRκ
(θ|{xi}ni=1) . (26)

Though (26) is a generic formulation, we will focus on several
proposals that ensure the existence of a solution. The proposed
approach is to rewrite Rκ as a sum of regularizations rκ
on the eigenvalues of τiΣ. This rewriting is formalized in
Assumption 1.

Assumption 1. The regularization Rκ is a positive function
that is a sum of regularizations on the eigenvalues of τiΣ

Rκ(θ) =
n∑

i=1

p∑

j=1

rκ(τiλj) ,

where λj ∈ R+
∗ are the eigenvalues of Σ and rκ : R+

∗ → R
is a continuous function.

In the following, we assume that Rκ respects Assumption 1.
To prevent the eigenvalues of τiΣ from taking values that are
too large or too small, a second Assumption is added. Indeed,
Assumption 2 states that the regularization of the log function
by the penalty function rκ goes to infinite when its argument
goes to 0+ or +∞. This assumption is made so that if an
eigenvalue of τiΣ tends to 0+ or +∞ then LRκ

→ +∞.

Assumption 2. The following function admits the limit ∀β ∈
R+

∗
lim

x→∂R+
∗

log(x) + βrκ(x) = +∞ , (27)

with ∂R+
∗ is a border of R+

∗ , i.e. 0+ or +∞.

Assumptions 1 and 2 are sufficient to solve the problem
of existence stated earlier. Indeed, when Rκ respects these
assumptions, Proposition 6 states that the problem (26) has
a solution, i.e. LRκ

admits a minimum in Mp,n. Finally,
Assumptions 1 and 2 are quite easy to meet in practice.
Indeed, several regularizations respecting these assumptions
are proposed in Table I.

Proposition 6 (Existence). Under Assumptions 1 and 2, and
∀β ∈ R+

∗ , the regularized NLL

θ 7→ LRκ
(θ|{xi}ni=1) = L (θ|{xi}ni=1) + βRκ(θ) ,

with L being the NLL (5), admits a minimum in Mp,n.

Proof. LRκ
is a continuous function on Mp,n. Hence, to

prove the existence of a solution to the minimization prob-
lem (26), it is enough to show that for sequences θ(k) → ∂θ,
the boundary of Mp,n, we have that

lim
k→+∞

LRκ
(θ(k)|{xi}ni=1) = +∞ . (28)

First, we handle the cases where
∥∥µ(k)

∥∥
2
−̸→ +∞. Since

θ(k) → ∂θ, this means that, at least, one λ(k)j → ∂R+
∗ and/or



Name Rκ(θ) rκ(x)

L1 penalty
∥∥∥(diag(τ )⊗Σ)−1 − κ−1Inp

∥∥∥
1
=

∑
i,j

∣∣∣(τiλj)
−1 − κ−1

∣∣∣ |x−1 − κ−1|

L2 penalty
∥∥∥(diag(τ )⊗Σ)−1 − κ−1Inp

∥∥∥2
2
=

∑
i,j

(
(τiλj)

−1 − κ−1
)2

(x−1 − κ−1)2

Bures-Wasserstein
squared distance d2BW

(
(diag(τ )⊗Σ)−1, κ−1Inp

)
=

∑
i,j

(
(τiλj)

− 1
2 − κ− 1

2

)2 (
x− 1

2 − κ− 1
2

)2

Gaussian
KL divergence δKL(κInp, diag(τ )⊗Σ) = 1

2

[∑
i,j

(
κ (τiλj)

−1 + log (τiλj)
)
− np(1 + log(κ))

]
1
2

[
κx−1 + log(x)− (1 + log(κ))

]
TABLE I: Examples of regularizations Rκ respecting the Assumptions 1, 2 and 3. ∀q ∈ N∗, ∥.∥q is the Schatten norm, i.e.
∀A ∈ Sp ∥A∥qq =

∑
i |λi|

q where λi are the eigenvalues of A. The diagonal matrix with elements of τ is denoted diag(τ ).
The Kronecker product between matrices is denoted ⊗.

one τ (k)i → ∂R+
∗ , with ∂R+

∗ being the boundary of R+
∗ , i.e.

∂R+
∗ = {0,+∞}. Using the positivity of the quadratic form

in the NLL (5), we get the following inequality

L(θ(k)|{xi}ni=1) ≥
n∑

i=1

log
∣∣∣τ (k)i Σ(k)

∣∣∣ . (29)

Hence, we get the resulting inequality on the regularized cost
function

LRκ(θ
(k)|{xi}ni=1) ≥

n∑

i=1

p∑

j=1

[
log(τ

(k)
i λ

(k)
j ) + βrκ(τ

(k)
i λ

(k)
j )
]
. (30)

Then, we give a sufficient condition to prove (28) when
Σ(k) → ∂S++

p and/or τ (k) → ∂S(R+
∗ )

n, the boundaries
of ∂S++

p and ∂S(R+
∗ )

n respectively. To give this sufficient
condition, we first recall Assumption 1, ∀β ∈ R+

∗

lim
x→∂R+

∗

log(x) + βr(x) = +∞ .

Thus, to prove (28), a sufficient condition, when Σ(k) →
∂S++

p and/or τ (k) → ∂S(R+
∗ )

n is that there exists at least
one term τ

(k)
i λ

(k)
j such that

τ
(k)
i λ

(k)
j → ∂R+

∗ . (31)

Since Σ(k) → ∂S++
p and/or τ (k) → ∂S(R+

∗ )
n, there exists at

least one λ(k)j → ∂R+
∗ and/or one τ (k)i → ∂R+

∗ .
The condition (31) is of course met in the four following

cases
λ
(k)
j → 0+ and/or τ (k)i → 0+,

λ
(k)
j → +∞ and/or τ (k)i → +∞ ,

λ
(k)
j → 0+ and τ (k)i → +∞ such that τ (k)i λ

(k)
j → ∂R+

∗ ,

λ
(k)
j → +∞ and τ (k)i → 0+ such that τ (k)i λ

(k)
j → ∂R+

∗ .

Finally, we treat the case where ∀l ∈ {1, · · · , n}, λ(k)l →
∂R+

∗ and τ
(k)
i → ∂R+

∗ such that τ (k)i λ
(k)
l −̸→ ∂R+

∗ . Since∏n
m=1 τ

(k)
m = 1, there exists at least one τq , with q ̸= i, such

that
τ (k)q λ

(k)
j → ∂R+

∗ . (32)

Hence, the condition (28) is met.

Before going further, we define the two following functions:

gS++
p

(Σ(k)) =
∥∥∥log(Σ(k))

∥∥∥
2

F
=

p∑

j=1

log(λ
(k)
j )2 ,

and

g(R+
∗ )n(τ

(k)) =
∥∥∥log(τ (k))

∥∥∥
2

2
=

n∑

i=1

log(τ
(k)
i )2 .

It should be noted that sup(gS++
p

(Σ(k))+∞
k=0) = +∞ if

and only if there exists j such that (λ
(k)
j )+∞

k=0 has ∂R+
∗ as

accumulation point. Similarly, sup(g(R+
∗ )n(τ

(k))+∞
k=0) = +∞

if and only if there exists i such that (τ (k)i )+∞
k=0 has ∂R+

∗ as
accumulation point.

Second, we consider the cases where
∥∥µ(k)

∥∥
2
→ +∞,

sup(gS++
p

(Σ(k))+∞
k=0) < +∞ and sup(g(R+

∗ )n(τ
(k))+∞

k=0) <
+∞. In this case, there exists λmin, λmax > 0 and τmin, τmax >
0 such that for all k, λminIp ⪯ Σ(k) ⪯ λmaxIp and
τmin1n ≤ τ (k) ≤ τmax1n. Indeed, otherwise there would
exist j, i such that ∂R+

∗ is an accumulation point of (λ(k)j )+∞
k=0

and/or (τ
(k)
i )+∞

k=0. Using these inequalities and the positivity
of the regularization Rκ, we get that

LRκ
(θ(k)|{xi}ni=1) ≥

n∑

i=1

∥∥xi − µ(k)
∥∥2

λmaxτmax
+ const ,

where the constant is independent from µ(k). Thus, we have

lim
k→+∞

LRκ
(θ(k)|{xi}ni=1) = +∞ .

