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I. INTRODUCTION

T ASK-SPACE sensory control [1], [2] reached a high-level of maturity thanks to advances in numerical optimization methods. Non-linear task-space controllers can be formulated as local quadratic program (in short, QP control); which can handle several task-objectives and constraints using different sensors (embedded or external) for single or multiple different robots, see e.g., Fig. 1. QP controllers output desired joint torque τ d and/or desired robot-state acceleration αq d that minimize at best (least-square sense) each task error, while ensuring that the robot state is within a set C of predefined constraints (also called safety constraints in control [START_REF] Ames | Control barrier function based quadratic programs for safety critical systems[END_REF]). More particular to this work, we are interested in kinematic constraints (e.g., motion bounds in the joint or the task spaces, collision avoidance in the Cartesian space, field-ofview bounds in the image space, etc.) [START_REF] Cortez | Control barrier functions for mechanical systems: Theory and application to robotic grasping[END_REF]; the task error is typically steered by a task-space PD controller [START_REF] Djeha | Adaptive-gains enforcing constraints in closed-loop qp control[END_REF].

QP control has been successfully applied to complex robots and use-cases [START_REF] Escande | Hierarchical quadratic programming: Fast online humanoid-robot motion generation[END_REF]- [START_REF] Basso | Task-priority control of redundant robotic systems using control lyapunov and control barrier function based quadratic programs[END_REF]. Yet, several research reported sporadic unstable behaviors of relative severity (e.g., strong sustained oscillations), see e.g., [START_REF] Feng | Optimizationbased full body control for the DARPA robotics challenge[END_REF]- [START_REF] Koolen | Design of a momentum-based control framework and application to the humanoid robot atlas[END_REF]. These works used torquecontrolled robots with software-implemented joint controllers (with the desired joint position and/or velocity as control input; see Fig. 2) that add a joint-feedback torque to increase the joint stiffness at the expense of pure torque-control compliance [START_REF] Englsberger | Overview of the torque-controlled humanoid robot toro[END_REF]. In particular, [START_REF] Feng | Optimizationbased full body control for the DARPA robotics challenge[END_REF] noticed that oscillations and undesired behaviors are related to the double integration of the QP output αq d . However, no further investigation was made to elucidate the cause. Instead, only workaround solutions have been proposed to mitigate the instability issue. These palliative methods can be sorted into two categories: (i) low-level joint approaches that prevent αq d double integration from diverging; typically by implementing a leaky integrator [START_REF] Hopkins | Compliant locomotion using whole-body control and divergent component of motion tracking[END_REF]; and (ii) high-level approaches where the QP formulation is substantially modified at the expense of a complex controlarchitecture [START_REF] Feng | Optimizationbased full body control for the DARPA robotics challenge[END_REF], or by accounting for the joint feedback terms in the QP to adapt their gains [START_REF] Lee | Online gain adaptation of whole-body control for legged robots with unknown disturbances[END_REF] or for constraint feasibility concerns [START_REF] Cisneros | Robust humanoid control using a qp solver with integral gains[END_REF]. Other approaches reported that low-QP Double Integrator Joint Controllers Robot τ d + αq d qd qd q q + Fig. 2. QP control for torque-controlled robot with additional joint feedback.
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Fig. 3. Illustrative scheme of a kinematic-controlled robot. The difference between kinematic-and torque-controlled robots lies in how the joint controllers are implemented. In the former, they are strictly built-in by the manufacturer, whereas they can be software implemented or already built-in and proposed by the manufacturer as an additional joint-level control option.

ering the task gains helps mitigate the instability [START_REF] Johnson | Team ihmc's lessons learned from the darpa robotics challenge trials[END_REF], [START_REF] Koolen | Design of a momentum-based control framework and application to the humanoid robot atlas[END_REF]. This induces that task gains are also an interfering factor. Similar observation is made in [START_REF] Djeha | Adaptive-gains enforcing constraints in closed-loop qp control[END_REF], [START_REF] Singletary | Safety-critical kinematic control of robotic systems[END_REF], [START_REF] Molnar | Model-free safety-critical control for robotic systems[END_REF] concerning the gains of the constraint formulation. Unfortunately, since the joint controllers are software-implemented, their model and parameters are known. Conversely, stiff kinematic-controlled robots 1 are torquecontrolled robots with high-gains hardware-implemented joint controllers (Fig. 3). In this work, we are interested in highstiffness joint controllers with desired joint position qd or velocity qd as input. This control scheme is widely implemented in robotics and automation industry as it does not require knowledge of the robot's dynamics [START_REF] Garcia | Sensor fusion of force and acceleration for robot force control[END_REF]- [START_REF] Shi | Multi-objective optimal torque control with simultaneous motion and force tracking for hydraulic quadruped robots[END_REF].

The closed-loop task-space QP controller combined with a kinematic-controlled robot, Fig. 4(a), is also prone to instability. This is because the joint-level controllers are not considered at the QP controller level. Such instability has been unnoticed in some control implementations that operate in feedforward (Fig. 4(b)). This leads to a decoupled control (similar to the approach adopted in [START_REF] Feng | Optimizationbased full body control for the DARPA robotics challenge[END_REF]), delegating the control accuracy to the joint controllers [START_REF] Zanchettin | Motion planning for robotic manipulators using robust constrained control[END_REF], [START_REF] Bouyarmane | On weight-prioritized multitask control of humanoid robots[END_REF], [START_REF] Polverini | Robust constraint-based robot control for bimanual cap rotation[END_REF]. Even though the latter have generally high gains to keep the joint tracking error as small as possible, the user has no guarantee on the accuracy of the performed motion 2 . In such cases, frequent initializations of the controller are needed (i.e., start a new instance of the QP control with an update of the model at task switching, or integrator memory reset), to lower the discrepancy between real and control-model states due to nonmodeled flexibilities or external disturbances.

In this paper, we address the stability of closed-loop taskspace QP control (Section II) in the context of kinematiccontrolled robots. We show in Section III how the closedloop instability is interpreted in terms of non-robustness of the QP feedback scheme (Fig. 4(a)) against non-modeled jointdynamics 3 , flexibilities, external disturbances, etc. We propose a robust feedback QP control formulation (Fig. 4(c)) based on high-level integral feedback terms that robustify the task-space PD controller (task robust stability) and the constraint formulation (set robust stability), see Fig. 5. We extend its implementation to weighted-prioritized multi-objective QP control in Section IV. We assess our controller with experiments on two robots: (i) a fixed-base robot Panda performing highlydynamic motion control, and (ii) floating-based humanoid robot HRP-4 performing robust balance control under nonmodeled flexibilities and external disturbances (Section V).

The stability analysis, based on Lyapunov theory, focuses on intrinsic closed-loop QP control (i.e., not considering other sources or nature of instability such as singularities for which we dedicated a specific analysis in [START_REF] Pfeiffer | The hierarchical newton's method for numerically stable prioritized dynamic control[END_REF] or discretization). Our solution is elegant as it applies directly to the existing QPtemplated tasks. In contrast to [START_REF] Singletary | Safety-critical kinematic control of robotic systems[END_REF] where the joint controllers model is required, our approach is straightforwardly used with any kinematic-controlled robot as it does not require the exact knowledge of the joint-dynamics model which we only assume to be Input-to-State-Stable (ISS). We also further advanced [START_REF] Bouyarmane | On weight-prioritized multitask control of humanoid robots[END_REF] in two ways: (i) we account for the lack of joint-dynamics in closed-loop; (ii) we include the constraints in the stability analysis. Although we define the set robust stability similarly to [START_REF] Kolathaya | Input-to-state safety with control barrier functions[END_REF], our approach is different in three main points: (i) the factors against which the robustness is enforced, (ii) the formalism adopted to prove robustness, and (iii) the nature of the term added to achieve robustness.

To sum-up, our contributions are as follows:

• Robust task formulation;

• Robust constraint formulation;

• Task stability investigations in the case of multi-objective weighted-prioritized robust constrained QP; • Integration into our existing framework and validation on a robotic manipulator and a humanoid robot. The notations and definitions used in this paper are described in Appendix A.

