

Anaël Sédilot¹, Enora Vuillermet¹, Régis Deturche¹, Elise Usureau¹, Jérémie Béal¹, Nicolas Bercu² et Mihai Lazar¹

¹L2n, Université de Technologie de Troyes, Troyes

²LRN, Université de Reims-Champagne-Ardennes, Reims

Forum des microscopies à sonde locale

II. PRESENTATION DES EQUIPEMENTS

III. RESULTATS

IV. CONCLUSION

Dopage du 4H-SiC

- SiC est un semiconducteur à large bande interdite
- > 4H-SiC est la forme cristallographique la plus commercialisée

Dopage du 4H-SiC

- SiC est un semiconducteur à large bande interdite
- 4H-SiC est la forme cristallographique la plus commercialisée
- ➢ Dopage p et n du SiC → dispositifs électroniques de tout types : MOSFETs, JFETs, diodes....

T. Kimoto, *SiC materials properties*, **WDB Semiconductor Power Devices**, Woodhead Publishing (2019)

Caractérisation du dopage local en surface

Dans quel but ?

- ➢ SiC dopé → pas de différence d'aspect de surface après dopage → localisation des zones dopées
- ➢ Vérifier si on a ou non des pics de potentiel → à éviter
- ➤ Caractériser les jonctions p-n → zones de déplétion de charges

Caractériser le dopage

Dans quel but ?

- ➢ SiC dopé: pas de différence d'aspect de surface après dopage → localisation des zones dopées
- > Vérifier si on a ou non des pics de potentiel \rightarrow à éviter
- ➤ Caractériser les jonctions p-n → zones de déplétion de charges

µRaman Dépendant de la cristallographie du matériau

 \rightarrow Insertions de N et Al déforment la maille cristalline de 4H-SiC

Variations pic Raman FLO de 4H-SiC selon le dopage Al ou N

P. Kwaśnicki, **Thèse**, Université Montpellier II (2014)

Caractériser le dopage

Dans quel but ?

- ➢ SiC dopé: pas de différence d'aspect de surface après dopage → localisation des zones dopées
- > Vérifier si on a ou non des pics de potentiel \rightarrow à éviter
- ➤ Caractériser les jonctions p-n → zones de déplétion de charges

KPFM Mesure la différence de fonction de travail entre deux matériaux

\rightarrow Le dopage modifie le niveau de Fermi de 4H-SiC

II - PRINCIPE DES MESURES

II - PRINCIPE DES MESURES

Microscopie à sonde Kelvin (KPFM)

Principe mode FM-KPFM

Interférences entre oscillations mécaniques AFM et forces électrostatiques
→ déphasage de l'oscillation de la pointe par rapport à son oscillation d'origine

Correction du déphasage par application de $V_{DC} = V_{sample} = V_{CPD}$

AFM Dimension Icon de Bruker

- Peak Force KPFM : fusion de FM-KPFM et Peak Force Tapping
- Fréquence 0,100 Hz
- Lift KPFM 100nm
- Force 4nN
- Pointes SCM PIT V2

II - PRINCIPE DES MESURES

Microscopie Raman

Raman Labram HR evolution de Horiba

- Objectif x40
- Laser 325nm (qqes μm)
- Grating 1800nm
- Ouverture de l'objectif 100
- Temps d'acquisition/point 10s

JFETs – transistors à effet de champ

Circuit intégré \rightarrow 2 transistors JFET canal p et n

Circuit intégré \rightarrow 2 transistors JFET canal p et n

JFET – canal p

Vue de dessus du transistor à canal P

JFET – canal n

UNIVERSITÉ DE TECHNOLOG TROYES

JFET – canal p

Cartographie Raman

On différencie difficilement le canal p de p+ → 330 coups de difference entre p+ et n+

Potentiel

On différencie p⁺ et n⁺ du canal p

- \rightarrow 670mV de difference entre n+ et p+
- \rightarrow 517mV entre p et p+

Cartographie Raman

JFET – canal n Dopage n+ Canal N Dopage p+ 5 10

L2n 10.0kV 10.8mm x300/423um SE(U) 3/24/2023

Potentiel

Distinction entre n+ et n ou effet de charge ? \rightarrow 602mV de différence entre p+ et n+

- Identification des zones dopées possible par KPFM et μ-Raman
- Cohérence des résultats obtenus par les deux methodes
- Difficile d'observer la transition entre un dopage p+/p ou n+/n
- Pas de valeur quantitative de potential de surface obtenue pour l'instant → seulement une différence de potentiel entre deux dopages différents
- Limiter à un balayage de 50µm de distance pour le KPFM

Merci de votre attention !

Remerciements

- Anaël Sédilot
- Régis Deturche, Jérémie Béal, Nicolas Bercu, Elise Usureau
- Mihai Lazar

ANNEXE

ANNEXE

Dopage en surface \rightarrow on utilise le laser de longueur d'onde la plus faible (UV 325nm)