Third, it remains to check the cases where
∥∥µ(k)

∥∥→ +∞,
sup(gS++

p
(Σ(k))+∞

k=0) = +∞ and/or sup(g(R+
∗ )n(τ

(k))+∞
k=0) =

+∞. Thus, as said previously, there exists at least one j and/or
one i such that (λ(k)j )+∞

k=0 and/or (τ
(k)
i )+∞

k=0 has/have ∂R+
∗ as

accumulation point. For each each of those j, i, we extract
sub-sequences from (θ(k))+∞

k=0 whose limits in λj and/or τi are
these problematic accumulation points. Then, we construct a
partition of N with the indices corresponding to the elements of
these sub-sequences and the indices of the remaining elements
of the initial sequence (θ(k))+∞

k=0. Let I be such partition of N.
If I has a finite number of elements and if for every (kℓ)

+∞
ℓ=0 ∈

I we have

lim
ℓ→+∞

LRκ(θ
(kℓ)|{xi}ni=1) = +∞ , (33)



then we get (28).
To do so, in the space R+ = [0,+∞] equipped with the

metric d(x, y) = | arctan(x)− arctan(y)|, given a (λ
(k)
j )+∞

k=0

that has L ∈ ∂R+
∗ as accumulation point, one can extract a

sub-sequence of indices (kℓ)
+∞
ℓ=0 such that λ(kℓ)

j → L and for
(km)+∞

m=0 = N \ (kℓ)+∞
ℓ=0 , (λ

(km)
j )+∞

m=0 does not have L as
accumulation point. The same process is repeated iteratively
from the remaining indices (km)+∞

m=0 for all j such that
(λ

(km)
j )+∞

m=0 still has an L ∈ ∂R+
∗ as accumulation point. It

finishes when the sequence associated with the remaining ele-
ments of the original sequence (λ

(k)
j )+∞

k=0 has no accumulation
points in ∂R+

∗ . Lets denotes (kq)
+∞
q=0 the remaining indices.

Then, the same process is also performed on (τ
(kq)
i )+∞

q=0 if
sup(g(R+

∗ )n(τ
(kq))+∞

q=0) = +∞. All the obtained sequences of
indices (kℓ)+∞

ℓ=0 along with the remaining elements of the orig-
inal indices form a partition of N. Due to its construction, this
partition has at most card(∂R+

∗ )
p+n+1 = 2p+n+1 elements.

Furthermore, we point out that, since
∥∥µ(k)

∥∥ → +∞, we
have that for every sub-sequence (µ(kℓ))+∞

ℓ=0 ,
∥∥µ(kℓ)

∥∥→ +∞.
Thus, for every (kℓ)

+∞
ℓ=0 ∈ I, we have

• either
∥∥µ(kℓ)

∥∥ → +∞, sup(gS++
p

(Σ(kℓ))+∞
ℓ=0) < +∞

and sup(g(R+
∗ )n(τ

(kℓ))+∞
ℓ=0) < +∞,

• or
∥∥µ(kℓ)

∥∥ → +∞ and there exists i and/or j such that
λ
(kℓ)
j → ∂R+

∗ and/or τ (kℓ)
i → ∂R+

∗ .

The former case has already been treated earlier. For the latter
case, one can reuse the arguments between (29) and (32) to
prove (33). Indeed, (29) discards the quadratic form in µ(kℓ)

and hence the equations between (29) and (32) hold. Thus, the
condition (28) is met.

B. Interpretations of the regularization term

So far, the regularization penalty has been chosen to
guarantee the existence of a solution to the problem (26)
without having specific insights on its impact on the estimate.
Therefore, this section thus discusses the interpretations of
various classes of penalties and their related shrinkage effect.

A Bayesian interpretation of the considered penalties Rκ

requires first discussing the case where it is decoupled in terms
of {τi}ni=1 and {λj}pj=1, i.e., when it can be expressed as

Rκ(θ) = p
n∑

i=1

rτκ(τi) + n

p∑

j=1

rλκ(λj) . (34)

In such cases,

• rτκ can be linked to a pdf on τ , denoted fτ . Assuming
that rλκ(t) = 0 the optimization problem relates to
the maximum a posteriori estimation of the Compound
Gaussian model x ∼ N (µ, τΣ) with τ ∼ fτ [2], [3].
Such a procedure is not often put into practice because
it is generally possible (and preferable) to study the
resulting pdf for the observations x:

fCG(x) ∝
∫
fG(x|µ, τΣ) fτ (τ) dτ , (35)

whose MLE estimator appears as a special case of M -
estimators of location and scatter, and is tractable with a
fixed point algorithm [2], [3].

• The penalty rλκ could also be interpreted as a pdf on
the eigenvalues of Σ. This approach is less often studied
from the Bayesian point of view because it does not have
a clear interpretation of the distribution of the resulting Σ.
Still, such penalties were leveraged to ensure existence of
solutions of regularized M -estimators when n < p, e.g,
in [17], [18], [43].

When additional prior information is available (power con-
straints that bound the eigenvalues, a rough estimate of the
textures pdf, etc.) a Bayesian approach can be practically
leveraged to select the form of the regularization penalty and
the regularization parameters κ and β.

In the general case of Assumption 1, i.e., where Rκ is
possibly not decoupled, a Bayesian interpretation of Rκ is not
as apparent. Still, we can show that when the penalty can be
interpreted as a divergence, it allows for explaining its effect
on the estimate. First, we recall the definition of a divergence:

Definition 1 (Divergence). A divergence on a set E is a
function δ(., .) : E × E → R satisfying, ∀x, y ∈ E:

1) δ(x, y) ≥ 0,
2) δ(x, y) = 0 ⇐⇒ x = y .

We can then state the following assumption, which is notably
verified for all regularization examples given in Table 1:

Assumption 3. The regularization Rκ can be written as

Rκ(θ) = δS++
p

(diag(τ )⊗Σ, κInp) ,

where δS++
p

is a divergence on the set S++
p and κ ∈ R+

∗ .

This assumption allows us to state the following proposition:

Proposition 7 (Minima of Rκ). Under the Assumption 3, the
set of minima in Mp,n of the regularization Rκ is

{θ = (µ, κIp,1n) : µ ∈ Rp} .

Proof. The objective of this proof is to solve

minimize
θ∈Mp,n

Rκ(θ) .

Using Assumption 3, we know that Rκ(θ) ≥ 0 and Rκ(θ) =
0 ⇐⇒ diag(τ )⊗Σ = κInp. Thus, the minimum of Rκ is 0
and is reached at diag(τ )⊗Σ = κInp, ∀µ ∈ Rp. This implies
that the minimum satisfies the following system of equations

τi λj = κ ∀i, j .

Hence, we deduce that τ1 = · · · = τn. Using the constraint∏n
i=1 τi = 1, we get that τ1 = · · · = τn = 1. Thus, λ1 =
· · · = λp = κ. This means that

{(µ, κIp,1n) : µ ∈ Rp} = argmin
θ∈Mp,n

Rκ(θ) ,

which characterizes Proposition 7.

Thus, under Assumption 3, the minimum of (26) tends to(
1
n

∑n
i=1 xi, κIp,1n

)
as β → +∞. This corresponds to



the MLE of a Gaussian distribution with a covariance ma-
trix κI . Thus, the hyperparameter β makes the trade-off
between an NC-MSG (2) and a white Gaussian distribution.
Hence, one can set in practice the hyperparameter κ as
κ = 1

p Tr(
1
nXXT ) = 1

np

∑n
i=1 ∥xi∥22, meaning that the

eigenvalues will be shrunk towards their empirical mean. The
effect of the regularization then echoes to existing shrinkage
of M -estimators that have the same action [13]–[15], [43],
[44].

To conclude, Assumption 2 and Proposition 6 provide the
conditions that ensure the existence of a solution of the
regularized MLE for any κ > 0, whether Rκ is decoupled
(with a Bayesian interpretation), interpretable as a divergence
(following Assumption 3 and Proposition 7), or not. This
class of regularization penalties thus allows going beyond
the Bayesian estimation framework. In practice, we mostly
consider minimizing the estimation bias induced by the penalty
and set β close to 0. For other tasks such as estimates used
in classification, we resort to cross-validation procedures to
select β (see example in Figure 7).