II. TASK-SPACE QP CONTROL FORMULATION A. Joint-Dynamics

Consider a robot with a floating or a fixed base having n ∈ N actuated Degrees-of-Freedom (DoF). Its state is defined by

q T = ξ T qT ∈ R 7+n α T q = v T qT ∈ R 6+n αT q = vT qT ∈ R 6+n . ( 1 
)
ξ T = p T q T ∈ R 7 is the floating base position p ∈ R 3 and orientation parameterized with unit quaternion q ∈ S 3 (3sphere), q ∈ R n is the joint position. v ∈ R 6 (resp. v ∈ R 6 ) is the linear and angular floating-base velocities (resp. floatingbase accelerations), and q ∈ R n (resp. q ∈ R n ) is the joint velocity (resp. joint acceleration). q d , α q d and αq d denote the desired q, α q and αq in (1), respectively. The robot is governed by the equation of motion

M(q) αq d + h(q, α q ) -J cT f = S τ τ , (2) 
where M(q) ∈ R (6+n)×(6+n) is the inertia matrix, h(q, α q ) ∈ R 6+n gathers Coriolis-centrifugal and gravitational torques, 6+n) is the contact Jacobian and f ∈ R 3 is the contact force. S T τ = 0 n×6 I n ∈ R n×(6+n) is the actuation selection matrix, and τ ∈ R n is the joint torque such that

J c ∈ R 3×(
τ min ≤ τ ≤ τ max , (3) 
where τ min , τ max ∈ R n are the joint torque bounds. Constraints (2) and (3) can be combined resulting in the torque-bounded equations of motion

S τ τ min ≤ M(q) αq d + h(q, α q ) -J cT f ≤ S τ τ max . (4) 
The contact force is constrained to its linearized friction cone

f = nc j=1 β j ρ j , β j ≥ 0, j = 1, . . . , n c , (5) 
where ρ j ∈ R 3 is the j th vector of the linearized friction cone, and n c > 2 being the total number of the linearized frictioncones' vectors, see [START_REF] Bouyarmane | Using a multi-objective controller to synthesize simulated humanoid robot motion with changing contact configurations[END_REF]. Let x, x d ∈ R 13+2n defined as

x T = q T α T q , x T d = q T d α T q d , (6) 
be the actual and desired robot states, respectively. In particular, x d follows a double integrator dynamics (in the continuous time-domain)

α x d = α q d αq d = 0 I 6+n 0 0 x d + 0 I 6+n αq d , (7) 
with αq d ∈ U where U ⊆ R 6+n is the set of αq d admissible values. The actual floating-base state

x FB T = ξ T v T ∈ R 13
is assumed to be bounded and estimated by an observer. In particular, let us define the robot-state tracking error φ as

φ = x -x d , def =     ξ ξ d q -qd v -v d q -qd     ∈ R 13+2n , (8) 
where

ξ ξ d def = p -p d q ⊗ q -1 d ∈ R 7
encompasses the position and orientation errors between ξ and ξ d where ⊗ denotes the quaternion product [START_REF] Siciliano | Robotics: modelling, planning and control[END_REF]Section 2.6]. Given a kinematic-controlled robot (Fig. 3), the actual robot state is governed by the dynamics of its actuated joints. By extracting the actuated joints parts from x and x d in (6), let xd , x ∈ R 2n defined as

xT = qT qT , xT d = qT d qT d , (9) 
be the actual and desired states of the robot actuated DoF. Similarly, we define the joint-dynamics tracking error φ as

φ = x -xd ∈ R 2n , (10) 
and which dynamics 4 is

φ = f φ( φ, τ l ), (11) 
where τ l ∈ R n is the bounded joint-space disturbance torque input. In this study, we consider that f φ is not known exactly but its main property is given by the following assumption.

Assumption 1. The joint-dynamics f φ in (11) is ISS w.r.t τ l . Namely, there exist a class KL function β and a class K function γ, such that for any initial state φ(0) and any bounded disturbance input τ l (t), the solution φ(t) exists ∀t ≥ 0 and satisfies [START_REF] Sontag | Input to State Stability: Basic Concepts and Results[END_REF], [START_REF] Dashkovskiy | Input to state stability and allied system properties[END_REF] 

φ(t) ≤ β φ(0) , t + γ τ l ∞ (12) 
The IS-Stability ensures that, given bounded disturbance inputs τ l , the joint-dynamics tracking error φ in [START_REF] Nava | Direct force feedback control and online multi-task optimization for aerial manipulators[END_REF] evolves in a bounded set containing the origin. Assumption 1 is largely valid as it is among the main requirement for the wellfunctioning of a kinematic-controlled robot. φ in (8) reflects the effect of several kinds of disturbances and uncertainties. Namely, non-modeled dynamics (e.g., transient joint-dynamics response w.r.t xd , flexibilities, etc.); hardware imperfections (e.g., joint-dynamics steady-state errors, etc.); external disturbance τ l = 0 (e.g., loads, pushes, unexpected impacts, etc.); measurement and estimation noises (joint-velocity and floating-base estimations, etc.); and possibly others 5 .

Remark 1. For a fixed-base robot, q = q and α q = q leading to x = x (respectively for the corresponding desired states), and φ = φ.

QP (43)
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K K i K h K h i x FB d = ξ d v d xd αq d x d x η ėd η h ḣd Kη K i ėd K h η h K h i ḣd µ µ h
Fig. 5. Overview of the proposed robust QP control scheme. The blue thick paths show the high-level integral feedback. Note that if K i = 0 and K h i = 0, correspond to the feedback control scheme in Fig. 4a.

B. Input-Output Task Dynamics

Let s : R 7+n → R m be the forward kinematics for a given task defined by m coordinates, and s ref (t), ṡref (t), sref (t) ∈ R m be the task references; we can define the following states

η d (x d ) = e d ėd = s(q d ) -s ref (t) J d α q d -ṡref (t) ∈ H ⊂ R 2m , (13) 
η(x) = e ė = s(q) -s ref (t) Jα q -ṡref (t) ∈ H ⊂ R 2m , (14) 
where J d , J ∈ R m×(6+n) are the task Jacobians computed w.r.t q d and q, respectively; η d (x d ) and η(x) denote the desired and actual task dynamics states, respectively; H is the set of their admissible values. Using Taylor expansion and (8), a relation between η and η d is obtained as

η(x) = η(x d + φ), = η(x) x=x d + ∂η(x) ∂x x= x φ η φ , x = x d + θφ, = η d (x d ) + η φ , ∂η(x) ∂x = J 0 ∂(Jαq) q J , (15) 
0 ≤ θ ≤ 1; η φ ∈ R m being the Lagrange remainder of the Taylor expansion and denotes the mapping of φ in task-space.

Hereafter, the dependency of η d on x d and η on x is dropped.

Remark 2. In the multiplication ∂η(x) ∂x x= x φ, only the vector part of q ⊗ q -1 d is considered in φ (8). Given that e d in (13) has a relative degree of 2

ëd = Jd α q d + J d αq d -sref (t), (16) 
then, the input-output task dynamics is obtained such that

ηd = A η d η d + B η d µ, (17) 
A η d = 0 I m 0 0 , B η d = 0 I m , (18) 
µ = Jd α q d + J d αq d -sref (t). (19) 
µ ∈ R m is the task-space control input affine in αq d [START_REF] Englsberger | Overview of the torque-controlled humanoid robot toro[END_REF].

The control objective consists in formulating a task-space controller µ that steers η to the origin.

