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Robust Task-Space Quadratic Programming for
Kinematic-Controlled Robots

Mohamed Djeha, Pierre Gergondet, and Abderrahmane Kheddar, Fellow, IEEE

Abstract—Task-space quadratic programming (QP) is an ele-
gant approach for controlling robots subject to constraints. Yet,
in the case of kinematic-controlled (i.e., high-gains position or
velocity) robots, closed-loop QP control scheme can be prone to
instability depending on how the gains related to the tasks or the
constraints are chosen. In this paper, we address such instability
shortcomings. First, we highlight the non-robustness of the
closed-loop system against non-modeled dynamics, such as those
relative to joint-dynamics, flexibilities, external perturbations, etc.
Then, we propose a robust QP control formulation based on
high-level integral feedback terms in the task-space including the
constraints. The proposed method is formally proved to ensure
closed-loop robust stability and is intended to be applied to
any kinematic-controlled robots under practical assumptions. We
assess our approach through experiments on a fixed-base robot
performing stable fast motions, and a floating-base humanoid
robot robustly reacting to perturbations to keep its balance.

Index Terms—Robust task-space control, Set robust stability,
Quadratic Programming control, Kinematic-controlled robots

I. INTRODUCTION

TASK-SPACE sensory control [1], [2] reached a high-level
of maturity thanks to advances in numerical optimization

methods. Non-linear task-space controllers can be formulated
as local quadratic program (in short, QP control); which can
handle several task-objectives and constraints using different
sensors (embedded or external) for single or multiple different
robots, see e.g., Fig. 1. QP controllers output desired joint
torque τd and/or desired robot-state acceleration α̇qd that
minimize at best (least-square sense) each task error, while
ensuring that the robot state is within a set C of predefined
constraints (also called safety constraints in control [3]).
More particular to this work, we are interested in kinematic
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Fig. 1. Multi-objective control: HRP-4 robot right hand reaching a Cartesian
target while being subject to several constraints.

constraints (e.g., motion bounds in the joint or the task
spaces, collision avoidance in the Cartesian space, field-of-
view bounds in the image space, etc.) [4]; the task error is
typically steered by a task-space PD controller [5].

QP control has been successfully applied to complex robots
and use-cases [6]–[14]. Yet, several research reported sporadic
unstable behaviors of relative severity (e.g., strong sustained
oscillations), see e.g., [15]–[18]. These works used torque-
controlled robots with software-implemented joint controllers
(with the desired joint position and/or velocity as control input;
see Fig. 2) that add a joint-feedback torque to increase the joint
stiffness at the expense of pure torque-control compliance [19].
In particular, [15] noticed that oscillations and undesired
behaviors are related to the double integration of the QP
output α̇qd . However, no further investigation was made to
elucidate the cause. Instead, only workaround solutions have
been proposed to mitigate the instability issue. These palliative
methods can be sorted into two categories: (i) low-level
joint approaches that prevent α̇qd double integration from
diverging; typically by implementing a leaky integrator [20];
and (ii) high-level approaches where the QP formulation is
substantially modified at the expense of a complex control-
architecture [15], or by accounting for the joint feedback
terms in the QP to adapt their gains [21] or for constraint
feasibility concerns [22]. Other approaches reported that low-

0000–0000/00$00.00 © 2023 IEEE
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Fig. 2. QP control for torque-controlled robot with additional joint feedback.
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Fig. 3. Illustrative scheme of a kinematic-controlled robot. The difference be-
tween kinematic- and torque-controlled robots lies in how the joint controllers
are implemented. In the former, they are strictly built-in by the manufacturer,
whereas they can be software implemented or already built-in and proposed
by the manufacturer as an additional joint-level control option.

ering the task gains helps mitigate the instability [16], [18].
This induces that task gains are also an interfering factor.
Similar observation is made in [5], [23], [24] concerning the
gains of the constraint formulation. Unfortunately, since the
joint controllers are software-implemented, their model and
parameters are known.

Conversely, stiff kinematic-controlled robots1 are torque-
controlled robots with high-gains hardware-implemented joint
controllers (Fig. 3). In this work, we are interested in high-
stiffness joint controllers with desired joint position q̂d or ve-
locity ˙̂qd as input. This control scheme is widely implemented
in robotics and automation industry as it does not require
knowledge of the robot’s dynamics [28]–[35].

The closed-loop task-space QP controller combined with
a kinematic-controlled robot, Fig. 4(a), is also prone to in-
stability. This is because the joint-level controllers are not
considered at the QP controller level. Such instability has
been unnoticed in some control implementations that operate
in feedforward (Fig. 4(b)). This leads to a decoupled control
(similar to the approach adopted in [15]), delegating the
control accuracy to the joint controllers [30], [36], [37]. Even
though the latter have generally high gains to keep the joint
tracking error as small as possible, the user has no guarantee
on the accuracy of the performed motion2. In such cases,
frequent initializations of the controller are needed (i.e., start
a new instance of the QP control with an update of the model
at task switching, or integrator memory reset), to lower the
discrepancy between real and control-model states due to non-
modeled flexibilities or external disturbances.

In this paper, we address the stability of closed-loop task-
space QP control (Section II) in the context of kinematic-
controlled robots. We show in Section III how the closed-
loop instability is interpreted in terms of non-robustness of

1In literature, they are referred to in different ways: position-controlled
robots, velocity-controlled robots, low-level impedance-controlled robots [25],
[26] and stiffness-controlled robots [27].

2https://youtu.be/gTVi1QsLQU4
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Fig. 4. Different closed-loop QP control schemes for kinematic-controlled
robots. The ‘Double integrator’ and ‘Robot’ blocks are detailed in Fig. 2
and Fig. 3, respectively. (a) Feedback QP. (b) Feedforward QP. (c) Proposed
robust QP. A detailed overview is shown in Fig. 5.

the QP feedback scheme (Fig. 4(a)) against non-modeled joint-
dynamics3, flexibilities, external disturbances, etc. We propose
a robust feedback QP control formulation (Fig. 4(c)) based on
high-level integral feedback terms that robustify the task-space
PD controller (task robust stability) and the constraint formu-
lation (set robust stability), see Fig. 5. We extend its imple-
mentation to weighted-prioritized multi-objective QP control
in Section IV. We assess our controller with experiments on
two robots: (i) a fixed-base robot Panda performing highly-
dynamic motion control, and (ii) floating-based humanoid
robot HRP-4 performing robust balance control under non-
modeled flexibilities and external disturbances (Section V).

The stability analysis, based on Lyapunov theory, focuses
on intrinsic closed-loop QP control (i.e., not considering other
sources or nature of instability such as singularities for which
we dedicated a specific analysis in [39] or discretization). Our
solution is elegant as it applies directly to the existing QP-
templated tasks. In contrast to [23] where the joint controllers
model is required, our approach is straightforwardly used
with any kinematic-controlled robot as it does not require
the exact knowledge of the joint-dynamics model which we
only assume to be Input-to-State-Stable (ISS). We also further
advanced [36] in two ways: (i) we account for the lack of
joint-dynamics in closed-loop; (ii) we include the constraints
in the stability analysis. Although we define the set robust
stability similarly to [40], our approach is different in three
main points: (i) the factors against which the robustness is
enforced, (ii) the formalism adopted to prove robustness, and
(iii) the nature of the term added to achieve robustness.

To sum-up, our contributions are as follows:

• Robust task formulation;
• Robust constraint formulation;

3The parameters of the joint-dynamics (joint controllers + actuators) are
generally not known as they depend on the joint controller gains (fixed by
the manufacturer not intended to be modified by the operator in almost all
robots [38]) and the actuators electro-mechanical constants.

https://youtu.be/gTVi1QsLQU4
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• Task stability investigations in the case of multi-objective
weighted-prioritized robust constrained QP;

• Integration into our existing framework and validation on
a robotic manipulator and a humanoid robot.

The notations and definitions used in this paper are described
in Appendix A.

II. TASK-SPACE QP CONTROL FORMULATION

A. Joint-Dynamics

Consider a robot with a floating or a fixed base having n ∈
N actuated Degrees-of-Freedom (DoF). Its state is defined by

qT =
[
ξT q̂T

]
∈ R7+n

αT
q =

[
vT ˙̂q

T
]
∈ R6+n

α̇T
q =

[
v̇T ¨̂q

T
]
∈ R6+n

. (1)

ξT =
[
pT qT

]
∈ R7 is the floating base position p ∈ R3

and orientation parameterized with unit quaternion q ∈ S3 (3-
sphere), q̂ ∈ Rn is the joint position. v ∈ R6 (resp. v̇ ∈ R6) is
the linear and angular floating-base velocities (resp. floating-
base accelerations), and ˙̂q ∈ Rn (resp. ¨̂q ∈ Rn) is the joint
velocity (resp. joint acceleration). qd, αqd and α̇qd denote the
desired q, αq and α̇q in (1), respectively.