C. Robustness to rigid transformations
We finish this section with a remark on estimating the

parameter θ when data undergo a rigid transformation. First
of all, we define the set of orthogonal matrices

Op =
{
Q ∈ Rp×p : QTQ = Ip

}
. (36)

Then, given Q ∈ Op and µ0 ∈ Rp, the rigid transformation
ψ of a set of data {xi}ni=1 is defined as

ψ ({xi}ni=1) =
{
QTxi + µ0

}n

i=1
. (37)

These rigid transformations define isometries on Rp since

∥ψ (xi)− ψ (xj)∥2 = ∥xi − xj∥2 , (38)

∀xi,xj ∈ Rp. These are important in machine learning prob-
lems since they transform data without changing distances.
An important property of the regularized NLL (25) is that the
estimated textures of the model are invariant under rigid trans-
formations of the data; see Proposition 8. This is interesting
since having parameters invariant to these transformations can
improve performances when transformations happen between
the training and the test sets for a given supervised problem.
Numerical experiments in Section VII leverage this property
and show robust performances when data undergo a rigid
transformation during the testing phase.

Proposition 8 (Minima of LRκ
and rigid transformations).

Let Rκ be a regularization satisfying Assumption 1, and θ⋆ =
(µ,Σ, τ ) be a minimum of the regularized NLL (26) computed
on data {xi}ni=1, i.e.

θ⋆ ∈ argmin
θ∈Mp,n

LRκ (θ|{xi}ni=1) ,

then, given Q ∈ Op and µ0 ∈ Rp, a minimum of the regular-
ized NLL computed on the transformed data ψ ({xi}ni=1) ={
QTxi + µ0

}n

i=1
is ϕ(θ⋆) =

(
QTµ+ µ0,Q

TΣQ, τ
)

, i.e.

ϕ(θ⋆) ∈ argmin
θ∈Mp,n

LRκ
(θ|ψ ({xi}ni=1)) .

Proof. First of all, given Q ∈ Op and µ0 ∈ Rp, one can check
that

L (ϕ(θ)|ψ ({xi}ni=1)) = L (θ| {xi}ni=1) ,

where L is the NLL defined in (5), θ = (µ,Σ, τ ), ϕ(θ) =
(QTµ + µ0,Q

TΣQ, τ ) and ψ is defined in equation (37).
Then, Rκ satisfies Assumption 1 and thus only depends on the
eigenvalues of the matrices τiΣ. This implies thatRκ(ϕ(θ)) =
Rκ(θ) and hence we get that

LRκ
(ϕ(θ)|ψ ({xi}ni=1)) = LRκ

(θ| {xi}ni=1) .

This implies that if θ⋆ ∈ argminθ∈Mp,n
LRκ

(θ|{xi}ni=1),
then ϕ(θ⋆) ∈ argminθ∈Mp,n

LRκ
(θ|ψ ({xi}ni=1)), which

concludes the proof.

VI. KL DIVERGENCE AND RIEMANNIAN CENTER OF MASS

In the previous section, we proposed to optimize the regu-
larized NLL (26) of the NC-MSG (2). Once these parameters
are estimated, they can be used as features for Riemannian
classification/clustering algorithms [19]–[22]. To do this clas-
sification/clustering, two tools are presented in this section.
Firstly, since no closed-form formula of the Riemannian
distance on Mp,n is known, a divergence between pairs of
parameters is defined. The proposed one is the KL divergence
between two NC-MSGs (2). It benefits from a simple closed-
form formula presented in Subsection VI-A. Secondly, simple
classification algorithms, such as K-means or the Nearest
centroı̈d classifier, rely on an algorithm to average parameters.
Thus, an algorithm to compute centers of mass of estimated
parameters θ must be defined. This center of mass is defined
using the KL divergence and is presented in Subsection VI-B.
Its computation is realized with Algorithm 1.

A. KL divergence

Classification/clustering algorithms, such as K-means or
the Nearest centroı̈d classifier, rely on a divergence between
points. Thus, it remains to define a divergence on Mp,n. The
latter must be related to the NC-MSG (2). Indeed, the objective
is to classify its parameters θ. In the context of measuring
proximities between distributions admitting probability density
functions, a classical divergence is the KL. The latter measures
the similarity between two probability density functions. Def-
inition 2 gives the general formula of the KL divergence.

Definition 2 (KL divergence). Given two probability density
functions p and q defined on the sample space X , the KL
divergence is

δKL(p, q) =

∫

X
p(x) log

(
p(x)

q(x)

)
dx .

Applied to NC-MSGs, the KL divergence is derived from the
Gaussian one and is presented in Proposition 9. It benefits
from a simple closed-form formula and therefore is of practical
interest.



Proposition 9 (KL divergence). Given the r.v. x =
(x1, . . . ,xn) and two NC-MSGs of probability density func-
tions pθ1(x) =

∏n
i=1 f (xi|(µ1,Σ1, τ1,i)) and pθ2(x) =∏n

i=1 f (xi|(µ2,Σ2, τ2,i)), the KL divergence is

δKL(θ1, θ2) =
1

2

(
n∑

i=1

τ1,i
τ2,i

Tr
(
Σ−1

2 Σ1

)
+

n∑

i=1

1

τ2,i
∆µTΣ−1

2 ∆µ+ n log

( |Σ2|
|Σ1|

)
− np

)
,

with ∆µ = µ2 − µ1.

Proof. The r.v. x = (x1, . . . ,xn) can be vectorized into x =
[xT

1 , . . . ,x
T
n ]

T ∈ Rnp which follows a multivariate Gaussian
distribution of location the concatenation of the locations of
x1, . . . ,xn and of block-diagonal covariance matrix whose
elements are the covariance matrices of x1, . . . ,xn. Thus,
the KL divergence between the probability density functions
pθ1 and pθ2 is the KL divergence between two multivariate
Gaussian distributions whose covariance matrices are block
diagonal. Using the KL divergence between Gaussian distri-
butions and the constraint

∏n
i=1 τ1,i =

∏n
i=1 τ2,i = 1, we get

the desired formula.

Finally, this KL divergence is non-symmetrical. We rely on
the classical symmetrization to define the proposed divergence
δMp,n :Mp,n ×Mp,n → R,

δMp,n
(θ1, θ2) =

1

2
(δKL(θ1, θ2) + δKL(θ2, θ1)) . (39)

B. Center of mass computation

To implement simple machine learning algorithms such as
K-means or the Nearest centroı̈d classifier onMp,n, it remains
to define an averaging algorithm. To do so, we leverage a
classical definition of centers of mass which are minimizers
of variances [23], [45]. Given a set of parameters {θi}Mi=1, its
center of mass on Mp,n is defined as the solution of

minimize
θ∈Mp,n

1

M

M∑

i=1

δMp,n
(θ, θi) , (40)

where δMp,n
is the symmetrized KL divergence from Equa-

tion (39). To realize (40), Algorithm 1 can be employed.

VII. NUMERICAL EXPERIMENTS

The objective of this section is to show the practical interests
of the tools developed in the previous sections. More precisely,
this section presents numerical experiments and is divided into
two parts.

First, the subsection VII-A studies the performance of
Algorithm 1, in terms of speed of convergence on the cost
functions (26) and (40) and in terms of estimation error on the
cost function (22). Both studies are done through simulations.
Algorithm 1 is shown to be fast. Indeed, it requires from 5
to 30 times fewer iterations to minimize costs functions (26)
and (40) compared to other sophisticated optimization algo-
rithms. This demonstrates the interest in the choice of the
FIM to develop Riemannian optimization algorithms. Also,

Algorithm 1 applied to the cost function (22) gives lower
estimation errors than other classical estimators such as the
Tyler joint mean-scatter one and the Gaussian ones.