C. Constraint Formulation with Barrier Functions

The general form of a constraint is expressed as

dist(x) ≥ dist min , (20) 
where dist(x) ∈ R is a distance obtained by forward kinematics and defined in the space of interest, see Fig. 1, and dist min ∈ R is the threshold. Let us consider the set C = x ∈ R 13+2n : [START_REF] Hopkins | Compliant locomotion using whole-body control and divergent component of motion tracking[END_REF] . The fulfillment of the constraint (20) forward in time can be checked by verifying the forward invariance of C [START_REF] Blanchini | Set invariance in control[END_REF] (see Appendix A). Barrier functions are a suitable tool for this purpose. In fact, considering the barrier function h(x) = dist(x) -dist min ≥ 0, C is forward invariant if h(x) satisfies Lyapunov-like conditions (see [START_REF] Ames | Control barrier function based quadratic programs for safety critical systems[END_REF]Definition 3]) based on the system's dynamics. Rather than verifying the fulfillment of (20), one may be interested in finding the control input αq d that enforces [START_REF] Hopkins | Compliant locomotion using whole-body control and divergent component of motion tracking[END_REF] forward in time. Exponential Control Barrier Function (ECBF) allows to formulate a constraint on the control input that enforces the asymptotic stability of C and thereby its forward invariance. This constraint can be then accounted for in QP 6 For an extensive survey about barrier functions 7 , see [START_REF] Ames | Control barrier functions: Theory and applications[END_REF]. In Section IV-B, we introduce the set robust stability, then we propose a robust formulation of ECBF that enforces this notion. First, we present in this section the basics of ECBF formulation to follow the same notations afterward.

1) Exponential Control Barrier Function: Let us define the sets C, C d ⊂ R 13+2n as

C = x ∈ R 13+2n : h(x) ≥ 0 , (21) 
C d = x d ∈ R 13+2n : h(x d ) ≥ 0 . ( 22 
)
Let us define the following states

η h d (x d ) = h d ḣd = h d J h d α q d ∈ b H ⊂ R 2 , ( 23 
)
η h (x) = h ḣ = h J h α q ∈ b H ⊂ R 2 , ( 24 
)
where J h d , J h ∈ R 1×(6+n) are the barrier function Jacobians computed w.r.t q d and q, respectively; η h d (x d ) and η h (x) denote the desired and actual constraint dynamics states, respectively; b H is the set of their admissible values.

As in [START_REF] Feng | Optimizationbased full body control for the DARPA robotics challenge[END_REF], we have the following

η h (x) = η h d (x d ) + η h φ , η h φ = ∂η h (x) ∂x x= x φ ∂η h (x) ∂x = J h 0 ∂(J h αq) q J h , (25) 
where η h φ is the mapping of φ in the constraint-space. As in (15), Remark 2 is considered for ∂η h (x) ∂x x= x φ in [START_REF] Yang | Learning whole-body motor skills for humanoids[END_REF]. Similarly to [START_REF] Johnson | Team ihmc's lessons learned from the darpa robotics challenge trials[END_REF], h d has a relative-degree of 2

ḧd = Jh d α q d + J h d αq d . (26) 
Then as in [START_REF] Dedonato | Team wpi-cmu: Achieving reliable humanoid behavior in the darpa robotics challenge[END_REF], from [START_REF] Iskandar | Joint-level control of the dlr lightweight robot sara[END_REF] we get

ηh d = A η h d η h d + B η h d µ h , (27) 
h d = C η h d η h d , (28) 
A η h d = 0 1 0 0 , B η h d = 0 1 , C η h d = 1 0 , (29) 
µ h = Jh d α q d + J h d αq d . (30) 
Let 27) and ( 28

µ h = -K h η h d ∈ R with K h = K h s K h d ∈ R 1×2 . From (
), h d (t) = C η h d exp F η h d t η h d (t 0 ) with F η h d = A η h d -B η h d K h . Hence, if µ h ≥ -K h η h d (30) ⇐⇒ Jh d α q d + J h d αq d ≥ -K h η h d , (31) 
then following the Comparison Lemma [START_REF] Khalil | Nonlinear systems; 3rd ed[END_REF]Lemma 3.4],

h d (t) ≥ C η h d exp F η h d t η h d (t 0 ). If there exists a gain matrix K h such that h d (t) ≥ C η h d exp F η h d t η h d (t 0 ) ≥ 0 whenever h d (t 0 ) ≥ 0, then h d is
an ECBF, and C d is made forward invariant (also said 'safe') (see [START_REF] Ames | Control barrier functions: Theory and applications[END_REF]Definition 7]). The gain matrix K h needs to satisfy two specifications: (i) F η h d eigenvalues must be real-negative, and (ii) [START_REF] Djeha | Adaptive-gains enforcing constraints in closed-loop qp control[END_REF], [START_REF] Quiroz-Omaña | Whole-body control with (self) collision avoidance using vector field inequalities[END_REF]. Note that ECBF formulation [START_REF] Polverini | Implicit robot force control based on set invariance[END_REF] corresponds to the feedforward closed-loop QP control scheme in Fig. 4(b) where the non-modeled dynamics are not accounted for, and thereby ( 31) is called forward ECBF formulation. Unfortunately, it does not imply forward invariance of the set C d when the feedback closed-loop QP control scheme Fig. 4(a) is adopted as it will be shown in Section III-B. Hence, the goal is to formulate µ h such that C d is made robustly stable.

h d (t) ≥ 0, ∀t ≥ t 0 , ∀x d (t 0 ) ∈ C d

D. Combining Tasks and Constraints via QP

Since ( 19) and ( 30) are affine in αq d , the task and set C stabilization can be formulated and combined by the following weight-prioritized QP (highlighted terms are changed later)

α * q d , f * = arg min w 0 2 S αq d +κ(x) 2 + w 2 J d αq d + Jd α q d -s ref (t) -µ 2 (32a) s.t. (4), (5) (32b) 
-J h d αq d ≤ Jh d α q d -µ h (32c) J c d αq d = -Jc d α q d -kJ c d α q d (32d)
where w and w 0 are positive weighting scalars such that w ≥ 0 and w 0 > 0 [36, Lemma 2]. The first term in (32a) is a secondary task that solves the remaining redundancy where S = [0 n×6 I n ]8 is a selection matrix and κ(x) is a given joint-space feedback. Constraint (32d) stands for the no-slipping contacts (e.g., at the feet) to have, along with (5), feasible and dynamically-consistent floating-base solutions vd where J c d is the contact Jacobian, and k > 0.

III. INSTABILITY OF FEEDBACK QP CONTROL SCHEME

Now, we show that formulating QP [START_REF] Suárez-Ruiz | Can robots assemble an ikea chair?[END_REF] according to the closed-loop control scheme in Fig. 4(a) may lead to instability.

A. Task Feedback Formulation

Let us formulate µ as an output feedback control

µ = -Kη, K = K s K d ∈ R m×2m , (15) ⇒ µ = -Kη d -Kη φ . ( 33 
)
By replacing [START_REF] Lim | Backward ladder climbing locomotion of humanoid robot with gain overriding method on position control[END_REF] in [START_REF] Dedonato | Team wpi-cmu: Achieving reliable humanoid behavior in the darpa robotics challenge[END_REF], we get

ηd = F η d η d -B η d Kη φ , F η d = A η d -B η d K, ( 34 
)
where K is chosen such that F η d is Hurwitz, and Kη φ ∈ R m is a perturbation term showing the coupling between the task gains and the effect of all the non-modeled dynamics η φ . By the virtue of Lyapunov's indirect method [49, Theorem 4.7], Fig. 7. Non-robustness of output feedback control [START_REF] Lim | Backward ladder climbing locomotion of humanoid robot with gain overriding method on position control[END_REF] in system [START_REF] Shi | Multi-objective optimal torque control with simultaneous motion and force tracking for hydraulic quadruped robots[END_REF] with

K = K 1 (left) and K = K 2 (right).
Increasing the task gains with the same system parameters leads the closed-loop system to instability.

η d is only locally stable for sufficiently bounded Kη φ . Otherwise, the closed-loop stability is not guaranteed.