The robot is governed by the equation of motion

M(q)α̇qd + h(q,αq)− JcTf = Sττ , (2)

where M(q)∈R(6+n)×(6+n) is the inertia matrix, h(q,αq)∈
R6+n gathers Coriolis-centrifugal and gravitational torques,
Jc ∈ R3×(6+n) is the contact Jacobian and f ∈ R3 is the
contact force. ST

τ =
[
0n×6 In

]
∈Rn×(6+n) is the actuation

selection matrix, and τ ∈ Rn is the joint torque such that

τmin ≤ τ ≤ τmax, (3)

where τmin, τmax∈Rn are the joint torque bounds. Constraints
(2) and (3) can be combined resulting in the torque-bounded
equations of motion

Sττmin ≤M(q)α̇qd + h(q,αq)− JcTf ≤ Sττmax. (4)

The contact force is constrained to its linearized friction cone

f =

nc∑
j=1

βjρj , βj ≥ 0, j = 1, . . . , nc, (5)

where ρj ∈ R3 is the jth vector of the linearized friction cone,
and nc > 2 being the total number of the linearized friction-
cones’ vectors, see [41].

Let x,xd ∈ R13+2n defined as

xT =
[
qT αT

q

]
, xT

d =
[
qTd αT

qd

]
, (6)

be the actual and desired robot states, respectively. In particu-
lar, xd follows a double integrator dynamics (in the continuous
time-domain)

αxd
=

[
αqd
α̇qd

]
=

[
0 I6+n

0 0

]
xd +

[
0

I6+n

]
α̇qd , (7)

with α̇qd ∈ U where U ⊆R6+n is the set of α̇qd admissible
values. The actual floating-base state xFBT

=
[
ξT vT

]
∈R13

is assumed to be bounded and estimated by an observer. In
particular, let us define the robot-state tracking error φ as

φ = x− xd,

def
=


ξ 	 ξd

q̂ − q̂d

v − vd

˙̂q − ˙̂qd

 ∈ R13+2n,
(8)

where ξ 	 ξd
def
=

[
p− pd

q⊗ q-1
d

]
∈ R7 encompasses the position

and orientation errors between ξ and ξd where ⊗ denotes the
quaternion product [42, Section 2.6].

Given a kinematic-controlled robot (Fig. 3), the actual robot
state is governed by the dynamics of its actuated joints. By
extracting the actuated joints parts from x and xd in (6), let
x̂d, x̂ ∈ R2n defined as

x̂T =
[
q̂T ˙̂q

T
]
, x̂T

d =
[
q̂Td

˙̂q
T

d

]
, (9)

be the actual and desired states of the robot actuated DoF.
Similarly, we define the joint-dynamics tracking error φ̂ as

φ̂ = x̂− x̂d ∈ R2n, (10)

and which dynamics4 is

˙̂
φ = fφ̂(φ̂, τl), (11)

where τl ∈ Rn is the bounded joint-space disturbance torque
input. In this study, we consider that fφ̂ is not known exactly
but its main property is given by the following assumption.

Assumption 1. The joint-dynamics fφ̂ in (11) is ISS w.r.t
τl. Namely, there exist a class KL function β and a class
K function γ, such that for any initial state φ̂(0) and any
bounded disturbance input τl(t), the solution φ̂(t) exists ∀t ≥
0 and satisfies [43], [44]∥∥φ̂(t)

∥∥ ≤ β (∥∥φ̂(0)
∥∥ , t)+ γ

(∥∥τl

∥∥
∞

)
(12)

The IS-Stability ensures that, given bounded disturbance
inputs τl, the joint-dynamics tracking error φ̂ in (10) evolves
in a bounded set containing the origin. Assumption 1 is
largely valid as it is among the main requirement for the well-
functioning of a kinematic-controlled robot. φ in (8) reflects
the effect of several kinds of disturbances and uncertainties.
Namely, non-modeled dynamics (e.g., transient joint-dynamics
response w.r.t x̂d, flexibilities, etc.); hardware imperfections
(e.g., joint-dynamics steady-state errors, etc.); external dis-
turbance τl 6= 0 (e.g., loads, pushes, unexpected impacts,
etc.); measurement and estimation noises (joint-velocity and
floating-base estimations, etc.); and possibly others5.

Remark 1. For a fixed-base robot, q = q̂ and αq = ˙̂q leading
to x = x̂ (respectively for the corresponding desired states),
and φ = φ̂.

4For the sake of generality, both q̂d or ˙̂qd (joint commands) are encom-
passed by x̂d in the joint-dynamics fφ̂ in (11).

5A benchmark problem has been proposed in [45] to simulate such
disturbances.
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Fig. 5. Overview of the proposed robust QP control scheme. The blue thick paths show the high-level integral feedback. Note that if Ki = 0 and Kh
i = 0,

correspond to the feedback control scheme in Fig. 4a.

B. Input-Output Task Dynamics

Let s : R7+n→Rm be the forward kinematics for a given
task defined by m coordinates, and sref(t), ṡref(t), s̈ref(t) ∈
Rm be the task references; we can define the following states

ηd(xd) =

[
ed
ėd

]
=

[
s(qd)− sref(t)
Jdαqd − ṡref(t)

]
∈ H ⊂ R2m, (13)

η(x) =

[
e
ė

]
=

[
s(q)− sref(t)
Jαq − ṡref(t)

]
∈ H ⊂ R2m, (14)

where Jd,J∈Rm×(6+n) are the task Jacobians computed w.r.t
qd and q, respectively; ηd(xd) and η(x) denote the desired
and actual task dynamics states, respectively; H is the set of
their admissible values.

Using Taylor expansion and (8), a relation between η and
ηd is obtained as

η(x) = η(xd + φ),

= η(x)
∣∣
x=xd

+ ∂η(x)
∂x

∣∣∣
x=x̌

φ︸ ︷︷ ︸
ηφ

, x̌= xd + θφ,

= ηd(xd) + ηφ,
∂η(x)

∂x
=

[
J 0

∂(Jαq)
q J

]
,

(15)

0 ≤ θ ≤ 1; ηφ ∈ Rm being the Lagrange remainder of the
Taylor expansion and denotes the mapping of φ in task-space.
Hereafter, the dependency of ηd on xd and η on x is dropped.

Remark 2. In the multiplication ∂η(x)
∂x

∣∣∣
x=x̌

φ, only the vector

part of q⊗ q-1
d

is considered in φ (8).

Given that ed in (13) has a relative degree of 2

ëd = J̇dαqd + Jdα̇qd − s̈ref(t), (16)

then, the input-output task dynamics is obtained such that

η̇d = Aηd
ηd + Bηd

µ, (17)

Aηd
=

[
0 Im
0 0

]
,Bηd

=

[
0
Im

]
, (18)

µ = J̇dαqd + Jdα̇qd − s̈ref(t). (19)

µ ∈ Rm is the task-space control input affine in α̇qd (19).
The control objective consists in formulating a task-space
controller µ that steers η to the origin.

C. Constraint Formulation with Barrier Functions
The general form of a constraint is expressed as

dist(x) ≥ distmin, (20)

where dist(x) ∈ R is a distance obtained by forward kine-
matics and defined in the space of interest, see Fig. 1, and
distmin ∈ R is the threshold. Let us consider the set C ={
x ∈ R13+2n : (20)

}
. The fulfillment of the constraint (20)

forward in time can be checked by verifying the forward
invariance of C [46] (see Appendix A). Barrier functions
are a suitable tool for this purpose. In fact, considering the
barrier function h(x) = dist(x) − distmin ≥ 0, C is forward
invariant if h(x) satisfies Lyapunov-like conditions (see [3,
Definition 3]) based on the system’s dynamics. Rather than
verifying the fulfillment of (20), one may be interested in
finding the control input α̇qd that enforces (20) forward in
time. Exponential Control Barrier Function (ECBF) allows to
formulate a constraint on the control input that enforces the
asymptotic stability of C and thereby its forward invariance.
This constraint can be then accounted for in QP6For an exten-
sive survey about barrier functions7, see [48]. In Section IV-B,

6Conversely to h(x) ≥ 0 which does not depend on the decision variables.
7In the literature, there are reciprocal and zeroing barrier functions. They

are equivalent to characterize forward invariance [3]. Albeit, zeroing barrier
functions are convenient for robustness study [47].
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we introduce the set robust stability, then we propose a robust
formulation of ECBF that enforces this notion. First, we
present in this section the basics of ECBF formulation to
follow the same notations afterward.

1) Exponential Control Barrier Function: Let us define the
sets C, Cd ⊂ R13+2n as

C =
{
x ∈ R13+2n : h(x) ≥ 0

}
, (21)

Cd =
{
xd ∈ R13+2n : h(xd) ≥ 0

}
. (22)

Let us define the following states

ηhd(xd) =

[
hd

ḣd

]
=

[
hd

Jhdαqd

]
∈ bH ⊂ R2, (23)

ηh(x) =

[
h

ḣ

]
=

[
h

Jhαq

]
∈ bH ⊂ R2, (24)

where Jhd,J
h ∈ R1×(6+n) are the barrier function Jacobians

computed w.r.t qd and q, respectively; ηhd(xd) and ηh(x)
denote the desired and actual constraint dynamics states,
respectively; bH is the set of their admissible values.

As in (15), we have the following

ηh(x) = ηhd(xd) + ηhφ, η
h
φ = ∂ηh(x)

∂x

∣∣∣
x=x̌

φ

∂ηh(x)

∂x
=

[
Jh 0

∂(Jhαq)
q Jh

]
, (25)

where ηhφ is the mapping of φ in the constraint-space. As

in (15), Remark 2 is considered for ∂ηh(x)
∂x

∣∣∣
x=x̌

φ in (25).
Similarly to (16), hd has a relative-degree of 2

ḧd = J̇hdαqd + Jhdα̇qd . (26)

Then as in (17), from (26) we get

η̇hd = Aηh
d
ηhd + Bηh

d
µh, (27)

hd = Cηh
d
ηhd , (28)

Aηh
d

=

[
0 1
0 0

]
,Bηh

d
=

[
0
1

]
,Cηh

d
=
[
1 0

]
, (29)

µh = J̇hdαqd + Jhdα̇qd . (30)

Let µh = −Khηhd ∈ R with Kh =
[
Kh

s Kh
d

]
∈ R1×2.