Second, an application on the crop classification dataset
Breizhcrops [29] is presented in Subsection VII-B. This dataset
consists of 600 000 time series to be classified into 9 classes.
The application implements a Nearest centroı̈d classsifier on
Mp,n using the divergence (39) and the Riemannian center of
mass (40). Three results ensue. First, the proposed algorithms
can be used on large-scale datasets. Second, the proposed regu-
larization in Section V plays an important role in classification.
Third, considering an NC-MSG (2) is interesting for time se-
ries especially when data undergo a rigid transformation (37).

Python code implementing the different experiments can be
found at https://github.com/antoinecollas/optim compound.

A. Simulation
In this simulation setting, we set the parameters θ =

(µ,Σ, τ ) ∈ Mp,n as follows. First, each component of µ
is sampled from a univariate Gaussian distribution N (0, 1).
Second, Σ is generated using its eigendecomposition Σ =
UΛUT . U ∈ Op is drawn from the uniform distribution
on Op [46] using the module “scipy.stats” from the Scipy
library [47]. Then, the elements on the diagonal of the diagonal
matrix Λ are drawn from a χ2

1 distribution. Third, the τi are
drawn from a Γ(ν, 1/ν) distribution with ν a parameter to be
chosen. The smaller the ν, the greater the variance. In order to
respect the constraint

∏n
i=1 τi = 1, the vector τ is normalized.

The speed of convergence of Algorithm 1 is studied on
two cost functions: the regularized NLL (26) and the cost
function (40) to compute the center of mass associated to the
KL divergence of Proposition 9.

We begin with the minimization of the regularized
NLL (26). n = 150 data xi ∈ R10 are drawn from a NC-
MSG, i.e. xi ∼ N (µ, τiΣ). The parameter θ = (µ,Σ, τ ) of
this distribution is generated as explained in the introduction of
this subsection with ν = 1. Different parameters β in (26) are
considered: β ∈ {0, 10−5, 10−3}. The chosen regularization
is the L2 penalty from Table I. When β = 0 the NLL is the
plain one, i.e. it is not regularized. We point out that, in this
setup, the optimization goes well although the existence of a
solution to this problem is not proven. When β > 0 a solution
to the minimization problem exists from Proposition 6. The
minimization is performed with three different algorithms.

• The plain conjugate gradient presented in [37]. It is a
Riemannian conjugate gradient descent that uses a sum of
three independent Riemannian metrics associated with the
three parameters µ, Σ, and τ . Thus, the corresponding
Riemannian geometry is easier to derive but is not linked
to the NC-MSG.

• The plain steepest descent. It is similar to the plain
conjugate gradient. Still, it only uses the gradient as a
direction of descent (and not a linear combination with
the direction of descent of the previous step).

• The Algorithm 1 that leverages the information geometry
of the NC-MSG presented in Section III-B.

The results of this experiment are presented in Figures 1
and 3 in terms of iterations and computation time respectively.

https://github.com/antoinecollas/optim_compound


We observe that Algorithm 1 is much faster than the two
others regardless of the β parameter. Indeed, in the case
β ∈ {0, 10−5}, the Algorithm 1 is at least 100 times faster than
the plain steepest descent and 10 times faster than the plain
conjugate gradient. In the case of β = 10−3, Algorithm 1 is
at least 20 times faster than the plain steepest descent and 3
times faster than the plain conjugate gradient. Furthermore,
we observe these results are valid either in the number of
iterations or in computation time. Indeed, the three considered
algorithms have iterations with similar computational costs in
O(np2 + p3). Thus, a reduction in the number of iterations
results in a reduction in computation time.

Then, a similar experiment is performed with the cost
function (40) to compute the center of mass. M ∈ {2, 10, 100}
parameters θ are generated as described in the introduction
of Subsection VII-A with ν = 1. The minimization is per-
formed with the same optimization algorithms as previously:
the plain steepest descent, the plain conjugate gradient, and
Algorithm 1. The results of this experiment are presented in
Figures 2 and 4 in terms of iterations and computation time,
respectively.

We observe that Algorithm 1 is much faster than the two
others regardless of M . Indeed, when M = 2, Algorithm 1
converges in 40 iterations whereas the plain conjugate gradient
requires 300 iterations and the plain steepest descent still has
not converged after 1000 iterations. When M ∈ {10, 100},
Algorithm 1 converges in less than 60 iterations which is
4 times faster than the plain conjugate gradient. It should
be noted that the plain steepest descent has not converged
after 1000 iterations in the cases M ∈ {100, 1000}. Once
again, these results are valid either in the number of it-
erations or in computation time since the three considered
algorithms have iterations with similar computational costs in
O
(
M
(
n+ p3

))
. Hence, reducing the number of iterations

implies a reduction in computation time.
The estimation error made by Algorithm 1 applied on the

NLL (5) is studied with numerical experiments on simulated
data. n ∈ J20, 1000K data xi are sampled from the NC-
MSG (2). The parameter θ = (µ,Σ, τ ) of this distribution
is generated as presented in the introduction of Subsec-
tion VII-A with ν = 0.1 to have heterogeneous textures τi.
The considered estimators for this numerical experiment are
the following:

• Gaussian estimators: the sample mean µG = 1
n

∑n
i=1 xi

and the SCM ΣG = 1
n

∑n
i=1(xi − µG)

(
xi − µG

)T
.

• Tyler’s joint location-scatter matrix estimator [5] denoted
µTy and ΣTy.

• Tyler’s M -estimator with location known [5]. The sam-
pled data xi are centered with the true location µ, and
then Σ is estimated. This estimator is denoted ΣTy,µ.

• The proposed estimator denoted µIG and ΣIG. Al-
gorithm 1 minimizes the NLL (5). The initializa-
tion is the Gaussian maximum likelihood i.e. θinit =(
µG,ΣG,1n

)
, where µG = 1

n

∑n
i=1 xi, ΣG =

1
n

∑n
i=1

(
xi − µG

) (
xi − µG

)T
and 1n = (1, · · · , 1)T .

The estimation errors are measured with the Mean Squared
Errors (MSE). These errors are computed as E[∥µ̂− µ∥22]

and E[∥Q(Σ̂) − Q(Σ)∥2F ], with Q(Σ) = |Σ|− 1
p Σ, for the

estimated location µ̂ and the estimated scatter Σ̂ respectively,
with 2000 Monte-Carlo. The MSE on the location and the
scatter versus the number of samples xi are plotted in Figure 5.
First, we observe in both figures that the Gaussian estimators
have a high MSE. This shows the interest in considering
robust estimators such as Tyler’s joint location-scatter ma-
trix estimator or the proposed one when the textures τi are
heterogeneous. Then, the proposed estimators realize a much
lower MSE than Tyler’s joint location-scatter estimator. We
can note that when enough samples are provided, the MSE
on the location realized by the proposed estimator reaches
the machine precision and is therefore negligible. Finally,
we compare the performance of the proposed estimator with
Tyler’s M -estimator for the scatter estimation. Indeed, when
the location is known, Tyler’s M -estimator is the MLE of
the NC-MSG (2). We observe that when enough samples are
provided, the proposed estimator matches the MSE of Tyler’s
M -estimator. Overall, this experimental subsection illustrates
the good performance of the proposed estimator when data are
sampled from a NC-MSG (2).

B. Application

In the previous subsection, the different theoretical results
derived in Sections from III to VI showed several interests in
synthetic data. We now focus on applying a Nearest centroı̈d
classifier onMp,n to real data using the estimation framework
developed in Section V, the divergence and the Riemannian
center of mass from Section VI as well as the optimization
framework from Section IV. This classifier is compared with
several other Nearest centroı̈d classifiers associated with dif-
ferent estimators and divergences.

To do so, we consider the dataset Breizhcrops [29]: a large-
scale dataset of more than 600 000 crop time series from
the Sentinel-2 satellite to classify. More specifically, for each
crop n = 45 observations xi ∈ Rp are measured over time.
Each xi contains reflectance measurements of p = 13 spectral
bands. Then, these measurements are concatenated into one
batch Xj = [x1, · · · ,xn] ∈ Rp×n. Hence, we get one matrix
Xj per crop and each one belongs to an unknown class
y ∈ J1,KK. These K = 9 classes represent crop types such as
nuts, barley, or wheat and are heavily imbalanced, i.e. some
classes are much more represented than others. An example of
a time series of meadows is presented in Figure 6. We apply
a single preprocessing step: all the data are centered using the
global mean. For simplicity, the matrix Xj is noted X in the
following.