To exemplify this claim, let us consider a 1-DoF system in Fig. 6 (n = 1, αq d = qd ) governed by the following dynamics

ẋ = 0 1 a 1 a 2 x+ 0 0 a 3 a 4 xd + 0 a 5 τ l , x = qq ∈ R 2 , ( 35 
)
where a i={1,...,5} ∈ R denote the system parameters. The control objective is to drive the motor position q to reach a reference position qref = 1 rad with no external disturbance (τ l = 0). Eqs. ( 13) and ( 14) become (s(q) = q)

η(x) = q -qref q , η d (x d ) = qd -qref qd , µ = qd ∈ R.
a i are taken according to System 1 in Table I. Output feedback control [START_REF] Lim | Backward ladder climbing locomotion of humanoid robot with gain overriding method on position control[END_REF] is performed (implemented on system (17)) with two sets of gains: K 1 = 10 2 √ 10 and K 2 = 30 2 √ 30 . Figure 7 shows that simply increasing the task gains leads to instability of the closed-loop system. In Section IV-A, we propose a task feedback to ensure global robust stability.

B. Feedback ECBF Formulation

Let us consider the feedback QP control scheme in Fig. 4(a), ECBF constraint [START_REF] Polverini | Implicit robot force control based on set invariance[END_REF] becomes

µ h ≥ -K h η h , (25) ⇐⇒ µ h ≥ -K h η h d -K h η h φ . (36) 
As in Section III-A, feedback ECBF formulation [START_REF] Bouyarmane | On weight-prioritized multitask control of humanoid robots[END_REF] may not ensure the stability of sets C d and C if the term K h η h φ is not sufficiently bounded; which shows the coupling between the ECBF gains and the disturbance η h φ . In Fig. 8 we compare feedforward and feedback ECBF formulations where h = 3q, h d = 3 -qd and a steady-state error φ = 0 is simulated by applying a constant disturbance τ l = 5 N.m. a i parameters are taken according to System 2 in Table I and K h is computed as in [START_REF] Djeha | Adaptive-gains enforcing constraints in closed-loop qp control[END_REF]. The task is formulated as in Section III-A except Fig. 8. ECBF formulation performed on system [START_REF] Shi | Multi-objective optimal torque control with simultaneous motion and force tracking for hydraulic quadruped robots[END_REF] in feedforward [START_REF] Polverini | Implicit robot force control based on set invariance[END_REF] (left) and feedback (36) (right) QP control schemes. qref = 5 rad. Feedforward ECBF [START_REF] Polverini | Implicit robot force control based on set invariance[END_REF] does not account for the disturbance which leads to a constraint violation. On the other hand, feedback ECBF [START_REF] Bouyarmane | On weight-prioritized multitask control of humanoid robots[END_REF] is not robust to non-modeled joint-dynamics resulting in sustained oscillations around the set boundary qmax = 3 rad. In Section IV-B, we propose a new formulation of µ h to guarantee robust stability of C d .

IV. ROBUST FEEDBACK QP CONTROL FORMULATION

The proposed robust design of the QP controller consists of the following steps. The main result is given by Theorems 1 and 2 that show how µ and µ h are formulated including integral feedback terms to ensure η d and η h d convergence to their respective residual sets, and thereby their boundedness. Then, Proposition 1 makes the bridge between the desired taskspace state η d and the corresponding desired robot state x d by showing that if the former is bounded so is the latter. Finally, based on Assumption 1 and Proposition 1, Proposition 2 establishes the boundedness relationship between η d and η.

Proposition 1. If η d (resp. η h d ) is bounded, so is x d . Proof. See Appendix B. Proposition 2. If η d (resp. η h d ) is (uniformly) ultimately bounded then η (resp. η h ) is (uniformly) ultimately bounded. Proof. See Appendix C.
Let us introduce the following states

ψ = e T ėT ėT d T , ψ ∈ Ψ ⊂ R 3m , ψ h = h T ḣT ḣT d T , ψ h ∈ Ψ h ⊂ R 3 ,
where Ψ and Ψ h are the admissible values of ψ and ψ h , respectively; they are used for µ and µ h formulations, resp.

A. Global Robust Stable Task Formulation

When the solutions of (17) converge to a residual set Ω ⊂ H with 0 ∈ Ω for all initial conditions and admissible perturbations, η d is said to be Robustly Globally Uniformly Asymptotically Stable w.r.t Ω (RGUAS-Ω). The robust stabilization problem consists in finding µ such that η d is RGUAS-Ω. If Ω can be made arbitrarily small (but still not equal to the origin), η d is said to be robustly practically stable (see Definition in Appendix A). An illustrative scheme of RGUA-Stability is shown in Fig. 9. In the following, we state the main result of this subsection. Theorem 1. Let us assume that η φ is bounded. If

µ = -Lψ, L = K s K d K i ∈ R m×3m , ( 37 
)
where K s , K i ∈ R m×m are diagonal positive-definite matrices, and

K d chosen such that Fη d = A η d -B η d Ǩ is Hurwitz, with Ǩ = [K s K d + K i ],
then there exists K i such that η d is robustly practically stable.

Proof. See Appendix D.

From Proposition 2 and Theorem 1, η is uniformly ultimately bounded with ultimate bound ˜ . Comparatively to [START_REF] Lim | Backward ladder climbing locomotion of humanoid robot with gain overriding method on position control[END_REF], [START_REF] Polverini | Robust constraint-based robot control for bimanual cap rotation[END_REF] penalizes the integral term ėd (t) = t 0 µ(s)ds growth ensuring the desired task state η d is bounded despite the presence of disturbances and non-modeled dynamics η φ . This is the key feature for robust stability. The 'global' property comes from the fact that stability is ensured for every bounded Kη φ whereas in [START_REF] Singletary | Safety-critical manipulation for collision-free food preparation[END_REF] it is required to be 'sufficiently' bounded. Also, the 'practical' aspect denotes the ability of the integral gain (that can be tuned independently from the stiffness and damping) to reduce the effect of the perturbation as shown in (67) making the residual set Ω η d arbitrarily small. Nevertheless, (67) does only prove the existence of a set of integral gains K i enforcing robust stability without providing a constructive method to compute them. In practice, we do not know the task stiffness that will turn the closed-loop system instable as it depends on the executed task and the robot non-modeled joint-dynamics. Hence, the necessary amount of integral gain for robust stability is not known a priori.

To show the effect of the integral gains on the closed-loop system dynamics, let us take the system in Section III-A with the instable configuration (see Fig. 7) and add the integral feedback term. Figure 10(a) shows that low integral gain values do not achieve robust stability since the condition (67) is not satisfied. If the integral gain is increased, robust stability is recovered, as shown in Fig. 10(b), but oscillations still exist at the reference target qref . These oscillations can be damped by increasing the integral gain to smoothly reach qref while counterbalancing the external perturbation (Fig. 10(c)).

Figure 10(d) shows that further increasing the integral gain overdamps the system response. The convergence smoothness is preserved at the expense of a higher settling time.

Another interesting aspect is that Fη d being Hurwitz implies that K d can be chosen negative-definite as long as K d + K i is positive-definite. Indeed, let us assume K d < 0 and

K i = ε|K d | (element-wise) with ε = 1+ε 0 , ε 0 > 0 yielding to µ = -K s e -K d ė -K i ėd , = -K s e -ε 0 |K d | ėd -|K d |( ėd -ė), (38) 
ε 0 is tuned to meet robustness condition (67). Eq. [START_REF] Kim | Dynamic behaviors on the nao robot with closed-loop whole body operational space control[END_REF] shows that ėd is enforced to converge to zero while drifting toward ė due to ( ėdė) feedback term. This is similar to the leaky-integrator proposed in [START_REF] Hopkins | Compliant locomotion using whole-body control and divergent component of motion tracking[END_REF] when [START_REF] Kim | Dynamic behaviors on the nao robot with closed-loop whole body operational space control[END_REF] is performed in joint-space (i.e., posture task). Our claim is that performing a task-space integral feedback is more intuitive and enables a better understanding of the underlying conditions on task gains tuning while not affecting the QP solution optimality 9 .

It also enables robust stability of each task in multi-objective control case, see Section IV-C (Proposition 3).

The term ( ėdė) in ( 38) induces compliance w.r.t robot response in terms of velocity. Figure 11 shows this behavior. When the external disturbance is applied, the desired task velocity qd immediately converges to zero in Fig. 11(a). Conversely, qd drifts first toward q (since the amplitude of ( qdq) is predominant) then converges back to zero in Fig. 11(b). In terms of position, the desired task position qd slightly drifts toward q then counterbalances the external disturbance. This feature is exploited in Section V-B. Note that by setting K i = 0, the output feedback (33) is recovered. Namely, the proposed approach does not constitute a substantial modification of the QP controller.