From (27) and (28), hd(t) = Cηh
d

exp
(
Fηh

d
t
)
ηhd(t0) with

Fηh
d

=Aηh
d
−Bηh

d
Kh. Hence, if

µh ≥ −Khηhd
(30)⇐⇒ J̇hdαqd + Jhdα̇qd ≥ −Khηhd , (31)

then following the Comparison Lemma [49, Lemma 3.4],
hd(t)≥Cηh

d
exp

(
Fηh

d
t
)
ηhd(t0). If there exists a gain matrix

Kh such that hd(t)≥Cηh
d

exp
(
Fηh

d
t
)
ηhd (t0)≥ 0 whenever

hd (t0) ≥ 0, then hd is an ECBF, and Cd is made forward
invariant (also said ‘safe’) (see [48, Definition 7]). The gain
matrix Kh needs to satisfy two specifications: (i) Fηh

d
eigen-

values must be real-negative, and (ii) hd (t) ≥ 0, ∀t ≥ t0,
∀xd(t0) ∈ Cd [5], [50]. Note that ECBF formulation (31) cor-
responds to the feedforward closed-loop QP control scheme in
Fig. 4(b) where the non-modeled dynamics are not accounted
for, and thereby (31) is called forward ECBF formulation.

q̂d

τl b5

b1 + b2s
b3

s(b4+s)
+ q̂+

−

Fig. 6. 1-DoF joint-dynamics block scheme from which the system (35) is
derived. It is DC motor servoed in position by a PD joint controller. The
parameters ai=1,...,5 in Table I are as follows: a1 = −b1b3, a2 = −b2b3−
b4, a3 = −a1, a4 = b2b3, a5 = b3b5. The latter show the coupling between
the PD gains (b1 and b2) of the joint controller and the electro-mechanical
constants (b3, b4 and b5) of the DC motor. The systems 1 and 2 in Table I
have the same electro-mechanical constants but different PD gains.

Unfortunately, it does not imply forward invariance of the set
Cd when the feedback closed-loop QP control scheme Fig. 4(a)
is adopted as it will be shown in Section III-B. Hence, the goal
is to formulate µh such that Cd is made robustly stable.

D. Combining Tasks and Constraints via QP

Since (19) and (30) are affine in α̇qd , the task and set C
stabilization can be formulated and combined by the following
weight-prioritized QP (highlighted terms are changed later)[

α̇∗qd ,f
∗]= arg min

w0

2

∥∥Sα̇qd +κ(x̂)
∥∥2

+

w

2

∥∥∥Jdα̇qd +J̇dαqd−s̈ref(t)−µ
∥∥∥2 (32a)

s.t. (4), (5) (32b)

− Jhdα̇qd ≤ J̇hdαqd −µh (32c)

Jc
dα̇qd = −J̇c

dαqd − kJc
dαqd (32d)

where w and w0 are positive weighting scalars such that
w ≥ 0 and w0 > 0 [36, Lemma 2]. The first term in (32a)
is a secondary task that solves the remaining redundancy
where S = [0n×6 In]8 is a selection matrix and κ(x̂) is
a given joint-space feedback. Constraint (32d) stands for the
no-slipping contacts (e.g., at the feet) to have, along with (5),
feasible and dynamically-consistent floating-base solutions v̇d

where Jc
d is the contact Jacobian, and k > 0.

III. INSTABILITY OF FEEDBACK QP CONTROL SCHEME

Now, we show that formulating QP (32) according to the
closed-loop control scheme in Fig. 4(a) may lead to instability.

A. Task Feedback Formulation

Let us formulate µ as an output feedback control

µ = −Kη, K =
[
Ks Kd

]
∈ Rm×2m,

(15)⇒ µ = −Kηd −Kηφ.
(33)

By replacing (33) in (17), we get

η̇d = Fηd
ηd −Bηd

Kηφ, Fηd
= Aηd

−Bηd
K, (34)

where K is chosen such that Fηd
is Hurwitz, and Kηφ ∈ Rm

is a perturbation term showing the coupling between the task
gains and the effect of all the non-modeled dynamics ηφ. By
the virtue of Lyapunov’s indirect method [49, Theorem 4.7],

8For a fixed-base robot, S = In.
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TABLE I
PARAMETERS USED FOR SYSTEM (35) NUMERICAL SIMULATIONS.

System 1 System 2 Units
a1 −376.5977 −2380.6356 s-2

a2 −158.5073 −173.5712 s-1

a3 376.5977 2380.6356 s-2

a4 2.8245 17.8884 s-1

a5 4.7034 4.7034 rad / N.m.s2
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Fig. 7. Non-robustness of output feedback control (33) in system (35) with
K = K1 (left) and K = K2 (right). Increasing the task gains with the same
system parameters leads the closed-loop system to instability.

ηd is only locally stable for sufficiently bounded Kηφ. Oth-
erwise, the closed-loop stability is not guaranteed.

To exemplify this claim, let us consider a 1-DoF system in
Fig. 6 (n = 1, α̇qd = ¨̂qd) governed by the following dynamics

˙̂x=

[
0 1
a1 a2

]
x̂+

[
0 0
a3 a4

]
x̂d +

[
0
a5

]
τl, x̂=

[
q̂
˙̂q

]
∈R2, (35)

where ai={1,...,5} ∈ R denote the system parameters. The
control objective is to drive the motor position q̂ to reach a
reference position q̂ref = 1 rad with no external disturbance
(τl = 0). Eqs. (13) and (14) become (s(q) = q̂)

η(x̂) =

[
q̂ − q̂ref

˙̂q

]
, ηd(x̂d) =

[
q̂d − q̂ref

˙̂qd

]
, µ = ¨̂qd ∈ R.

ai are taken according to System 1 in Table I. Output feedback
control (33) is performed (implemented on system (17)) with
two sets of gains: K1 =

[
10 2

√
10
]

and K2 =
[
30 2

√
30
]
.

Figure 7 shows that simply increasing the task gains leads
to instability of the closed-loop system. In Section IV-A, we
propose a task feedback to ensure global robust stability.

B. Feedback ECBF Formulation

Let us consider the feedback QP control scheme in Fig. 4(a),
ECBF constraint (31) becomes

µh ≥ −Khηh,
(25)⇐⇒ µh ≥ −Khηhd −Khηhφ.

(36)

As in Section III-A, feedback ECBF formulation (36) may not
ensure the stability of sets Cd and C if the term Khηhφ is not
sufficiently bounded; which shows the coupling between the
ECBF gains and the disturbance ηhφ. In Fig. 8 we compare
feedforward and feedback ECBF formulations where h = 3−
q̂, hd = 3− q̂d and a steady-state error φ̂ 6= 0 is simulated by
applying a constant disturbance τl = 5 N.m. ai parameters are
taken according to System 2 in Table I and Kh is computed
as in [5]. The task is formulated as in Section III-A except

Fig. 8. ECBF formulation performed on system (35) in feedforward (31)
(left) and feedback (36) (right) QP control schemes.

q̂ref = 5 rad. Feedforward ECBF (31) does not account for
the disturbance which leads to a constraint violation. On the
other hand, feedback ECBF (36) is not robust to non-modeled
joint-dynamics resulting in sustained oscillations around the
set boundary q̂max = 3 rad. In Section IV-B, we propose a
new formulation of µh to guarantee robust stability of Cd.

IV. ROBUST FEEDBACK QP CONTROL FORMULATION

The proposed robust design of the QP controller consists of
the following steps. The main result is given by Theorems 1
and 2 that show how µ and µh are formulated including
integral feedback terms to ensure ηd and ηhd convergence to
their respective residual sets, and thereby their boundedness.
Then, Proposition 1 makes the bridge between the desired task-
space state ηd and the corresponding desired robot state xd by
showing that if the former is bounded so is the latter. Finally,
based on Assumption 1 and Proposition 1, Proposition 2
establishes the boundedness relationship between ηd and η.

Proposition 1. If ηd (resp. ηhd ) is bounded, so is xd.

Proof. See Appendix B.

Proposition 2. If ηd (resp. ηhd ) is (uniformly) ultimately
bounded then η (resp. ηh) is (uniformly) ultimately bounded.

Proof. See Appendix C.

Let us introduce the following states

ψ =
[
eT ėT ėTd

]T
, ψ ∈ Ψ ⊂ R3m,

ψh =
[
hT ḣT ḣTd

]T
, ψh ∈ Ψh ⊂ R3,

where Ψ and Ψh are the admissible values of ψ and ψh,
respectively; they are used for µ and µh formulations, resp.

A. Global Robust Stable Task Formulation

When the solutions of (17) converge to a residual set
Ω ⊂ H with 0 ∈ Ω for all initial conditions and admissible
perturbations, ηd is said to be Robustly Globally Uniformly
Asymptotically Stable w.r.t Ω (RGUAS-Ω). The robust stabi-
lization problem consists in finding µ such that ηd is RGUAS-
Ω. If Ω can be made arbitrarily small (but still not equal to
the origin), ηd is said to be robustly practically stable (see
Definition in Appendix A). An illustrative scheme of RGUA-
Stability is shown in Fig. 9. In the following, we state the
main result of this subsection.
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Fig. 9. RGUAS-Ω illustrative scheme. Two state trajectories are shown: the
red one starts (squares) outside the residual set Ω then it converges to Ω over
time, whereas the yellow one starts inside Ω and remains within it.