To classify these crops, we apply a Nearest centroı̈d clas-
sifier on descriptors. Indeed, the use of statistical descriptors
is a classical procedure in machine learning as they are often
more discriminative than raw data (see e.g. [19], [20]). Hence,
this classification algorithm works in three steps.

1) For each batch X , a descriptor is computed, e.g. the
parameter θ ∈ Mp,n from the minimization of the
regularized NLL (25).

2) Then, on the training set, the center of mass of the
descriptors of each class is computed. This center of
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proposed estimators µIG and ΣIG are computed as in (22)
using Algorithm 1 and the Q function normalizes scatter
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p , Q(Σ) = |Σ|− 1
p Σ.
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Fig. 6: Reflectances of a Sentinel-2 time series of meadows
from the Breizhcrops dataset. Figure courtesy [29].

mass is always computed by minimizing the variance
associated with a divergence between descriptors. For
example, the center of mass on Mp,n is computed as
in (40).

3) Finally, on the test set, each descriptor is labeled with
the class of the nearest center of mass with respect to
the chosen divergence.

Six Nearest centroı̈d classifiers are considered, and they are
grouped according to the divergence they use: the Euclidean
distance, the symmetrized KL divergence between Gaussian
distributions, or the symmetrized KL divergence (39) between
NC-MSGs. For each divergence, several Nearest centroı̈d clas-
sifiers are derived using several estimators. These estimators
correspond to different assumptions on the data.

Three Nearest centroı̈d classifiers rely on the Euclidean
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Fig. 7: “F1 weighted” metric achieved by the proposed Nearest
centroı̈d classifier on the Breizhcrops dataset versus the param-
eter of regularization β in (25). The chosen regularization is
the L2 penalty from Table I.

distance between matrices. Given two matrices A and B
of the same size, the Euclidean distance is d(A,B) =
∥A−B∥F . The center of mass of a given set {Ai}Mi=1 is
the arithmetic mean 1

M

∑M
i=1 Ai which is the solution of

minimizeY
1
M

∑M
i=1 ∥Y −Ai∥2F . From this geometry, three

Nearest centroı̈d classifiers are derived using three estimators:
the batch itself X , the sample mean µG and ΣG,µ=0 =
1
n

∑n
i=1 xix

T
i . The last two estimators correspond to the

assumption that data follow a Gaussian distribution (either
with the same scatter matrix for all batches or the same
location).

Two Nearest centroı̈d classifiers rely on the
symmetrized KL divergence between Gaussian
distributions. Let Mp = Rp × S++

p . Given two
pairs of parameters υ1 = (µ1,Σ1) ∈ Mp and
υ2 = (µ2,Σ2), this divergence is given by δMp

(υ1, υ2) =
1
2 (δKL(υ1, υ2) + δKL(υ2, υ1)) where δKL(υ1, υ2) =
1
2

(
Tr
(
Σ−1

2 Σ1

)
+∆µTΣ−1

2 ∆µ+ log
(

|Σ2|
|Σ1|

)
− p
)

.

The center of mass of {υi}Mi=1 is the solution of
minimizeυ∈Mp

∑M
i=1 δMp

(υ, υi). Then, two Nearest centroı̈d
classifiers are derived using two estimators: ΣG,µ=0 and the
MLE of the Gaussian distribution (µG,ΣG).

Finally, the proposed Nearest centroı̈d classifier on Mp,n

relies on the symmetrized KL divergence (39) between NC-
MSGs. The center of mass is computed as explained in the
subsection VI-B and the estimation is described in Section V
with the L2 penalty for the regularization. For initialization,
we used the arithmetic mean, i.e. given a set of parameters
{θi ≜ (µi,Σi, τ i)}Mi=1, with θinit = (µmean,Σmean, N(τmean)),
where µmean = 1

M

∑M
i=1 µi, Σmean = 1

M

∑M
i=1 Σi, τmean =

1
M

∑M
i=1 τ i and N is the normalization function: ∀x =

(xi)1≤i≤n ∈ (R+
∗ )

n, N(x) = (
∏n

i=1 xi)
− 1

n x.
The data are divided into two sets: a training set and a

test set with 485 649 and 122 614 batches respectively [29].
Among the six Nearest centroı̈d classifiers, only the one on
Mp,n has a hyperparameter which the parameter β of the
regularized NLL (25). Several values of β are tested on a
training set and a validation set, and both are subsets of the
original training set. The performance is measured with the
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Fig. 8: “F1 weighted” metric versus the parameter t associated with three transformations applied to the test set of
the Breizhcrops dataset. The different Nearest centroı̈d classifiers estimate the barycentres on the training data without
transformations. Then, the classification is performed on the test set with three different transformations. For t = 0, the
test set is not transformed, and the larger t is, the more the test set is transformed. Six different Nearest centroı̈d classifiers are
compared: each is a combination of an estimator, a divergence, and its associated center of mass computation. The proposed
one is denoted “θ - sym. KL”. The latter uses the Equations (26), (39) and (40) for the estimation, the divergence and the
center of mass computation respectively. The regularization is the L2 penalty from Table I and β is fixed at 10−11.

“F1 weighted” metric used in [29] and is plotted in Figure 7.
The value of β with the highest “F1 weighted” metric is
10−11. Hence, we use this value in the rest of the paper.
Then, we propose an experiment to illustrate Proposition 8
on the invariance of the estimation of textures under rigid
transformations. Indeed, we train the six Nearest centroı̈d
classifiers on a subset of the original training set and apply
them to the full test set with a rigid transformation. Thus,
the more a Nearest centroı̈d classifier is robust to these rigid
transformations, the better the “F1 weighted” metric. Given
t ∈ [0, 1], three different rigid transformations are performed:
transformation of the mean xi 7→ xi+µ(t) with µ(t) = ta for
a given a ∈ Rp, rotation transformation xi 7→ Q(t)Txi with
Q(t) = exp(tξ) for a given skew-symmetric ξ ∈ Rp×p (hence
Q(t) ∈ Op), and the joint mean and rotation transformation
xi 7→ Q(t)Txi + µ(t). It should be noted that at t = 0, the
data are left unchanged. The results are presented in Figure 8.

The conclusions of these experiments are fourfold. First,
the proposed Nearest centroı̈d classifier applies to large-
scale datasets such as the Breizhcrops dataset. Second, the
regularization proposed in Section V is important to get good
classification performance. Indeed, we observe from Figure 7
that if β is too small, then the “F1 weighted” metric becomes
very low. Also, if β is too large, then the “F1 weighted”
metric also becomes very low. Third, using KL divergences
and their associated centers of mass to classify estimators
gives much better performance than the classical Euclidean
distance. Indeed, even when data do not undergo rigid transfor-
mations, Nearest centroı̈d classifiers based on KL divergences
outperform Euclidean Nearest centroı̈d classifiers in Figure 8.
Fourth, considering NC-MSGs, as well as its KL divergence,
instead of the Gaussian distribution, is interesting to classify
time series especially when rigid transformations are applied to

the data. Indeed, in Figure 8, we observe a large performance
improvement when data are considered distributed from a NC-
MSG and undergo rigid transformations.