In the next subsection, we take inspiration from [START_REF] Polverini | Robust constraint-based robot control for bimanual cap rotation[END_REF] to formulate Robust ECBF (RECBF) to enforce set robust stability.

B. Set Robust Stability Formulation

Let us define the sets C σ , C dσ ⊂ R 13+2n with σ ≥ 0

C σ = x ∈ R 13+2n : h + σ ≥ 0 , (39) 
C dσ = x d ∈ R 13+2n : h d + σ ≥ 0 . ( 40 
)
Before introducing the main result of this subsection, we define set robust stability and RECBF. The former is illustrated in Fig. 12. Definition 1. A closed set S ⊂ R 13+2n is said to be robustly stable for a forward complete system (7) if ∃ σ ≥ 0, a closed and forward invariant set S σ ⊂ R 13+2n , and an open R ⊆ R 13+2n with S ⊆ S σ ⊂ R such that S σ is asymptotically stable.

Let us now define RECBF to enforce set robust stability. I, τ l = 5 N.m is applied at t = 10 s, under heterogeneous feedback [START_REF] Polverini | Robust constraint-based robot control for bimanual cap rotation[END_REF]. (a

) µ = qd = -Ks q -K d q -K i qd , Ks = 30, K d = 2 √ Ks, K i = K d . (b) µ = qd = -Ks q -K i qd -|K d | qd -q , Ks = 30, K d = -1.8 √ Ks, K i = 3.2 √ Ks.
h d : R 13+2n → R, then h d is a RECBF if there exists µ h ∈ R such that for [START_REF] Salini | Synthesis of complex humanoid whole-body behavior: A focus on sequencing and tasks transitions[END_REF],

sup αq d ∈U Jh d α q d + J h d αq d + µ h ≥ 0, (41) 
results in C d is robustly stable.

Inspiring from Theorem 1, Theorem 2 proposes a formulation for µ h that guarantees the robust stability of C d . I with τ l = 5 N.m, under RECBF [START_REF] Siciliano | Robotics: modelling, planning and control[END_REF] with

K h i = εK h d .
Theorem 2. Let us assume η h φ bounded. If

µ h ≥ -L h ψ h , L h = K h s K h d K h i , (42) 
where

K h i > 0 and Ǩh = K h s K h d + K h i ∈ R 1×2
is chosen according to ECBF definition in Section II-C1, then there exists K h i such that h d in (28) is a RECBF, and the set C d is robustly stable.

Proof. See Appendix E.

By virtue of Proposition 2 and following from Theorem 2, η h is uniformly ultimately bounded with ultimate bound σ and thereby it converges to asymptotically stable set C σ defined as [START_REF] Pfeiffer | The hierarchical newton's method for numerically stable prioritized dynamic control[END_REF]. Hence, the set C is rendered robustly stable as well.

Remark 3. Conceptually, Theorem 2 proposes the same solution as Theorem 1 and that is why the robustness conditions (67) and (76) are similar. This is because Theorem 2 does only perceive the 'origin' slightly different from Theorem 1: the former considers it as a 'set' whereas the latter perceives it as a 'point'. This fact can also be seen from Figs. 9 and 12: shrinking the set S to the origin in the latter directly brings us to the former. Hence, the task gains properties discussed for (37) apply as well to the RECBF constraint gains in [START_REF] Siciliano | Robotics: modelling, planning and control[END_REF].

As in Fig. 10, Fig. 13 shows the conservativeness of tuning the RECBF integral gain K h i , where the same scenario in Section III-B is performed. Low K h i values do not ensure robust stability. Increasing K h i leads to meet the robustness condition (76), and thereby damp the oscillations at the set boundary. Further increasing K h i helps to remove the oscillations but at the expense of slower convergence to the boundary. The latter requires high deceleration amount especially that RECBF constraint ( 42) is only inserted in QP at the neighborhood of C boundary 10 .

C. Weight-Prioritized Multi-Objective Robust QP Formulation

By replacing [START_REF] Polverini | Robust constraint-based robot control for bimanual cap rotation[END_REF] and ( 42) in (32a) and (32c), respectively, the weight-prioritized multi-objective robust QP writes as

α * q d , f * = arg min w 0 2 S αq d +κ(x) 2 + 1 2 j=1 w j J j d αq d + Jj d α q d -s j ref (t)+ L j ψ j 2 (43a) s.t. (4), (5) (43b) -J h d αq d ≤ Jh d α q d + L h ψ h (43c) J c d αq d = -Jc d α q d -kJ c d α q d (43d)
with j indexing the task s j . From the structural standpoint, the proposed robust QP ( 43) is similar to the classical weightedprioritized templated QP [START_REF] Suárez-Ruiz | Can robots assemble an ikea chair?[END_REF]. Our contribution is in modifying 10 The number of rows of the constraint matrix is increased in consequence. This is very usual/common in our controller which is based on a Finite State Machine (FSM) which role is to elect the tasks and constraints depending on the current goals.

the task and constraint formulations based on the sum of stiffness and damping terms (computed based on the robot measurements) to include feedback integral terms (computed based on the desired robot state). Our robust formulation does not call for a substantial modification in the QP formulation as in [START_REF] Feng | Optimizationbased full body control for the DARPA robotics challenge[END_REF], nor for much additional computation as the integral terms are obtained by forward velocity, see Fig. 5.

Relatively to (32a), (43a) shows that the robust task formulation [START_REF] Polverini | Robust constraint-based robot control for bimanual cap rotation[END_REF] is straightforwardly extended to the multi-task case where the integral term corresponding to each task s j is added. Due to the subsequent conflicts that may arise between the different tasks, s j is likely to be achieved partially according to its associated weight w j ≥ 0 and the potential active constraints 11 in QP [START_REF] Sontag | Input to State Stability: Basic Concepts and Results[END_REF]. This implicit relaxation writes

µ j = -L j ψ j + δ j (t), (44) 
with δ j (t) ∈ R m assumed bounded δ j (t) ≤ δ j max , ∀t ≥ 0. Proposition 3 generalizes Theorem 1 to the multi-task case. Proposition 3. Consider (44) such that Theorem 1 conditions hold. Then, there exists K j i ∈ R m×m positive-definite such that η j d is practically robustly stable. Proof. See Appendix F.

Note that thanks to Propositions 1 and 3 and Theorem 2, x d is bounded after double integration of αq d solution of [START_REF] Sontag | Input to State Stability: Basic Concepts and Results[END_REF].

Remark 4. In [START_REF] Sontag | Input to State Stability: Basic Concepts and Results[END_REF], only one RECBF constraint is considered. In the more general case, the QP constraints set encompasses: (i) several RECBFs (joint constraints, collision avoidance, CoM equilibrium region, etc.), and (ii) explicit bounds on qd . Therefore, we highlight two important aspects: First, Theorem 2 assumes that U = R 6+n which may not hold. Second, since all the constraints have the same level of priority, the QP will be infeasible if these constraints are in conflict (incompatible, i.e., empty feasibility domain) [START_REF] Decré | Extending itasc to support inequality constraints and non-instantaneous task specification[END_REF]- [START_REF] Del Prete | Joint position and velocity bounds in discrete-time acceleration/torque control of robot manipulators[END_REF].

V. EXPERIMENTAL RESULTS AND DISCUSSION

To assess our robust QP controller and demonstrate its applicability to different use-cases, experiments are conducted with two different robots: a fixed-base 7-DoF robotic arm Panda from Franka Emika, and a (floating-base) 34-DoF humanoid robot HRP-4 from Kawada Robotics. The latter is controlled in position at a frequency of 200 Hz, whereas the former can be controlled either in position or in velocity modes at a control frequency of 1 kHz.