Theorem 1. Let us assume that ηφ is bounded. If

µ = −Lψ, L=
[
Ks Kd Ki

]
∈ Rm×3m, (37)

where Ks,Ki∈Rm×m are diagonal positive-definite matrices,
and Kd chosen such that F̌ηd

=Aηd
−Bηd

Ǩ is Hurwitz, with
Ǩ = [Ks Kd + Ki], then there exists Ki such that ηd is
robustly practically stable.

Proof. See Appendix D.

From Proposition 2 and Theorem 1, η is uniformly ul-
timately bounded with ultimate bound %̃. Comparatively to
(33), (37) penalizes the integral term ėd(t) =

∫ t
0
µ(s)ds

growth ensuring the desired task state ηd is bounded despite
the presence of disturbances and non-modeled dynamics ηφ.
This is the key feature for robust stability. The ‘global’
property comes from the fact that stability is ensured for every
bounded Kηφ whereas in (34) it is required to be ‘sufficiently’
bounded. Also, the ‘practical’ aspect denotes the ability of
the integral gain (that can be tuned independently from the
stiffness and damping) to reduce the effect of the perturbation
as shown in (67) making the residual set Ωηd

arbitrarily small.
Nevertheless, (67) does only prove the existence of a set of
integral gains Ki enforcing robust stability without providing
a constructive method to compute them. In practice, we do not
know the task stiffness that will turn the closed-loop system
instable as it depends on the executed task and the robot
non-modeled joint-dynamics. Hence, the necessary amount of
integral gain for robust stability is not known a priori.

To show the effect of the integral gains on the closed-loop
system dynamics, let us take the system in Section III-A with
the instable configuration (see Fig. 7) and add the integral
feedback term. Figure 10(a) shows that low integral gain
values do not achieve robust stability since the condition (67)
is not satisfied. If the integral gain is increased, robust stability
is recovered, as shown in Fig. 10(b), but oscillations still
exist at the reference target q̂ref . These oscillations can be
damped by increasing the integral gain to smoothly reach q̂ref

while counterbalancing the external perturbation (Fig. 10(c)).

Figure 10(d) shows that further increasing the integral gain
overdamps the system response. The convergence smoothness
is preserved at the expense of a higher settling time.

Another interesting aspect is that F̌ηd
being Hurwitz implies

that Kd can be chosen negative-definite as long as Kd +Ki is
positive-definite. Indeed, let us assume Kd<0 and Ki =ε|Kd|
(element-wise) with ε=1+ε0, ε0 > 0 yielding to

µ = −Kse−Kdė−Kiėd,

= −Kse− ε0|Kd|ėd − |Kd|(ėd − ė),
(38)

ε0 is tuned to meet robustness condition (67). Eq. (38) shows
that ėd is enforced to converge to zero while drifting toward
ė due to (ėd − ė) feedback term. This is similar to the
leaky-integrator proposed in [20] when (38) is performed in
joint-space (i.e., posture task). Our claim is that performing
a task-space integral feedback is more intuitive and enables
a better understanding of the underlying conditions on task
gains tuning while not affecting the QP solution optimality9.
It also enables robust stability of each task in multi-objective
control case, see Section IV-C (Proposition 3).

The term (ėd − ė) in (38) induces compliance w.r.t robot
response in terms of velocity. Figure 11 shows this behavior.
When the external disturbance is applied, the desired task
velocity ˙̂qd immediately converges to zero in Fig. 11(a).
Conversely, ˙̂qd drifts first toward ˙̂q (since the amplitude of
( ˙̂qd − ˙̂q) is predominant) then converges back to zero in
Fig. 11(b). In terms of position, the desired task position
q̂d slightly drifts toward q̂ then counterbalances the external
disturbance. This feature is exploited in Section V-B.

Note that by setting Ki = 0, the output feedback (33) is
recovered. Namely, the proposed approach does not constitute
a substantial modification of the QP controller.

In the next subsection, we take inspiration from (37) to for-
mulate Robust ECBF (RECBF) to enforce set robust stability.

B. Set Robust Stability Formulation

Let us define the sets Cσ, Cdσ ⊂ R13+2n with σ ≥ 0

Cσ =
{
x ∈ R13+2n : h+ σ ≥ 0

}
, (39)

Cdσ =
{
xd ∈ R13+2n : hd + σ ≥ 0

}
. (40)

Before introducing the main result of this subsection, we
define set robust stability and RECBF. The former is illustrated
in Fig. 12.

Definition 1. A closed set S ⊂ R13+2n is said to be robustly
stable for a forward complete system (7) if ∃ σ ≥ 0, a closed
and forward invariant set Sσ ⊂ R13+2n, and an open R ⊆
R13+2n with S⊆Sσ⊂R such that Sσ is asymptotically stable.

Let us now define RECBF to enforce set robust stability.

Definition 2. Given a set Cd ⊂ R13+2n defined as the
superlevel set of a 2-times continuously differentiable function

9In [20], feedback term related to (ėd − ė) is added to α̇qd post QP
computation, and thereby it may not be feasible. Moreover, only experimental
observations have been reported about the effect of the joint-space leaky
integrator gain without any explicit condition on its values.
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(a) ε = 0.01 (b) ε = 0.1

(c) ε = 1 (d) ε = 2

Fig. 10. System (35) response, with ai of System 1 in Table I and τl = 5 N.m,
under heterogeneous feedback (37). The integral gain Ki = εKd. This choice
follows the fact that both Ki and Kd act on velocity terms.

(a) (b)

Fig. 11. System (35) response, with ai of System 1 in Table I, τl = 5 N.m
is applied at t = 10 s, under heterogeneous feedback (37). (a) µ = ¨̂qd =
−Ksq̂ − Kd

˙̂q − Ki
˙̂qd, Ks = 30, Kd = 2

√
Ks, Ki = Kd. (b) µ =

¨̂qd = −Ksq̂ −Ki
˙̂qd − |Kd|

(
˙̂qd − ˙̂q

)
, Ks = 30, Kd = −1.8

√
Ks, Ki =

3.2
√
Ks.

hd : R13+2n → R, then hd is a RECBF if there exists µh ∈ R
such that for (7),

sup
α̇qd∈U

[
J̇hdαqd + Jhdα̇qd + µh

]
≥ 0, (41)

results in Cd is robustly stable.

Inspiring from Theorem 1, Theorem 2 proposes a formula-
tion for µh that guarantees the robust stability of Cd.

Fig. 12. The sets S, Sσ and R. R is open, Sσ is asymptotically stable and
forward invariant, and S is robustly stable. If σ = 0, S and Sσ coincide.
The colored trajectories denote three possible cases depending on the initial
condition: in R (red), in Sσ (yellow), and in S (blue): the red one converges
to Sσ and remains inside because of the set asymptotic stability; the yellow
one cannot go out of Sσ because it is forward invariant; finally the blue one
can slightly go out of S but remains inside Sσ (robust stability).

(a) ε = 0.02 (b) ε = 0.2

(c) ε = 2 (d) ε = 5

Fig. 13. System (35) response with ai parameters of System 2 in Table I
with τl = 5 N.m, under RECBF (42) with Kh

i = εKh
d .

Theorem 2. Let us assume ηhφ bounded. If

µh ≥ −Lhψh, Lh =
[
Kh

s Kh
d Kh

i

]
, (42)

where Kh
i > 0 and Ǩh =

[
Kh

s Kh
d +Kh

i

]
∈ R1×2 is

chosen according to ECBF definition in Section II-C1, then
there exists Kh

i such that hd in (28) is a RECBF, and the set
Cd is robustly stable.

Proof. See Appendix E.

By virtue of Proposition 2 and following from Theorem 2,
ηh is uniformly ultimately bounded with ultimate bound σ̃ and
thereby it converges to asymptotically stable set Cσ defined
as (39). Hence, the set C is rendered robustly stable as well.

Remark 3. Conceptually, Theorem 2 proposes the same so-
lution as Theorem 1 and that is why the robustness conditions
(67) and (76) are similar. This is because Theorem 2 does
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Fig. 14. Two superposed snapshots showing Panda end-effector converging
to the two defined set-point pose targets.

only perceive the ‘origin’ slightly different from Theorem 1:
the former considers it as a ‘set’ whereas the latter perceives
it as a ‘point’. This fact can also be seen from Figs. 9 and 12:
shrinking the set S to the origin in the latter directly brings
us to the former. Hence, the task gains properties discussed
for (37) apply as well to the RECBF constraint gains in (42).

As in Fig. 10, Fig. 13 shows the conservativeness of tuning
the RECBF integral gain Kh

i , where the same scenario in
Section III-B is performed. Low Kh

i values do not ensure
robust stability. Increasing Kh

i leads to meet the robustness
condition (76), and thereby damp the oscillations at the
set boundary. Further increasing Kh

i helps to remove the
oscillations but at the expense of slower convergence to
the boundary. The latter requires high deceleration amount
especially that RECBF constraint (42) is only inserted in QP
at the neighborhood of C boundary10.