VIII. CONCLUSION

In this paper, we proposed a Riemannian gradient descent
algorithm based on the Fisher-Rao information geometry of
the NC-MSG. This algorithm is leveraged for two problems:
parameter estimation and computation of centers of mass. The
estimation problem of the NC-MSG is not straightforward.
Indeed, a major issue is that the existence of a solution to the
NLL minimization problem is not guaranteed. To overcome
this issue, we proposed a class of regularized NLLs that
make the trade-off between a white Gaussian distribution
and the NC-MSG. These functions are guaranteed to have
a minimum, and this result holds without conditions on the
samples. Furthermore, we derived the KL divergence between
NC-MSGs which enabled us to define the centers of mass
of NC-MSGs as minimization problems. The latter is solved
using the proposed Riemannian gradient descent. Simulations
have shown that the proposed Riemannian gradient descent is
fast on both minimization problems. Also, a Nearest centroı̈d
classifier based on the KL divergence has been implemented.
It has been applied on the large-scaled dataset Breizhcrops and
showed robustness to transformations of the test set.
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APPENDIX

A. Proof of Proposition 1: Fisher Information Metric
First, we recall the definition of the FIM. See [48] for an in-

depth presentation. Let {xi}ni=1 be data points. Assuming that
the underlying distribution admits a p.d.f., the corresponding
NLL, denoted L, maps parameters θ belonging to the parame-
ter space of the p.d.f., denotedM, onto R. By denoting TθM
the tangent space of M at θ ∈ M, and under conditions of
regularity of L, the FIM is defined ∀ξ, η ∈ TθM as

⟨ξ, η⟩Mθ = E[DL(θ)[ξ] DL(θ)[η]] = E[D2 L(θ)[ξ, η]].
To derive the FIM of the mixture of scaled Gaussians given

in Proposition 1, we recall classical formulas for the Gaussian
distribution. The NLL at θ = (µ,Σ) ∈ Mp = Rp × S++

p

and associated to one data point x is (neglecting terms not
depending on θ)

Lg
x(θ) =

1

2

[
log |Σ|+ (x− µ)TΣ−1(x− µ)

]
(41)

Since Mp is an open set in the vector space Rp × Sp, the
tangent space of Mp at θ is TθMp = Rp × Sp. Finally,
∀ξ = (ξµ, ξΣ), η = (ηµ,ηΣ) ∈ TθMp, the FIM of the
Gaussian distribution associated to the NLL (41) is [39]

⟨ξ, η⟩Mp

θ = ξTµΣ
−1ηµ +

1

2
Tr(Σ−1ξΣΣ

−1ηΣ). (42)

Then, we derive the FIM associated with the NLL of
the mixture of scaled Gaussian distributions (5). We begin
by writing (5) as a sum of Gaussian NLL (41). Indeed,
∀θ ∈Mp,n, we have

L(θ|{xi}ni=1) =
n∑

i=1

(Lg
xi
◦ φi)(θ),

where φi(θ) = (µ, τiΣ). Thus, ∀θ ∈Mp,n, ∀ξ, η ∈ TθMp,n,
and following the reasoning of [49, Proposition 6] and [33,
Proposition 3.1], the FIM of the mixture of scaled Gaussian is
expressed as a sum of FIM of the Gaussian distribution (42)

⟨ξ, η⟩Mp,n

θ = E
[
D2 L(θ|{xi}ni=1)[ξ, η]

]

=
n∑

i=1

E
[
D2(Lg

xi
◦ φi)(θ)[ξ, η]

]

=
n∑

i=1

E
[
D(Lg

xi
◦ φi)(θ)[ξ] D(Lg

xi
◦ φi)(θ)[η]

]

=
n∑

i=1

E
[
D(Lg

xi
(φi(θ)))[Dφi(θ)[ξ]]

D(Lg
xi
(φi(θ)))[Dφi(θ)[η]]

]

=
n∑

i=1

⟨Dφi(θ)[ξ],Dφi(θ)[η]⟩Mp

φi(θ)
.

In the following, the i-th components of ξτ and ητ are denoted
ξi and ηi respectively. Therefore, the directional derivative of
the function φi is

Dφi(θ)[ξ] = (ξµ, ξiΣ+ τiξΣ).

Thus, we get

⟨ξ, η⟩Mp,n

θ =
n∑

i=1

[
ξTµ(τiΣ)−1ηµ

+
1

2
Tr
(
(τiΣ)−1(ξiΣ+ τiξΣ)(τiΣ)−1(ηiΣ+ τiηΣ)

) ]

=
n∑

i=1

[ 1
τi
ξTµΣ

−1ηµ +
1

2
p
ξiηi
τ2i

+
1

2

ξi
τi

Tr(Σ−1ηΣ)

+
1

2

ηi
τi

Tr(Σ−1ξΣ) +
1

2
Tr(Σ−1ξΣΣ

−1ηΣ)
]

=
n∑

i=1

(
1

τi

)
ξTµΣ

−1ηµ +
n

2
Tr(Σ−1ξΣΣ

−1ηΣ)

+
p

2

(
ξτ ⊙ τ−1

)T (
ητ ⊙ τ−1

)

+
1

2
ξTτ τ

⊙−1 Tr(Σ−1ηΣ) +
1

2
ηT
τ τ

⊙−1 Tr(Σ−1ξΣ)

Since ξτ ,ητ ∈ TθMp,n, we have ξTτ τ
⊙−1 = ηT

τ τ
⊙−1 = 0.

Thus, the last two terms of the last equation cancel, and the
expression of the FIM from Proposition 1 is obtained

⟨ξ, η⟩Mp,n

θ =

n∑

i=1

(
1

τi

)
ξTµΣ

−1ηµ +
n

2
Tr
(
Σ−1ξΣΣ

−1ηΣ

)

+
p

2

(
ξτ ⊙ τ−1

)T (
ητ ⊙ τ−1

)
.

It should be noted that this formula defines an inner product on
Ep,n if a transpose is added to ξΣ. Thus, ⟨., .⟩Mp,n

. is extended
∀ξ, η ∈ Ep,n as presented in Proposition 1.

B. Proof of Proposition 2: orthogonal projection on Mp,n

First of all, ∀θ ∈ Mp,n the ambient space Ep,n defined
in (14) is decomposed into two complementary subspaces

Ep,n = TθMp,n + T⊥
θ Mp,n (43)

where TθMp,n is the tangent space at θ defined in (15) and
T⊥
θ Mp,n is the orthogonal complement

T⊥
θ Mp,n=

{
ξ ∈ Ep,n : ⟨ξ, η⟩Mp,n

θ =0,∀η ∈ TθMp,n

}
.

(44)
It can be checked that this orthogonal complement is

T⊥
θ Mp,n = {0} × Ap ×

{
ατ : α ∈ R+

∗
}

(45)



where Ap is the set of p×p skew-symmetric matrices. Indeed,
the elements of (45) verify the definition (44) and dim(Ep,n) =
dim(TθMp,n) + dim(T⊥

θ Mp,n). Using the equations (43)
and (45), the orthogonal projection of ξ = (ξµ, ξΣ, ξτ ) ∈ Ep,n
onto TθMp,n is

P
Mp,n

θ (ξ) =
(
ξµ, ξΣ −A, ξτ − ατ

)

where A ∈ Ap and α ∈ R+
∗ have to be determined.

Furthermore, ∀η = (0,ηΣ, βτ ) ∈ T⊥
θ Mp,n with β ∈ R+

∗ ,
we must have

⟨PMp,n

θ (ξ), η⟩Mp,n

θ = 0.

This induces that
{
ξΣ −A = sym(ξΣ)

α =
ξT
τ τ⊙−1

n

where sym(ξΣ) =
1
2

(
ξΣ + ξTΣ

)
. Thus, we get the orthogonal

projection from Proposition 2.

C. Proof of Proposition 3: Levi Civita connection on Mp,n

First of all, the FIM defined in Proposition 1 is rewritten
with a function g. Indeed, let θ ∈ Mp,n and ξ, η be smooth
vector fields on Mp,n, the function g is defined as

gθ(ξ, η) = ⟨ξ, η⟩Mp,n

θ . (46)

This function g is of primary importance for the development
of the Levi Civita connection.

We briefly introduce the Levi-Civita connection. The gen-
eral theory of it can be found in [10, Ch. 5]. The Levi-Civita
connection, simply denoted∇ : (ξ, η) 7→ ∇ξη, is characterized
by the Koszul formula. Let ν be a smooth vector field on
Mp,n, in our case the Koszul formula writes

gθ(∇ξη, ν)− gθ(D η[ξ], ν) =
1

2

(
D gθ[ξ](η, ν) + D gθ[η](ξ, ν)−D gθ[ν](ξ, η)

) (47)

where D gθ[ν](ξ, η) is the directional derivative of the function
g·(ξ, η) : θ 7→ gθ(ξ, η). We begin by computing D gθ[ν](ξ, η):

−D gθ[ν](ξ, η) =
n∑

i=1

(
νi
τ2i

)
ξTµΣ

−1ηµ

+
n∑

i=1

(
1

τi

)
ξTµΣ

−1νΣΣ
−1ηµ

+ nTr
(
Σ−1 sym(ξΣΣ

−1ηΣ)Σ
−1νΣ

)

+ p
(
ξτ ⊙ ητ ⊙ τ⊙−2

)T (
ντ ⊙ τ⊙−1

)
.