Both robots are controlled using the open source code implementation of the QP controller mc_rtc 12 with LSSOL solver. It includes a user task specification interface, debugging, data recording... for simulation as well as for realtime control. Based on the embedded sensors data (encoders, IMU, Force/Torque (F/T) sensors...), mc_rtc builds at each control-cycle the QP problem, based on user-defined tasks and constraints, and solves it. The QP decision variables are αq d and the contact forces f . As it is shown in [START_REF] Salini | Synthesis of complex humanoid whole-body behavior: A focus on sequencing and tasks transitions[END_REF] and Fig. 5, αq d is integrated twice to obtain x d , then the joint commands xd are sent to the actuated joint controllers. q is estimated using numerical derivation for HRP-4, whereas it is readily available in the Franka Control Interface (FCI) for Panda 13 . The floating-base state x FB of HRP-4 is estimated by a built-in kinematic-inertial observer based on an extended filter. The control is performed using a laptop Dell Precision 5540 with Intel Xeon(R) E-2276M processor (CPU 12 × 2.80 GHz) and 32 GB of RAM running under Linux Ubuntu 18.04.5 LTS.

A. Task Robust Stability

Tasks gains correlate to accuracy (performing motions with high precision) and execution speed (controlling the overall task time). Consequently, performing fast and precise motion requires increasing the task gains which leads to instability. In this context, the Panda end-effector is controlled to perform a pick-and-place-like motion. Two set-point targets (position and orientation) are defined (to which the end-effector converges back and forth); qd is the input command for the joint controllers. To have simple plots, only the target coordinate along the Y -axis varies with an amplitude of ±20 cm (Fig. 14).

QP [START_REF] Sontag | Input to State Stability: Basic Concepts and Results[END_REF] is formulated (the notations in Remark 1 are followed). such that the constraint set contains the kinematic constraints (joint-position and velocity constraints [START_REF] Djeha | Adaptive-gains enforcing constraints in closed-loop qp control[END_REF]); whereas, for comparison purpose, the task is formulated using: (i) output feedback ( 33), (ii) heterogeneous feedback [START_REF] Polverini | Robust constraint-based robot control for bimanual cap rotation[END_REF]. The task gains are set as K d = 2 √ K s and K i = εK d with ε = 0 for (33) and ε = 1 for (37). Since we do not know a priori the task stiffness that will turn the closed-loop system instable, K s is initially set to 400I, then it is increased over time by increments of 50I (K d and K i are updated accordingly).

Figure 15 shows the experiment results. For K s ≤ 450I, both feedback controls [START_REF] Lim | Backward ladder climbing locomotion of humanoid robot with gain overriding method on position control[END_REF] and [START_REF] Polverini | Robust constraint-based robot control for bimanual cap rotation[END_REF] lead to stable convergence to the targets. However, for K s = 500I, the closed-loop system with output feedback [START_REF] Lim | Backward ladder climbing locomotion of humanoid robot with gain overriding method on position control[END_REF] becomes instable (Fig. 15(a)) where strong oscillations and jerky motion appear at the end-effector mostly visible along the Z-axis (Fig. 17). This chattering can be very dangerous for the robot (accelerating drastically the wear of actuators and robot's structure) and the surrounding people or objects in the robot's neighborhood. Conversely, heterogeneous feedback (37) allows reaching robustly the targets while K s keeps increasing up to 850I (Fig. 15(b)).

Increasing the task gains results in high values of desired joint acceleration qd (Fig. 15(c)-(d)) which generates desired joint commands qd with fast variations that can not be well tracked by the joint controllers (Fig. 16(a)-(b)) due to the different rate limitations (acceleration, jerk) and the limited bandwidth. This leads to increase the joint tracking error φ in [START_REF] Herzog | Momentum control with hierarchical inverse dynamics on a torque-controlled humanoid[END_REF], and correspondingly its task-space mapping η φ in [START_REF] Feng | Optimizationbased full body control for the DARPA robotics challenge[END_REF]. Consequently, if the perturbation term Kη φ is not sufficiently bounded, the closed-loop system under output feedback [START_REF] Englsberger | Overview of the torque-controlled humanoid robot toro[END_REF] is instable. In particular, adding the task-space integral term in [START_REF] Polverini | Robust constraint-based robot control for bimanual cap rotation[END_REF] allows to withstand the perturbation by the gain K i as shown in (67) enforcing η d to remain bounded which leads to the boundedness of xd (by virtue of Proposition 1). 13 The FCI joint-velocity estimation is a low-pass filtered finite-difference.

In Fig. 15(b)-(d), we decided to stop at stiffness K s = 850I as, due to hardware limits, further increasing the task gains has no effect on the convergence performance (Fig. 16(b)). Although the joint controllers reached their maximum tracking performances, our approach enables a stable motion even though the task gains keep increasing and imposing desired dynamics that cannot be performed by the robot. Hence, the closed-loop stability has to be ensured whatever the task gains and the joint-dynamics. Yet, ensuring the stability goes at the expanse of K i conservative tuning.

B. Set Robust Stability

Among usual safety constraints common to all robots such as joint limits and self-collisions avoidance that are implemented here as extension of [START_REF] Djeha | Adaptive-gains enforcing constraints in closed-loop qp control[END_REF], a critical safety feature in humanoids is enforcing balance, which is given a higher priority over manipulation tasks. When there are no contact transitions, constraining the CoM position from acceleration bounds enforces robust balance [START_REF] Audren | 3-d robust stability polyhedron in multicontact[END_REF]. For co-planar feet contact, it is enough to confine the CoM of the HRP-4 humanoid robot to remain inside a conservative polygon (Fig. 18) such that its boundaries are reached with zero CoM velocity and acceleration. It is a conservative balance region because it is a subset of 3D balance set (polyhedron in multi-contact or prism in co-planar) that we use mainly for validation purpose. The robot CoM is pushed to the polygon boundaries by defining a sequence of Cartesian targets for the right hand to be reached. Rubber bushes and dampers are present under the robot ankles to absorb impacts at the feet while walking (Fig. 19). This shock-absorbing mechanism creates non-modeled underdamped flexibilities between the ankles and the feet. The latter are often observed in the form of small passive oscillations at the ankles which amplify through the whole structure. Their effect is not observed at the joints' encoders, but at the floating base state estimation (based on IMU measurements). Nevertheless, the joint feedback is used (along with the floating base state) to compute CoM Cartesian position and linear velocity. Moreover, the floating-base IMU noise affects the CoM estimation (denoted CoM(x) ∈ R 3 ).

The robot CoM is constrained to be within the balance polygon by defining inequality constraints on the distance between the CoM and the polygon features. The 3D case would simply result in more inequalities constraining the CoM within a precomputed polyhedron [START_REF] Audren | 3-d robust stability polyhedron in multicontact[END_REF]. The barrier functions h i and h i d corresponding to each balance polygon feature i are

h i = n i T CoM(x) + ∆ i , (45) 
h i d = n i T CoM(x d ) + ∆ i , (46) 
where n i ∈ R 3 is the i th feature's normal vector and ∆ i ∈ R is the distance at which the feature is placed w.r.t the origin along n i . From ( 45)- [START_REF] Blanchini | Set invariance in control[END_REF], the sets C i and C i d are defined as in ( 21) and [START_REF] Cisneros | Robust humanoid control using a qp solver with integral gains[END_REF], respectively. QP ( 43) is formulated to steer the right hand to its targets while the constraints set contains the contact forces constraint (5) and non-slipping contacts (43d). RECBF constraint ( 42) is then inserted if h i ≤ 4 cm14 . If QP is feasible then the CoM deceleration generated by ( 42) is achieved relying on feasible contact forces and consistent floating-base solution vd . In this experiment, qd is the input command for the joint controllers. For comparison purpose, three identical experimental scenarios have been conducted using the different closed-loop QP control schemes shown in Fig. 4: • Experiment 1: feedforward ECBF constraint (31); • Experiment 2: feedback ECBF constraint (36);

• Experiment 3: RECBF constraint [START_REF] Siciliano | Robotics: modelling, planning and control[END_REF].