C. Weight-Prioritized Multi-Objective Robust QP Formulation

By replacing (37) and (42) in (32a) and (32c), respectively,
the weight-prioritized multi-objective robust QP writes as[

α̇∗qd ,f
∗]= arg min

w0

2

∥∥Sα̇qd +κ(x̂)
∥∥2

+

1

2

∑
j=1

wj

∥∥∥Jjdα̇qd +J̇jdαqd−s̈
j
ref(t)+ Ljψj

∥∥∥2

(43a)
s.t. (4), (5) (43b)

− Jhdα̇qd≤ J̇hdαqd + Lhψh (43c)

Jc
dα̇qd = −J̇c

dαqd − kJc
dαqd (43d)

with j indexing the task sj . From the structural standpoint, the
proposed robust QP (43) is similar to the classical weighted-
prioritized templated QP (32). Our contribution is in modifying

10The number of rows of the constraint matrix is increased in consequence.
This is very usual/common in our controller which is based on a Finite State
Machine (FSM) which role is to elect the tasks and constraints depending on
the current goals.

the task and constraint formulations based on the sum of
stiffness and damping terms (computed based on the robot
measurements) to include feedback integral terms (computed
based on the desired robot state). Our robust formulation does
not call for a substantial modification in the QP formulation
as in [15], nor for much additional computation as the integral
terms are obtained by forward velocity, see Fig. 5.

Relatively to (32a), (43a) shows that the robust task formu-
lation (37) is straightforwardly extended to the multi-task case
where the integral term corresponding to each task sj is added.
Due to the subsequent conflicts that may arise between the
different tasks, sj is likely to be achieved partially according
to its associated weight wj ≥ 0 and the potential active
constraints11 in QP (43). This implicit relaxation writes

µj = −Ljψj + δj(t), (44)

with δj(t) ∈ Rm assumed bounded
∥∥δj(t)∥∥≤ δjmax, ∀t≥ 0.

Proposition 3 generalizes Theorem 1 to the multi-task case.

Proposition 3. Consider (44) such that Theorem 1 conditions
hold. Then, there exists Kj

i ∈ Rm×m positive-definite such
that ηjd is practically robustly stable.

Proof. See Appendix F.

Note that thanks to Propositions 1 and 3 and Theorem 2, xd

is bounded after double integration of α̇qd solution of (43).

Remark 4. In (43), only one RECBF constraint is considered.
In the more general case, the QP constraints set encompasses:
(i) several RECBFs (joint constraints, collision avoidance,
CoM equilibrium region, etc.), and (ii) explicit bounds on
¨̂qd. Therefore, we highlight two important aspects: First,
Theorem 2 assumes that U = R6+n which may not hold.
Second, since all the constraints have the same level of
priority, the QP will be infeasible if these constraints are
in conflict (incompatible, i.e., empty feasibility domain) [51]–
[53].

V. EXPERIMENTAL RESULTS AND DISCUSSION

To assess our robust QP controller and demonstrate its
applicability to different use-cases, experiments are conducted
with two different robots: a fixed-base 7-DoF robotic arm
Panda from Franka Emika, and a (floating-base) 34-DoF
humanoid robot HRP-4 from Kawada Robotics. The latter is
controlled in position at a frequency of 200 Hz, whereas the
former can be controlled either in position or in velocity modes
at a control frequency of 1 kHz.

Both robots are controlled using the open source code
implementation of the QP controller mc_rtc12 with LSSOL
solver. It includes a user task specification interface, debug-
ging, data recording... for simulation as well as for real-
time control. Based on the embedded sensors data (encoders,
IMU, Force/Torque (F/T) sensors...), mc_rtc builds at each
control-cycle the QP problem, based on user-defined tasks and
constraints, and solves it. The QP decision variables are α̇qd
and the contact forces f .

11An inequality constraint is active if it is enforced as equality.
12https://jrl-umi3218.github.io/mc rtc/index.html

https://jrl-umi3218.github.io/mc_rtc/index.html
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As it is shown in (7) and Fig. 5, α̇qd is integrated twice to
obtain xd, then the joint commands x̂d are sent to the actuated
joint controllers. ˙̂q is estimated using numerical derivation for
HRP-4, whereas it is readily available in the Franka Control
Interface (FCI) for Panda13. The floating-base state xFB of
HRP-4 is estimated by a built-in kinematic-inertial observer
based on an extended filter. The control is performed using
a laptop Dell Precision 5540 with Intel Xeon(R) E-2276M
processor (CPU 12× 2.80 GHz) and 32 GB of RAM running
under Linux Ubuntu 18.04.5 LTS.

A. Task Robust Stability

Tasks gains correlate to accuracy (performing motions with
high precision) and execution speed (controlling the overall
task time). Consequently, performing fast and precise motion
requires increasing the task gains which leads to instability. In
this context, the Panda end-effector is controlled to perform a
pick-and-place-like motion. Two set-point targets (position and
orientation) are defined (to which the end-effector converges
back and forth); ˙̂qd is the input command for the joint
controllers. To have simple plots, only the target coordinate
along the Y -axis varies with an amplitude of ±20 cm (Fig. 14).

QP (43) is formulated (the notations in Remark 1 are
followed). such that the constraint set contains the kine-
matic constraints (joint-position and velocity constraints [5]);
whereas, for comparison purpose, the task is formulated using:
(i) output feedback (33), (ii) heterogeneous feedback (37). The
task gains are set as Kd = 2

√
Ks and Ki = εKd with ε= 0

for (33) and ε=1 for (37). Since we do not know a priori the
task stiffness that will turn the closed-loop system instable,
Ks is initially set to 400I, then it is increased over time by
increments of 50I (Kd and Ki are updated accordingly).

Figure 15 shows the experiment results. For Ks≤450I, both
feedback controls (33) and (37) lead to stable convergence to
the targets. However, for Ks = 500I, the closed-loop system
with output feedback (33) becomes instable (Fig. 15(a)) where
strong oscillations and jerky motion appear at the end-effector
mostly visible along the Z-axis (Fig. 17). This chattering can
be very dangerous for the robot (accelerating drastically the
wear of actuators and robot’s structure) and the surrounding
people or objects in the robot’s neighborhood. Conversely,
heterogeneous feedback (37) allows reaching robustly the
targets while Ks keeps increasing up to 850I (Fig. 15(b)).

Increasing the task gains results in high values of desired
joint acceleration ¨̂qd (Fig. 15(c)–(d)) which generates desired
joint commands ˙̂qd with fast variations that can not be well
tracked by the joint controllers (Fig. 16(a)–(b)) due to the
different rate limitations (acceleration, jerk) and the limited
bandwidth. This leads to increase the joint tracking error φ
in (8), and correspondingly its task-space mapping ηφ in (15).
Consequently, if the perturbation term Kηφ is not sufficiently
bounded, the closed-loop system under output feedback (19)
is instable. In particular, adding the task-space integral term
in (37) allows to withstand the perturbation by the gain Ki as
shown in (67) enforcing ηd to remain bounded which leads to
the boundedness of x̂d (by virtue of Proposition 1).

13The FCI joint-velocity estimation is a low-pass filtered finite-difference.

In Fig. 15(b)–(d), we decided to stop at stiffness Ks = 850I
as, due to hardware limits, further increasing the task gains
has no effect on the convergence performance (Fig. 16(b)).
Although the joint controllers reached their maximum tracking
performances, our approach enables a stable motion even
though the task gains keep increasing and imposing desired
dynamics that cannot be performed by the robot. Hence, the
closed-loop stability has to be ensured whatever the task gains
and the joint-dynamics. Yet, ensuring the stability goes at the
expanse of Ki conservative tuning.

B. Set Robust Stability

Among usual safety constraints common to all robots such
as joint limits and self-collisions avoidance that are imple-
mented here as extension of [5], a critical safety feature
in humanoids is enforcing balance, which is given a higher
priority over manipulation tasks. When there are no contact
transitions, constraining the CoM position from acceleration
bounds enforces robust balance [54]. For co-planar feet con-
tact, it is enough to confine the CoM of the HRP-4 humanoid
robot to remain inside a conservative polygon (Fig. 18) such
that its boundaries are reached with zero CoM velocity and
acceleration. It is a conservative balance region because it
is a subset of 3D balance set (polyhedron in multi-contact
or prism in co-planar) that we use mainly for validation
purpose. The robot CoM is pushed to the polygon boundaries
by defining a sequence of Cartesian targets for the right
hand to be reached. Rubber bushes and dampers are present
under the robot ankles to absorb impacts at the feet while
walking (Fig. 19). This shock-absorbing mechanism creates
non-modeled underdamped flexibilities between the ankles and
the feet. The latter are often observed in the form of small
passive oscillations at the ankles which amplify through the
whole structure. Their effect is not observed at the joints’
encoders, but at the floating base state estimation (based on
IMU measurements). Nevertheless, the joint feedback is used
(along with the floating base state) to compute CoM Cartesian
position and linear velocity. Moreover, the floating-base IMU
noise affects the CoM estimation (denoted CoM(x) ∈ R3).