Since the objective is to identify ∇ξη using (47) and the FIM
from Proposition 1, the last equation needs to be rewritten. To
do so, the following two terms are rewritten

n∑

i=1

(
νi
τ2i

)
ξTµΣ

−1ηµ =

p

(
1

p
ξTµΣ

−1ηµ1n ⊙ τ⊙−1

)T (
ν ⊙ τ⊙−1

)
,

and, since νΣ ∈ Sp
n∑

i=1

(
1

τi

)
ξTµΣ

−1νΣΣ
−1ηµ =

n∑

i=1

(
1

τi

)
Tr
(
Σ−1 sym(ηµξ

T
µ)Σ

−1νΣ

)
.

Hence, we get the equation (48). We then compute
D gθ[ξ](η, ν) in equation (49). Using (48) and (49), we
calculate the right-hand side of the Koszul formula (47) in
equation (50). By identification of the Koszul formula (47)
and orthogonal projection onto the tangent space, we get the
Levi Civita connection from the Proposition 3.

D. Proof of Proposition 4: Riemannian gradient on Mp,n

Let f : Mp,n → R be a smooth function and θ be
a point in Mp,n. We present the correspondence between
the Euclidean gradient of f (which can be computed us-
ing automatic differentiation libraries such as Autograd [41]
and JAX [42]) and the Riemannian gradient associated with
the FIM defined in Proposition 1. The Euclidean gradient
grad f(θ) = (Gµ,GΣ,Gτ ) of f at θ ∈ Mp,n is defined
as the unique element in Rp × Rp×p × Rn such that ∀ξ ∈
Rp × Rp×p × Rn

D f(θ)[ξ] = ⟨grad f(θ), ξ⟩θ = GT
µξµ+Tr

(
GT

ΣξΣ

)
+GT

τ ξτ .

Then, the Riemannian gradient gradMp,n
f(θ) =

(GMp,n
µ ,G

Mp,n

Σ ,GMp,n
τ ) is defined as the unique element

in TθMp,n such that ∀ξ ∈ TθMp,n

D f(θ)[ξ] = ⟨gradMp,n
f(θ), ξ⟩Mp,n

θ .

Hence, ∀ξ ∈ TθMp,n, we get that

D f(θ)[ξ] = GT
µξµ +Tr

(
GT

ΣξΣ

)
+GT

τ ξτ

=

(
n∑

i=1

1

τi

)

(

n∑

i=1

1

τi

)−1

ΣGµ




T

Σ−1ξµ

+
n

2
Tr

(
Σ−1

(
2

n
ΣGΣΣ

)T

Σ−1ξΣ

)

+
p

2

(
τ⊙−1 ⊙

(
2

p
τ⊙2 ⊙Gτ

))T (
τ⊙−1 ⊙ ξτ

)

=

(
n∑

i=1

1

τi

)
ηT
µΣ

−1ξµ +
n

2
Tr
(
Σ−1ηT

ΣΣ
−1ξΣ

)

+
p

2

(
τ⊙−1 ⊙ ητ

)T (
τ⊙−1 ⊙ ξτ

)

where

η =
(
ηµ,ηΣ,ητ

)

=



(

n∑

i=1

1

τi

)−1

ΣGµ,
2

n
ΣGΣΣ,

2

p
τ⊙2 ⊙Gτ


 .

To get the Riemannian gradient, it remains to project η into the
tangent space TθMp,n using the orthogonal projection PMp,n

θ .
Thus, we get the Riemannian gradient from the Proposition 4.



−D gθ[ν](ξ, η) =
n∑

i=1

(
1

τi

)
Tr
(
Σ−1 sym(ηµξ

T
µ)Σ

−1νΣ

)
+ nTr

(
Σ−1 sym

(
ξΣΣ

−1ηΣ

)
Σ−1νΣ

)

+ p

(
1

p
ξTµΣ

−1ηµ1n ⊙ τ⊙−1

)T (
ντ ⊙ τ⊙−1

)
+ p

(
ξτ ⊙ ητ ⊙ τ⊙−2

)T (
ντ ⊙ τ⊙−1

)

= nTr

(
Σ−1 sym

[
1

n

n∑

i=1

1

τi
ηµξ

T
µ + ξΣΣ

−1ηΣ

]
Σ−1νΣ

)

+ p

([
1

p
ξTµΣ

−1ηµ1n + ξτ ⊙ ητ ⊙ τ⊙−1

]
⊙ τ⊙−1

)T (
ντ ⊙ τ⊙−1

)

(48)

D gθ[ξ](η, ν) = −
n∑

i=1

(
ξi
τ2i

)
ηT
µΣ

−1νµ −
n∑

i=1

(
1

τi

)
ηT
µΣ

−1ξΣΣ
−1νµ − nTr(Σ−1ηΣΣ

−1νΣΣ
−1ξΣ)

− p
(
ητ ⊙ ντ ⊙ τ⊙−2

)T (
ξτ ⊙ τ⊙−1

)

= −
n∑

i=1

(
1

τi

)
ηT
µ

(
ξTτ τ

⊙−2

∑n
i=1

1
τi

Ip +Σ−1ξΣ

)
Σ−1νµ − nTr

(
Σ−1 sym(ξΣΣ

−1ηΣ)Σ
−1νΣ

)

− p
(
ξτ ⊙ ητ ⊙ τ⊙−2

)T (
ντ ⊙ τ⊙−1

)

(49)

1

2
(D gθ[ξ](η, ν) + D gθ[η](ξ, ν)−D gθ[ν](ξ, η)) =

n∑

i=1

(
1

τi

)[
− 1

2

[
ηT
µ

(
ξTτ τ

⊙−2

∑n
i=1

1
τi

Ip +Σ−1ξΣ

)
+ ξTµ

(
ηT
τ τ

⊙−2

∑n
i=1

1
τi

Ip +Σ−1ηΣ

)]]
Σ−1νµ

+
n

2
Tr

(
Σ−1

[
1

n

n∑

i=1

(
1

τi

)
sym(ηµξ

T
µ)− sym(ξΣΣ

−1ηΣ)

]
Σ−1νΣ

)

+
p

2

([
1

p
ξTµΣ

−1ηµ1n − ξτ ⊙ ητ ⊙ τ⊙−1

]
⊙ τ⊙−1

)T (
ντ ⊙ τ⊙−1

)

(50)

E. Proof of Proposition 5: a second order retraction onMp,n

Let θ ∈ Mp,n, ξ ∈ TθMp,n and t ∈ [0, tmax[ where tmax

is to be defined. We denote r(t) = R(tξ) where R is defined
in Proposition 5, i.e.

r(t) =

(
µ+ tξµ +

t2

2

[
ξTτ τ

⊙−2

∑n
i=1

1
τi

Ip + ξΣΣ
−1

]
ξµ,

Σ+ tξΣ +
t2

2

(
ξΣΣ

−1ξΣ −
1

n

n∑

i=1

(
1

τi

)
ξµξ

T
µ

)
,

N

(
τ + tξτ +

t2

2

(
ξ⊙2
τ ⊙ τ⊙−1 − 1

p
ξTµΣ

−1ξµ1n

)))
,

where ∀x ∈ (R+
∗ )

n, N is defined as N(x) =

(
∏n

i=1 xi)
−1/n

x.
The objective is to prove that r is a second-order retraction

onMp,n. The different properties of the definition of a second-
order retraction are verified in the following; see [10, Ch. 4
and 5] for a complete definition.