The results are shown in Fig. 20. In the three experiments, K h s is computed as shown in [START_REF] Djeha | Adaptive-gains enforcing constraints in closed-loop qp control[END_REF] (Theorem 2). For Experiments 1 and 2, K h d = 2.4 K h s . 1) Experiment 1: see Fig. 20(a); the actual robot state x is not fed back to QP. We can see that CoM(x d ) is within the limits and the set C d [START_REF] Cisneros | Robust humanoid control using a qp solver with integral gains[END_REF] is made forward invariant. However, since the robot is accounted for in the closed-loop system, forward invariance is not ensured for the set C [START_REF] Lee | Online gain adaptation of whole-body control for legged robots with unknown disturbances[END_REF]. The mismatch between CoM(x d ) and CoM(x) leads the latter to overshoot X max limit with an amount of 2 cm, then to completely drift away from the polygon boundary at t = 50 s leading the robot to lose balance. (b) Closed-loop system under heterogeneous feedback (37) at stiffness Ks = 800I where qd is kept bounded even though it is not well tracked by q, leading to a stable response.

Fig. 17. Strong oscillations (highlighted in the yellow spot in Fig. 15(a)) due to non-robustness of output feedback control [START_REF] Lim | Backward ladder climbing locomotion of humanoid robot with gain overriding method on position control[END_REF]. The two superposed snapshots are taken with a time interval of T = 133 ms.

2) Experiment 2: see Fig. 20(b); the robot state is considered in closed-loop, but the ECBF formulation leads to instability. The bold dashed line shows the moment when ECBF constraint relative to X max limit is inserted. Instantaneously, CoM(x d ) velocity along X-axis starts to decrease (brown dash-dotted line). Nevertheless, CoM(x) velocity does not decrease immediately causing CoM(x) to keep moving toward X max boundary. This lag is due to the underdamped flexibilities dynamics. In fact, the ECBF produced deceleration is mapped mainly by QP to the ankles joints through [START_REF] Zanchettin | Motion planning for robotic manipulators using robust constrained control[END_REF] as a little motion at these joints leads to a larger motion of the robot whole-body. However, the flexibilities underdamped dynamics leads CoM(x) to overshoot CoM(x d ) and thereby the error η h φ in ( 25) increases: at t = 13 s, CoM(x d ) velocity is zero whereas CoM(x) is heading toward X max boundary with a velocity of 0.10 m/s. Then at t = 13.3 s, CoM(x) velocity reaches zero while CoM(x d ) is close to X min boundary with a velocity of -0.16 m/s. When CoM(x) starts moving backward, its velocity increases highly leading to insert the ECBF constraint (relative to X min boundary) with CoM(x) velocity reaching -0.22 m/s. At this point, the needed deceleration to stop CoM(x) at X min boundary is high enough so that the QP fails to find corresponding feasible contact forces fulfilling [START_REF] Djeha | Adaptive-gains enforcing constraints in closed-loop qp control[END_REF], and the feet tip over.

3) Experiment 3: see Fig. 20(c); the constraint integral gain

K h i = 8.4 K h s and K h d = -1.2 K h s < 0.
Note that Theorem 2 requirements are satisfied since K h d + K h i > 0 and thereby the eigenvalues of Fη d in (70) are strictly negative. In particular, RECBF constraint (42) writes similarly to (38)

µ h ≥ -7.2 K h s ḣd -0.6 K h s ḣd -ḣ -K h s h. (47) 
The feedback term ( ḣdḣ) in (47) helps to withstand the flexibilities effect. In fact, Fig. 21 shows that, when [START_REF] Xu | Robustness of control barrier functions for safety critical control[END_REF] relative to X max boundary is inserted, CoM(x d ) velocity converges to zero while drifting toward CoM(x) velocity (X coordinates). Consequently, the delay between CoM(x d ) and CoM(x) states is lowered. This compliance behavior is the key factor behind avoiding over-regulation that leads to excessive deceleration in Experiment 2. Also, compared to Experiment 1, CoM(x d ) compensates for joint-dynamics static error allowing CoM(x) to converge asymptotically to the [START_REF] Xu | Robustness of control barrier functions for safety critical control[END_REF]. Because of the high-stiffness joint controllers and high gear-ratio, the effect of the external disturbance forces is hardly observed at the joints' encoders. Yet, it can be measured by the floating-base observer affecting First, a Cartesian target is defined for HRP-4 right hand such that CoM(x) reaches the polygon boundaries X max and Y max . Then, the robot receives multiple external pushes from the operator (at the back and the shoulders) along X and Y axes (Fig. 22). Three persistent disturbance forces are applied, followed by two brief disturbances leading the flexibilities effect to enter into play (Fig. 23). During the whole experiment, CoM(x) is pushed away from the polygon boundaries with a distance of at least 2 cm. Here again, we can see the 23 showing the response against a persistent push. (b) Zoom-in the green time slot in Fig. 23 showing the response against a brief push. effect of the compliance feedback term. At the beginning of the persistent disturbance forces, CoM(x d ) slightly complies with the disturbance. Then, when the compliance term is less predominant, the compliance is lost and QP generates solutions such that CoM(x d ) counterbalances stiffly the disturbances enforcing CoM(x) to converge back smoothly to the polygon boundaries (Fig. 23(a)). When applying brief perturbations (Fig. 23(b)), CoM(x) converges asymptotically to the polygon boundaries while complying to the transient flexibility response. As in Experiment 3, the set C d is made robustly stable. Nevertheless and similarly to Section V-A, it goes at the expanse of K h i conservative tuning.

VI. CONCLUSION In this paper, we propose a stable and robust closedloop implementation of task-space QP control scheme for kinematic-controlled robots. Our solution allows free taskgains tuning and robust constraints design in the presence of non-modeled dynamics like joint-dynamics, flexibilities, and external disturbances. Our approach is proved to ensure the closed-loop stability by including integral feedback terms at both task and constraint levels leading to a robust convergence of their trajectories to the respective residual sets. Our method does not need the exact knowledge of the joint-dynamics model, but requires it to be ISS. Several experiments have been conducted on both floating-base and fixed-base robots to assess our new QP controller. Although not tackled in this paper, our approach can be extended to contact force control formulated as an admittance task [START_REF] Bouyarmane | Quadratic programming for multirobot and task-space force control[END_REF]. Future works will focus on reducing the conservativeness on the choice of the integral feedback gains K i and K h i . Also, the conflict of RECBF with other constraints that leads to QP infeasibility is still an open problem. Up to now, constraints compatibility in QP control paradigms is among the main open questions that have not been well addressed and where model predictive control could be a candidate approach.

APPENDIX

A. Notations and Definitions

Bold small letters stand for vectors, bold capital letters for matrices, and normal letters for scalars. In this work, there are three classes of variables:

1) those with subscript ref are the task-space reference targets given either by the operator or a task planner; 2) those with subscript d are the desired variables in (i) the joint-space resulting from the integration of the desired acceleration (direct output of the QP), or (ii) in the taskspace which are the mapping of the former; and 3) without any subscript are the variables tracking the desired once in 2) -R and R + are the sets of real and non-negative real numbers, respectively. For χ ∈ X , α χ is the velocity of χ. If X is Euclidean then α χ = χ. |χ| and χ denote the component-wise absolute value and the Euclidean norm of χ, respectively. χ ∞ = sup t≥0 χ(t) , χ ∈ R x is said to be bounded if χ ∞ < ∞. The transpose of χ is denoted χ T . λ(A), λ(A) denote respectively the minimum and maximum eigenvalues of matrix A. All Jacobian matrices used in this work are assumed to be non-singular.

γ : R + → R + is a class K ∞ function if it is continuous, strictly increasing, γ(0) = 0 and γ(s) s→∞ -→ ∞.

β : R + ×R + → R + is a class KL function if for each fixed t ≥ 0, β(s, t) is a class K function, and for each fixed s ≥ 0, it decreases to 0 as t → ∞.