The robot CoM is constrained to be within the balance
polygon by defining inequality constraints on the distance
between the CoM and the polygon features. The 3D case
would simply result in more inequalities constraining the CoM
within a precomputed polyhedron [54]. The barrier functions
hi and hid corresponding to each balance polygon feature i are

hi = ni
T

CoM(x) + ∆i, (45)

hid = ni
T

CoM(xd) + ∆i, (46)

where ni ∈ R3 is the ith feature’s normal vector and ∆i ∈ R
is the distance at which the feature is placed w.r.t the origin
along ni. From (45)–(46), the sets Ci and Cid are defined as
in (21) and (22), respectively. QP (43) is formulated to steer the
right hand to its targets while the constraints set contains the
contact forces constraint (5) and non-slipping contacts (43d).
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Fig. 15. Panda response for the ‘pick-and-place’ task under different feedback controls. End-effector Cartesian coordinates and ¨̂qd evolution under: output
feedback (33) (a)–(c), heterogeneous feedback (37) (b)–(d). The horizontal scales under (a) and (b) denote the stiffness gain Ks within different time periods.

RECBF constraint (42) is then inserted if hi ≤ 4 cm14. If
QP is feasible then the CoM deceleration generated by (42)
is achieved relying on feasible contact forces and consistent
floating-base solution v̇d. In this experiment, q̂d is the input
command for the joint controllers.

For comparison purpose, three identical experimental sce-
narios have been conducted using the different closed-loop QP
control schemes shown in Fig. 4:
• Experiment 1: feedforward ECBF constraint (31);
• Experiment 2: feedback ECBF constraint (36);

14The value of this threshold is conservative (user choice), but it can be
decided by a high-level task scheduler or a task planner. In this experiment,
we chose this value to confine the region within which the CoM acceleration
is unconstrained. This helps to keep the CoM acceleration at low values.

• Experiment 3: RECBF constraint (42).

The results are shown in Fig. 20. In the three experiments,
Kh

s is computed as shown in [5] (Theorem 2). For Experi-
ments 1 and 2, Kh

d = 2.4
√
Kh

s .

1) Experiment 1: see Fig. 20(a); the actual robot state x is
not fed back to QP. We can see that CoM(xd) is within the
limits and the set Cd (22) is made forward invariant. However,
since the robot is accounted for in the closed-loop system,
forward invariance is not ensured for the set C (21). The
mismatch between CoM(xd) and CoM(x) leads the latter
to overshoot Xmax limit with an amount of 2 cm, then to
completely drift away from the polygon boundary at t = 50 s
leading the robot to lose balance.
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(a) (b)

Fig. 16. Joint velocity tracking of the 2nd joint. (a) Closed-loop system under
output feedback (33) at stiffness Ks = 500I leads to instability shown as fast
oscillation of ˙̂qd tracked by ˙̂q. (b) Closed-loop system under heterogeneous
feedback (37) at stiffness Ks = 800I where ˙̂qd is kept bounded even though
it is not well tracked by ˙̂q, leading to a stable response.

Fig. 17. Strong oscillations (highlighted in the yellow spot in Fig. 15(a))
due to non-robustness of output feedback control (33). The two superposed
snapshots are taken with a time interval of T = 133 ms.

2) Experiment 2: see Fig. 20(b); the robot state is con-
sidered in closed-loop, but the ECBF formulation leads to
instability. The bold dashed line shows the moment when
ECBF constraint relative to Xmax limit is inserted. Instan-
taneously, CoM(xd) velocity along X-axis starts to decrease
(brown dash-dotted line). Nevertheless, CoM(x) velocity does
not decrease immediately causing CoM(x) to keep moving
toward Xmax boundary. This lag is due to the underdamped
flexibilities dynamics. In fact, the ECBF produced deceleration
is mapped mainly by QP to the ankles joints through (30)
as a little motion at these joints leads to a larger motion of
the robot whole-body. However, the flexibilities underdamped
dynamics leads CoM(x) to overshoot CoM(xd) and thereby
the error ηhφ in (25) increases: at t = 13 s, CoM(xd)
velocity is zero whereas CoM(x) is heading toward Xmax

boundary with a velocity of 0.10 m/s. Then at t = 13.3 s,
CoM(x) velocity reaches zero while CoM(xd) is close to
Xmin boundary with a velocity of −0.16 m/s. When CoM(x)

Fig. 18. Top-view of the humanoid robot HRP-4. The conservative equi-
librium polygon is shown in red, the CoM in a yellow dot and the edges
normal vectors in orange. The polygon is a rectangle in XY plane such that
Xmax = 5 cm, Xmin = −2 cm, Ymax = 5 cm, Ymin = −5 cm.

Fig. 19. Rubber bushes (yellow) and dampers (orange) under HRP-4 ankles
that induce non-modeled flexibilities.

starts moving backward, its velocity increases highly leading
to insert the ECBF constraint (relative to Xmin boundary)
with CoM(x) velocity reaching −0.22 m/s. At this point, the
needed deceleration to stop CoM(x) at Xmin boundary is high
enough so that the QP fails to find corresponding feasible
contact forces fulfilling (5), and the feet tip over.

3) Experiment 3: see Fig. 20(c); the constraint integral
gain Kh

i = 8.4
√
Kh

s and Kh
d = −1.2

√
Kh

s < 0. Note that
Theorem 2 requirements are satisfied since Kh

d +Kh
i > 0 and

thereby the eigenvalues of F̌ηd
in (70) are strictly negative. In

particular, RECBF constraint (42) writes similarly to (38)

µh≥−7.2
√
Kh

s ḣd− 0.6
√
Kh

s

(
ḣd−ḣ

)
−Kh

s h. (47)

The feedback term (ḣd− ḣ) in (47) helps to withstand the
flexibilities effect. In fact, Fig. 21 shows that, when (47)
relative to Xmax boundary is inserted, CoM(xd) velocity
converges to zero while drifting toward CoM(x) velocity
(X coordinates). Consequently, the delay between CoM(xd)
and CoM(x) states is lowered. This compliance behavior is
the key factor behind avoiding over-regulation that leads to
excessive deceleration in Experiment 2. Also, compared to Ex-
periment 1, CoM(xd) compensates for joint-dynamics static
error allowing CoM(x) to converge asymptotically to the
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(a)

(b)

(c)

Fig. 20. Time Evolution of CoM(x), CoM(xd) and their respective
velocities coordinates along X and Y axes. (a) Feedforward ECBF con-
straint (31). (b) Feedback ECBF constraint (36). (c) RECBF constraint (42).
The gray time slot is zoomed-in in Fig. 21.

polygon boundaries. More related to Theorem 2, the set Cd is
made robustly stable, where the maximum overshoots along X
and Y axes are: Xovershoot

max = 5.5 mm, Xovershoot
min = 3.2 mm,

Y overshoot
max = 6.5 mm, Y overshoot

min = 4 mm.
4) Experiment 4: A fourth experiment is conducted to show

the robust stability of Cd against external pushes using the
same RECBF constraint (47). Because of the high-stiffness
joint controllers and high gear-ratio, the effect of the external
disturbance forces is hardly observed at the joints’ encoders.
Yet, it can be measured by the floating-base observer affecting

Fig. 21. Zoom-in of the gray time slot in Fig. 20(c). The bold dashed line
denotes the moment when the RECBF constraint relative to Xmax boundary
is inserted in QP (43).

Fig. 22. Superposed snapshots of robust against pushing (experiment 4) in
X (right-top) and Y (left-top) directions, with the corresponding top-view
perspectives (bottom).

thereby the CoM(x) state.
First, a Cartesian target is defined for HRP-4 right hand

such that CoM(x) reaches the polygon boundaries Xmax and
Ymax. Then, the robot receives multiple external pushes from
the operator (at the back and the shoulders) along X and Y
axes (Fig. 22). Three persistent disturbance forces are applied,
followed by two brief disturbances leading the flexibilities
effect to enter into play (Fig. 23). During the whole exper-
iment, CoM(x) is pushed away from the polygon boundaries
with a distance of at least 2 cm. Here again, we can see the
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Fig. 23. Robustness of RECBF (42) against external pushes. The blue time
slot denotes a persistent external push (Fig. 24(a)), and the green one denotes
a brief external push (Fig. 24(b)).

(a)

(b)

Fig. 24. (a) Zoom-in the blue time slot in Fig. 23 showing the response
against a persistent push. (b) Zoom-in the green time slot in Fig. 23 showing
the response against a brief push.

effect of the compliance feedback term. At the beginning of
the persistent disturbance forces, CoM(xd) slightly complies
with the disturbance. Then, when the compliance term is less
predominant, the compliance is lost and QP generates solutions
such that CoM(xd) counterbalances stiffly the disturbances
enforcing CoM(x) to converge back smoothly to the polygon
boundaries (Fig. 23(a)). When applying brief perturbations

(Fig. 23(b)), CoM(x) converges asymptotically to the poly-
gon boundaries while complying to the transient flexibility
response. As in Experiment 3, the set Cd is made robustly
stable. Nevertheless and similarly to Section V-A, it goes at
the expanse of Kh

i conservative tuning.

VI. CONCLUSION

In this paper, we propose a stable and robust closed-
loop implementation of task-space QP control scheme for
kinematic-controlled robots. Our solution allows free task-
gains tuning and robust constraints design in the presence of
non-modeled dynamics like joint-dynamics, flexibilities, and
external disturbances. Our approach is proved to ensure the
closed-loop stability by including integral feedback terms at
both task and constraint levels leading to a robust convergence
of their trajectories to the respective residual sets. Our method
does not need the exact knowledge of the joint-dynamics
model, but requires it to be ISS. Several experiments have
been conducted on both floating-base and fixed-base robots
to assess our new QP controller. Although not tackled in this
paper, our approach can be extended to contact force control
formulated as an admittance task [55]. Future works will focus
on reducing the conservativeness on the choice of the integral
feedback gains Ki and Kh

i . Also, the conflict of RECBF with
other constraints that leads to QP infeasibility is still an open
problem. Up to now, constraints compatibility in QP control
paradigms is among the main open questions that have not
been well addressed and where model predictive control could
be a candidate approach.