First of all, we define tmax such that r is a valid retraction.
Indeed, r must respect some constraints of positivity,

Σ+tξΣ+
t2

2

[
ξΣΣ

−1ξΣ −
1

n

n∑

i=1

(
1

τi

)
ξµξ

T
µ

]
≻ 0, (51)

τ+tξτ+
t2

2

[
ξ⊙2
τ ⊙ τ⊙−1 − 1

p
ξTµΣ

−1ξµ1n

]
> 0, (52)

where for A ∈ Sp, A ≻ 0 means A is positive definite and
for x ∈ Rn, x > 0 means the components of x are strictly
positive. Of course, (51) and (52) are not necessarily respected
depending on the value of t. To define the value of tmax such
that (51) and (52) are respected, we begin by studying the
eigenvalues of the left side of (51). To do so, let λ−(A) be
the smallest eigenvalue of A and Σ(t) be the left side of (51).
Thus, we get that

λ− (Σ(t)) ≥ λ− (Σ) + tλ− (ξΣ)

+
t2

2

[
λ−
(
ξΣΣ

−1ξΣ
)
− 1

n

n∑

i=1

(
1

τi

)∥∥ξµ
∥∥2
2

]

≥ λ− (Σ) + tλ− (ξΣ)−
t2

2n

n∑

i=1

(
1

τi

)∥∥ξµ
∥∥2
2
. (53)

A sufficient condition to satisfy (51) is that the right side
of (53) is strictly positive. This is achieved whenever t is in
[0, t1[ where t1 is defined as followed

• if ξµ ̸= 0, t1 = n λ−(ξΣ)+
√
∆1∑n

i=1

(
1
τi

)
∥ξµ∥22

> 0 and ∆1 =

λ−(ξΣ)
2 + 2

nλ
−(Σ)

∑n
i=1

(
1
τi

)∥∥ξµ
∥∥2
2
,

• if ξµ = 0, t1 = λ−(Σ)
|λ−(ξΣ)| > 0 for λ−(ξΣ) < 0, t1 = +∞

otherwise.
Lets denote the minimum value coordinate of x ∈ Rn by
(x)min. Using the same reasoning as before, one can show that



d2

dt2
(N ◦ x)(t) = − 1

n

(
n∏

i=1

xi(t)

)(
ẋ(t)

T
x(t)

⊙−1
)( n∏

i=1

xi(t)

)− 1
n−1 [

ẋ(t)− 1

n

(
ẋ(t)

T
x(t)

⊙−1
)
x(t)

]

+

(
n∏

i=1

xi(t)

)− 1
n [

ẍ(t)− 1

n

(
ẍ(t)

T
x(t)

⊙−1
)
x(t) +

1

n

((
ẋ(t)

⊙2
)T

x(t)
⊙−2

)
x(t)− 1

n

(
ẋ(t)

T
x(t)

⊙−1
)
ẋ(t)

]

=
1

n

(
n∏

i=1

xi(t)

)− 1
n [

nẍ(t) +

((
ẋ(t)

⊙2
)T

x(t)
⊙−2 − ẍ(t)

T
x(t)

⊙−1

)
x(t)− 2

(
ẋ(t)

T
x(t)

⊙−1
)
ẋ(t)

+
1

n

(
ẋ(t)

T
x(t)

⊙−1
)2

x(t)

]
,

(46)

where ẍ(t) = d2

dt2x(t).

τ̈ (0) =
d2

dt2

(
N ◦

(
τ + tξτ +

t2

2

(
ξ⊙2
τ ⊙ τ⊙−1 − 1

p
ξTµΣ

−1ξµ1n

))) ∣∣∣
t=0

= ξ⊙2
τ ⊙ τ⊙−1 − 1

p
ξTµΣ

−1ξµ1n +
1

n

[ (
ξ⊙2
τ

)T
τ⊙−2 −

(
ξ⊙2
τ ⊙ τ⊙−1 − 1

p
ξTµΣ

−1ξµ1n

)T

τ⊙−1

]
τ

= ξ⊙2
τ ⊙ τ⊙−1 − 1

p
ξTµΣ

−1ξµ1n +
1

np
ξTµΣ

−1ξµ
(
1
T
nτ

⊙−1
)
τ .

(47)

whenever t is in [0, t2[, where t2 is defined in the following,
(52) is satisfied.

• If ξµ ̸= 0, t2 = p (ξτ )min+
√
∆2∥∥∥Σ− 1

2 ξµ

∥∥∥2

2

> 0 and ∆2 =

(ξτ )
2
min + 2

p (τ )min

∥∥∥Σ− 1
2 ξµ

∥∥∥
2

2
.

• If ξµ = 0, t2 = (τ )min

|(ξτ )min| > 0 for (ξτ )min < 0,
t2 = +∞ otherwise.

Hence, we get tmax = min{t1, t2} > 0 such that ∀t ∈
[0, tmax[, r(t) ∈Mp,n.

Then, to be a second-order retraction, it remains to check
that the three following properties are respected,

r(0) = θ, ṙ(0) = ξ, ∇ṙ ṙ
∣∣∣
t=0

= 0, (54)

where ṙ(t) = d
dtr(t) and ∇ is the Levi-Civita connection

defined in Proposition 3. The first property is easily verified.
In the rest of the proof, the following notations are used:
r(t) = (µ(t),Σ(t), τ (t)), ṙ(t) = (µ̇(t), Σ̇(t), τ̇ (t)) and
r̈(t) = (µ̈(t), Σ̈(t), τ̈ (t)).

We verify the second property of (54) which is ṙ(0) = ξ. It
is readily check that µ̇(0) = ξµ and Σ̇(0) = ξΣ. It remains to
verify that τ̇ (0) = ξτ . Computing the derivative of N (defined
in Proposition 3) at a point x(t) ∈ (R+

∗ )
n, we get that

d

dt
(N ◦ x)(t) =

[
n∏

i=1

xi(t)

]− 1
n
[
ẋ(t)− ẋ(t)

T
x(t)

⊙−1

n
x(t)

]
, (55)

where ẋ(t) = d
dtx(t). Using this derivative and the constraints∏n

i=1 τi = 1 and ξTτ τ
⊙−1 = 0, the desired property is derived

τ̇ (0) =
d

dt

(
N ◦

(
τ + tξτ

+
t2

2

(
ξ⊙2
τ ⊙ τ⊙−1 − 1

p
ξTµΣ

−1ξµ1n

)))∣∣∣
t=0

= ξτ .

It remains to check the third condition of (54). Using the first
two conditions of (54), we get that ∇ṙ ṙ

∣∣∣
t=0

= 0 if and only
if





µ̈(0) =

[
ξT
τ τ⊙−2∑n
i=1

1
τi

Ip + ξΣΣ
−1

]
ξµ,

Σ̈(0) = ξΣΣ
−1ξΣ − 1

n

∑n
i=1

(
1
τi

)
ξµξ

T
µ,

P
S(R+

∗ )n

τ (τ̈ (0))=P
S(R+

∗ )n

τ

(
ξ⊙2
τ ⊙ τ⊙−1−1

pξ
T
µΣ

−1ξµ1n

)
,

where, ∀ξ ∈ Rn, PS(R+
∗ )n

τ (ξ) = ξ − ξT τ⊙−1

n τ . It is readily
checked that the first two conditions are met. Thus, only the
third condition remains to be verified. To do so, we differen-
tiate (55) to get the second derivative of N in equation (46).
Using this derivative and the constraints

∏n
i=1 τi = 1 and

ξTτ τ
⊙−1 = 0, the expression of τ̈ (0) is derived in the

equation (47). Using the linearity of the projection PS(R+
∗ )n

τ ,
(47) implies that

P
S(R+

∗ )n

τ (τ̈ (0)) = P
S(R+

∗ )n

τ

(
ξ⊙2
τ ⊙ τ⊙−1 − 1

p
ξTµΣ

−1ξµ1n

)

+ P
S(R+

∗ )n

τ

(
1

np
ξTµΣ

−1ξµ
(
1
T
nτ

⊙−1
)
τ

)
.

Finally, one can check that ∀α ∈ R, PS(R+
∗ )n

τ (ατ ) = 0.
Hence, we get the desired expression

P
S(R+

∗ )n

τ (τ̈ (0)) = P
S(R+

∗ )n

τ

(
ξ⊙2
τ ⊙ τ⊙−1 − 1

p
ξTµΣ

−1ξµ1n

)
,

which completes the proof.
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