APPENDIX

A. Notations and Definitions
Bold small letters stand for vectors, bold capital letters for

matrices, and normal letters for scalars. In this work, there are
three classes of variables:

1) those with subscript ref are the task-space reference
targets given either by the operator or a task planner;

2) those with subscript d are the desired variables in (i) the
joint-space resulting from the integration of the desired
acceleration (direct output of the QP), or (ii) in the task-
space which are the mapping of the former; and

3) without any subscript are the variables tracking the
desired once in 2)

– R and R+ are the sets of real and non-negative real
numbers, respectively. For χ ∈ X , αχ is the velocity of χ.
If X is Euclidean then αχ = χ̇. |χ| and

∥∥χ∥∥ denote the
component-wise absolute value and the Euclidean norm of
χ, respectively.

∥∥χ∥∥∞ = sup
t≥0

∥∥χ(t)
∥∥, χ ∈ Rx is said to be

bounded if
∥∥χ∥∥∞ <∞. The transpose of χ is denoted χT.

λ(A), λ(A) denote respectively the minimum and maximum
eigenvalues of matrix A. All Jacobian matrices used in this
work are assumed to be non-singular.

– γ :R+→R+ is a class K∞ function if it is continuous,
strictly increasing, γ(0) = 0 and γ(s)

s→∞−→∞.
– β : R+×R+→R+ is a class KL function if for each fixed

t≥ 0, β(s, t) is a class K function, and for each fixed s≥ 0,
it decreases to 0 as t→∞.
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∥∥ ∥∥
Ω

denotes the Euclidean point-to-set distance:
∥∥χ∥∥

Ω
=

dist(χ; Ω)=inf {dist(χ,a)|a∈Ω}= inf
a∈Ω

∥∥χ−a∥∥.
– Let us consider the system

χ̇ = fχ(χ,υ), (48)

where χ ∈ Rx and υ ∈ Ru. For any initial condition
χ(t0) ∈ Rx, there exists a maximum time interval I (χ(t0)) =
[t0, tmax] such that χ(t) is the unique solution of (48) on
I(χ(t0)). If tmax = ∞ then fχ(t0) is forward complete.
System (48) is said to be autonomous when υ = 0. A
set S ⊂ Rx is called forward invariant w.r.t autonomous
system (48) if ∀χ(t0) ∈ S then χ(t) ∈ S, ∀t ∈ I(χ(t0)).
In addition, a closed and forward invariant set S ⊂ Rx
is asymptotically stable for a forward-complete autonomous
system (48) if there exist on open set R ⊇ S, and a class KL
function β such that∥∥χ(t)

∥∥
S ≤ β

(∥∥χ(t0)
∥∥
S , t− t0

)
, ∀χ(t0) ∈ R.

– Robust Global Uniform Asymptotic Stability: [56], [57]
Consider the system

χ̇ = fχ(χ,υ, t). (49)

Fix a control υ, and let Ω ⊂ X be a compact set containing the
origin. The solutions of the system (49) are Robustly Globally
Uniformly Asymptotically Stable w.r.t Ω (RGUAS-Ω) when
there exists class KL function β such that for all admissible
measurements, admissible disturbance, and initial conditions
(χ(t0), t0) ∈ X × R, all solutions χ(t) exist and satisfy∥∥χ(t)

∥∥
Ω
≤ β(

∥∥χ(t0)
∥∥

Ω
, t− t0). (50)

System (49) is robustly practically stabilizable when ∀ε > 0
there exist an admissible control and a compact set Ω ⊂ X
satisfying 0 ∈ Ω ⊂ εB, with B the unit ball set, such that the
solutions χ(t) are RGUAS-Ω.
– Rayleight-Ritz Inequality: [58] Given a symmetric matrix
A ∈ Rx×x the following inequality holds ∀χ ∈ Rx:

λ(A)
∥∥χ∥∥2 ≤ χTAχ ≤ λ(A)

∥∥χ∥∥2
. (51)

– Schwartz inequality: [59] ∀χ, ζ ∈ Rx,

|χTζ| ≤
∥∥χ∥∥∥∥ζ∥∥ . (52)

B. Proof of Proposition 1
Proof. The proof is established for ηd, the same steps apply
for ηhd . Here, the dependency on time (t) is made explicit.
Given (17), let us assume ∃µ ∈ Rm | ηd(t) is bounded∥∥ηd(t)

∥∥ ≤M ⇒ {∥∥ed(t)
∥∥ ≤M∥∥ėd(t)
∥∥ ≤M ,∀t ≥ 0,

(13)⇔
{ ∥∥s(qd(t))− sref(t)

∥∥ ≤M,∥∥Jdαqd(t)− ṡref(t)
∥∥ ≤M,

(53)

where sref(t) and ṡref(t) are obviously bounded. Let us prove
that if ed(t) is bounded then qd(t) is bounded. Let us define
qref(t) ∈ Q15 with

Q =
{
qd(t) ∈ R7+n : s (qd(t)) = sref(t)

}
. (54)

15In (54), sref is assumed to be strictly reachable. Otherwise, we can define
Q asQ=

{
q∗d(t)∈R7+n :q∗d =arg min

∥∥s (qd(t))−sref(t)
∥∥} which leads

to s (qref(t)) = sref(t)+δs(t), with δs(t)∈ Rm bounded. The remaining
of the proof is not affected.

Thus, by putting ∆qd(t) = qd(t)−qref(t), s (qd(t)) writes
using Taylor expansion

s (qd(t)) = s (qref(t) + ∆qd(t)) ,

= sref(t) +R(∆qd(t)),

R(∆qd(t)) = ∂s(qd(t))
∂qd(t)

∣∣∣
qd(t)=ˇ̂qd(t)

∆qd(t),

(55)

where R(∆qd(t)) is the Lagrange remainder with q̌d(t) =
qref(t)+ θ∆qd(t), 0 ≤ θ ≤ 1 [60, Chapter IV, Section 6].
From (53), (55) we have∥∥R (∆qd(t))

∥∥ ≤M. (56)

If ∂s(qd(t))
∂qd(t) is non-singular, then ∀θ with 0 ≤ θ ≤ 1 there exist

b, b0, b ≥ b0 > 0 such that [61]∥∥R (∆qd(t))
∥∥ = b

∥∥∆qd(t)
∥∥⇒ ∥∥∆qd(t)

∥∥ ≤ M

b
,

⇔
∥∥qd(t)

∥∥− ∥∥qref(t)
∥∥ ≤ ∥∥∆qd(t)

∥∥ ≤ M

b
,

⇒
∥∥qd(t)

∥∥ ≤ M

b
+
∥∥qref(t)

∥∥ .
(57)

Given that qref(t) is bounded, then qd(t) is bounded.
Now, let us prove that if ėd(t) is bounded then αqd(t)

is bounded. αqd(t) can be written as αqd(t) = α̂qd(t) +
α#
qd

(t) such that α#
qd

(t) ∈ ker{Jd} with α#
qd

(t) =(
I− Jd

+Jd

)
ν(t), where Jd

+ is the Moore-Penrose Jacobian
inverse and ν(t) ∈ R6+n denotes the remaining velocity
redundancy. In QP (43), the redundancy state is bounded by a
secondary (posture) task. Furthermore, (5) and (43d) ensures
bounded and feasible floating base solutions. Hence, ν(t) is
bounded. Let us show the boundedness of α̂qd(t). From (53)∥∥Jdα̂qd(t)

∥∥−∥∥ṡref(t)
∥∥ ≤ ∥∥Jdα̂qd(t)−ṡref(t)

∥∥≤M,

⇒
∥∥Jdα̂qd(t)

∥∥ ≤M +
∥∥ṡref(t)

∥∥ . (58)

Given that Jd is non-singular, then there exist b′, b′0 with b′≥
b′0>0 such that [61]∥∥Jdα̂qd(t)

∥∥ = b′
∥∥α̂qd(t)

∥∥ ≤M +
∥∥ṡref(t)

∥∥ ,
⇒
∥∥α̂qd(t)

∥∥ ≤ M +
∥∥ṡref(t)

∥∥
b′

.
(59)

Hence, αqd(t) is bounded such that∥∥αqd(t)
∥∥ ≤ ∥∥α̂qd(t)

∥∥+
∥∥I− Jd

+Jd

∥∥∥∥ν(t)
∥∥ . (60)

From (6) and following from (60) and (57) xd(t) is bounded
implying that, given (19), ∃α̇qd ∈ U such that xd(t) is
bounded.

C. Proof of Proposition 2

Proof. As in Proposition 1 proof, Proposition 2 proof is estab-
lished for ηd (the same steps apply for ηhd ) and the dependency
on time (t) is made explicit. Let us consider system (17)
and assume that there exists µ such that ηd(t) is (uniformly)
ultimately bounded. Then, there exists an ultimate bound
%ηd

> 0, such that ∀Mηd
> 0, ∃Tηd

= Tηd
(Mηd

, %ηd
) > 0

such that [49, Definition 4.6]∥∥ηd(t0)
∥∥ ≤Mηd

⇒
∥∥ηd(t)

∥∥ ≤ %ηd
, ∀t ≥ t0 + Tηd

. (61)
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From Proposition 1 proof in Appendix B and (61), it yields
that there exists %x̂d

= %x̂d
(%ηd

) > 0 such that
∥∥x̂d(t)

∥∥ ≤
%x̂d

, ∀t ≥ t0 + Tηd
. Hence, from Assumption 1, we get∥∥φ̂(t)

∥∥=
∥∥x̂(t)− x̂d(t)

∥∥ ≤ σ
⇒
∥∥x̂(t)

∥∥≤ σ+
∥∥x̂d(t)

∥∥ ≤ σ+%x̂d
, ∀t ≥ t0+Tηd

.

In addition, the robot floating-base state xFB(t) is bounded by
assumption which leads to the boundedness of x (6). Thus,
from (15) and (61), there exists an ultimate bound %η = %ηd

+∥∥ηφ∥∥∞ > 0, such that ∀Mη = Mηd
+
∥∥ηφ(t0)

∥∥ > 0, there
exists Tη = Tη(Mη, %η) > 0 such that∥∥η(t0)

∥∥ ≤Mη ⇒
∥∥η(t)

∥∥ ≤ %η, ∀t ≥ t0 + Tη, (62)

which yields to η(t) is (uniformly) ultimately bounded.

D. Proof of Theorem 1

Proof. Replacing (37) in (17) yields to

η̇d = F̌ηd
ηd −Bηd

Kηφ, (63)

where F̌ηd
and K are defined as in Theorem 1 and (33),

respectively. Let us consider the following Lyapunov function
associated to (63)

γ1

(∥∥ηd

∥∥) ≤ V (ηd) =
1

2
ηd

TPηd
ηd ≤ γ2

(∥∥ηd

∥∥) (64)

where γ1

(∥∥ηd

∥∥) =
λ(Pηd )

2

∥∥ηd

∥∥2
and γ2

(∥∥ηd

∥∥) =
λ(Pηd )

2

∥∥ηd

∥∥2
are class K∞ functions, and Pηd

= PT
ηd

> 0
is the solution of the following Algebraic Riccati Equation
(ARE)

F̌T
ηd

Pηd
+ Pηd

F̌ηd
= −Qηd

= −
[
Ki 0
0 Ki

]
. (65)

Given (65), V̇ = − 1
2ηd

TQηd
ηd − ηd

TPηd
Bηd

Kηφ. Given
that

∥∥Bηd

∥∥ = 1,
∥∥Pηd

∥∥ = λ(Pηd
) and λ(Qηd

) = λ(Ki) >
0, and using Rayleight-Ritz (51) and Schwartz (52) inequali-
ties, V̇ is bounded such that

V̇ ≤ −1− ϑ
2

λ(Ki)
∥∥ηd

∥∥2

− ϑ

2
λ(Ki)

∥∥ηd

∥∥(∥∥ηd

∥∥− 2λ(Pηd
)
∥∥K∥∥∥∥ηφ∥∥

ϑλ(Ki)

)
,

(66)

with 0 < ϑ < 1. Thus, if Ki is chosen such that∥∥ηd

∥∥ ≥ 2λ(Pηd
)
∥∥K∥∥

ϑλ(Ki)

∥∥ηφ∥∥∞ , (67)

then V̇ ≤ − 1−ϑ
2 λ(Ki)

∥∥ηd

∥∥2
. By the virtue of [49, The-

orem 4.18], ηd is uniformly ultimately bounded with ulti-

mate bound % =

√
λ(Pηd )

λ(Pηd )

2λ(Pηd )
∥∥∥K∥∥∥

ϑλ(Ki)

∥∥ηφ∥∥∞. Furthermore,

∀
∥∥ηd(t0)

∥∥ ≤ M there exist T = T (M,%) > 0, a class KL
function β, and a closed set Ωηd

=
{
ηd∈H :

∥∥ηd

∥∥≤%} such
that∥∥ηd(t)

∥∥
Ωηd
≤β

(∥∥ηd(t0)
∥∥

Ωηd
, t− t0

)
, ∀t0≤ t≤ t0 + T,∥∥ηd(t)

∥∥
Ωηd

= 0, ∀t ≤ t0 + T.

(68)

Given (67), the residual set Ωηd
can be made arbitrarily small

by Ki. Hence, ηd is robustly practically stable w.r.t Ωηd
[57,

Defintion 3.2].

E. Proof of Theorem 2
Proof. The matrix gain Ǩh is chosen to ensure that hd is
ECBF for the nominal system ηhφ = 0.

Now, let us prove that ηhd is uniformly ultimately bounded.
Inequality (42) can be expressed as

µh = −Lhψh + δh(t), 0 ≤ δh(t) ≤ δhmax, (69)

with δh(t) a slack variable that facilitates the manipulation
of (42). Given (69), system (27) becomes

η̇hd = F̌ηh
d
ηhd + Bηh

d

(
−Khηhφ + δh(t)

)
, (70)

where Kh defined as in (36), and F̌ηh
d

= Aηh
d
−Bηh

d
Ǩh. Let

us consider the following Lyapunov function [47]16

V =

{
0, if xd ∈ Cd

1
2η

h
d

T
Pηh

d
ηhd , otherwise

(71)

where Pηh
d

= PT
ηh
d

> 0 is the solution of the following ARE

F̌T
ηh
d
Pηh

d
+ Pηh

d
F̌ηh

d
= −Qηh

d
= −

[
Kh

i 0
0 Kh

i

]
. (72)

The goal is to show that there exists a set Cdσ ⊇ Cd such that
V̇ < 0,∀xd ∈ R13+2n \ Cdσ . Using (72), V̇ is computed as

V̇ =−1

2
ηhd

T
Qηh

d
ηhd +ηhd

T
Pηh

d
Bηh

d

(
−Khηhφ+δh(t)

)
. (73)

Using Rayleight-Ritz (51) and Schwartz (52) inequalities, (73)
becomes

V̇ ≤ −1

2
λ(Qηh

d
)
∥∥ηhd∥∥2

+
∥∥ηhd∥∥∥∥Pηh

d

∥∥∥∥Bηh
d

∥∥ (∥∥Kh
∥∥∥∥ηhφ∥∥+

∥∥δh(t)
∥∥) . (74)

By putting ϕ =
∥∥Kh

∥∥∥∥ηhφ∥∥ +
∥∥δh(t)

∥∥, and given that
λ(Qηh

d
) = Kh

i > 0,
∥∥Pηh

d

∥∥ = λ(Pηh
d
),
∥∥Bηh

d

∥∥ = 1, then

V̇ ≤ −1− ϑ
2

Kh
i

∥∥ηhd∥∥2

− ϑ

2
Kh

i

∥∥ηhd∥∥
(∥∥ηhd∥∥− 2λ(Pηh

d
)

ϑKh
i

ϕ

)
,

(75)

with 0<ϑ<1. Hence, if Kh
i is chosen such that∥∥ηhd∥∥ ≥ 2λ(Pηh

d
)

ϑKh
i

ϕ∞, ϕ∞ =
∥∥Kh

∥∥∥∥ηhφ∥∥∞ + δhmax, (76)

then V̇ ≤ − 1
2K

h
i

∥∥ηhd∥∥2
. By the virtue of [49, Theorem 4.18],

ηhd is uniformly ultimately bounded with ultimate bound σ =√
λ(P

ηh
d

)

λ(P
ηh
d

)

2λ(P
ηh
d

)

ϑKh
i

ϕ∞. In addition, there exists a closed set Cdσ

which is asymptotically stable and forward invariant17. Given
that Cd ⊆ Cdσ then following from Definition 1, Cd is robustly
stable, and thereby, from Definition 2, hd is a RECBF.

16Note that (71) allows to use the same theoretical tools as in the proof of
Theorem 1 in Appendix D.

17Forward invariance and asymptotic stability follow from the uniform
ultimate boundedness property of ηhd .



DJEHA et al.: ROBUST FEEDBACK QUADRATIC PROGRAMMING FOR KINEMATIC-CONTROLLED ROBOTS 17

F. Proof of Proposition 3
Proof. The superscript i is dropped for the sake of clarity.
Substituting (44) in (17) yields to

η̇d = F̌ηd
ηd −Bηd

Kηφ + Bηd
δ(t).

Let us consider Lyapunov function V in (64) such that (65)
holds. Following the same steps in Theorem 1 proof, V̇ is
bounded such that

V̇ ≤−1

2
(1−ϑ)λ(Ki)

∥∥ηd

∥∥2

−ϑλ(Ki)

2

∥∥ηd

∥∥(∥∥ηd

∥∥− 2λ(Pηd
)

ϑλ(Ki)

(∥∥K∥∥∥∥ηφ∥∥+∥∥δ(t)∥∥)) .
If Ki is chosen such that

∥∥ηd

∥∥ ≥
2λ(Pηd )

ϑλ(Ki)

(∥∥K∥∥∥∥ηφ∥∥∞+δmax

)
then V̇ ≤ − 1

2 (1 −
ϑ)λ(Ki)

∥∥ηd

∥∥2
. From [49, Theorem 4.18], it follows

that ηd is uniformly ultimately bounded with ultimate bound

% =

√
λ(Pηd )

λ(Pηd )

2λ(Pηd )

ϑλ(Ki)

(∥∥K∥∥ ∥∥ηφ∥∥∞ + δmax

)
. Following the

same steps in (68), ηd is robustly practically stable w.r.t the
residual set Ωηd

= {ηd ∈ H :
∥∥ηd

∥∥ ≤ %}.
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