Ω denotes the Euclidean point-to-set distance:

χ Ω = dist(χ; Ω) = inf {dist(χ, a)|a ∈ Ω} = inf a∈Ω χ-a . -Let us consider the system χ = f χ (χ, υ), (48) 
where χ ∈ R x and υ ∈ R u . For any initial condition χ(t 0 ) ∈ R x , there exists a maximum time interval I (χ(t 0 )) = [t 0 , t max ] such that χ(t) is the unique solution of (48) on I(χ(t 0 )). If t max = ∞ then f χ(t0) is forward complete. System ( 48) is said to be autonomous when υ = 0. A set S ⊂ R x is called forward invariant w.r.t autonomous system (48) if ∀χ(t 0 ) ∈ S then χ(t) ∈ S, ∀t ∈ I(χ(t 0 )).

In addition, a closed and forward invariant set S ⊂ R x is asymptotically stable for a forward-complete autonomous system (48) if there exist on open set R ⊇ S, and a class KL function β such that

χ(t) S ≤ β χ(t 0 ) S , t -t 0 , ∀χ(t 0 ) ∈ R.
-Robust Global Uniform Asymptotic Stability: [START_REF] Freeman | Robust control lyapunov functions: the measurement feedback case[END_REF], [START_REF] Freeman | Robust Nonlinear Control Design: State-Space and Lyapunov Techniques[END_REF] Consider the system

χ = f χ (χ, υ, t). (49) 
Fix a control υ, and let Ω ⊂ X be a compact set containing the origin. The solutions of the system (49) are Robustly Globally Uniformly Asymptotically Stable w.r.t Ω (RGUAS-Ω) when there exists class KL function β such that for all admissible measurements, admissible disturbance, and initial conditions (χ(t 0 ), t 0 ) ∈ X × R, all solutions χ(t) exist and satisfy

χ(t) Ω ≤ β( χ(t 0 ) Ω , t -t 0 ). (50) 
System ( 49) is robustly practically stabilizable when ∀ > 0 there exist an admissible control and a compact set Ω ⊂ X satisfying 0 ∈ Ω ⊂ B, with B the unit ball set, such that the solutions χ(t) are RGUAS-Ω.

-Rayleight-Ritz Inequality: [START_REF] Rugh | Linear System Theory[END_REF] Given a symmetric matrix A ∈ R x×x the following inequality holds ∀χ ∈ R x :

λ(A) χ 2 ≤ χ T Aχ ≤ λ(A) χ 2 . (51) 
-Schwartz inequality:

[59] ∀χ, ζ ∈ R x , |χ T ζ| ≤ χ ζ . (52) 

B. Proof of Proposition 1

Proof. The proof is established for η d , the same steps apply for η h d . Here, the dependency on time (t) is made explicit. Given [START_REF] Dedonato | Team wpi-cmu: Achieving reliable humanoid behavior in the darpa robotics challenge[END_REF] 

, let us assume ∃µ ∈ R m | η d (t) is bounded η d (t) ≤ M ⇒ e d (t) ≤ M ėd (t) ≤ M , ∀t ≥ 0, ( 
) ⇔ s(q d (t)) -s ref (t) ≤ M, J d α q d (t) -ṡref (t) ≤ M, 13 
Q = q d (t) ∈ R 7+n : s (q d (t)) = s ref (t) . ( 54 
)
15 In (54), s ref is assumed to be strictly reachable. Otherwise, we can define

Q as Q = q * d (t) ∈ R 7+n : q * d = arg min s (q d (t))-s ref (t) which leads to s (q ref (t)) = s ref (t)+δs(t), with δs(t) ∈ R m bounded.
The remaining of the proof is not affected. Thus, by putting ∆q d (t) = q d (t) -q ref (t), s (q d (t)) writes using Taylor expansion

s (q d (t)) = s (q ref (t) + ∆q d (t)) , = s ref (t) + R(∆q d (t)), R(∆q d (t)) = ∂s(q d (t)) ∂q d (t) q d (t)= qd (t) ∆q d (t), (55) 
where R(∆q d (t)) is the Lagrange remainder with qd (t) = q ref (t) + θ∆q d (t), 0 ≤ θ ≤ 1 [60, Chapter IV, Section 6]. From ( 53), [START_REF] Bouyarmane | Quadratic programming for multirobot and task-space force control[END_REF] we have

R (∆q d (t)) ≤ M. ( 56 
) If ∂s(q d (t)) ∂q d (t) is non-singular, then ∀θ with 0 ≤ θ ≤ 1 there exist b, b 0 , b ≥ b 0 > 0 such that [61] R (∆q d (t)) = b ∆q d (t) ⇒ ∆q d (t) ≤ M b , ⇔ q d (t) -q ref (t) ≤ ∆q d (t) ≤ M b , ⇒ q d (t) ≤ M b + q ref (t) . (57) 
Given that q ref (t) is bounded, then q d (t) is bounded. Now, let us prove that if ėd (t) is bounded then α q d (t) is bounded. α q d (t) can be written as

α q d (t) = αq d (t) + α # q d (t) such that α # q d (t) ∈ ker{J d } with α # q d (t) = I -J d + J d ν(t)
, where J d + is the Moore-Penrose Jacobian inverse and ν(t) ∈ R 6+n denotes the remaining velocity redundancy. In QP [START_REF] Sontag | Input to State Stability: Basic Concepts and Results[END_REF], the redundancy state is bounded by a secondary (posture) task. Furthermore, ( 5) and (43d) ensures bounded and feasible floating base solutions. Hence, ν(t) is bounded. Let us show the boundedness of αq d (t). From (53)

J d αq d (t) -ṡref (t) ≤ J d αq d (t)-ṡref (t) ≤ M, ⇒ J d αq d (t) ≤ M + ṡref (t) . (58) 
Given that J d is non-singular, then there exist b , b 0 with b ≥ b 0 > 0 such that [61]

J d αq d (t) = b αq d (t) ≤ M + ṡref (t) , ⇒ αq d (t) ≤ M + ṡref (t) b . (59) 
Hence, α q d (t) is bounded such that

α q d (t) ≤ αq d (t) + I -J d + J d ν(t) . (60) 
From ( 6) and following from ( 60) and ( 57 In addition, the robot floating-base state x FB (t) is bounded by assumption which leads to the boundedness of x (6). Thus, from ( 15) and ( 61), there exists an ultimate bound η = η d + η φ ∞ > 0, such that ∀M η = M η d + η φ (t 0 ) > 0, there exists T η = T η (M η , η ) > 0 such that

η(t 0 ) ≤ M η ⇒ η(t) ≤ η , ∀t ≥ t 0 + T η , (62) 
which yields to η(t) is (uniformly) ultimately bounded.

D. Proof of Theorem 1

Proof. Replacing [START_REF] Polverini | Robust constraint-based robot control for bimanual cap rotation[END_REF] in [START_REF] Dedonato | Team wpi-cmu: Achieving reliable humanoid behavior in the darpa robotics challenge[END_REF] yields to

ηd = Fη d η d -B η d Kη φ , (63) 
where Fη d and K are defined as in Theorem 1 and (33), respectively. Let us consider the following Lyapunov function associated to (63) 

γ 1 η d ≤ V (η d ) = 1 2 η d T P η d η d ≤ γ 2 η d (64) 
V ≤ - 1 -ϑ 2 λ(K i ) η d 2 - ϑ 2 λ(K i ) η d η d - 2λ(P η d ) K η φ ϑλ(K i ) , (66) 
with 0 < ϑ < 1. Thus, if K i is chosen such that

η d ≥ 2λ(P η d ) K ϑλ(K i ) η φ ∞ , (67) 
then V ≤ - 

µ h = -L h ψ h + δ h (t), 0 ≤ δ h (t) ≤ δ h max , (69) 
with δ h (t) a slack variable that facilitates the manipulation of [START_REF] Siciliano | Robotics: modelling, planning and control[END_REF]. Given (69), system [START_REF] Pang | Easing reliance on collision-free planning with contact-aware control[END_REF] becomes

ηh d = Fη h d η h d + B η h d -K h η h φ + δ h (t) , (70) 
where K h defined as in [START_REF] Bouyarmane | On weight-prioritized multitask control of humanoid robots[END_REF] 

= -Q η h d = - K h i 0 0 K h i . ( 72 
)
The goal is to show that there exists a set C dσ ⊇ C d such that V < 0, ∀x d ∈ R 13+2n \ C dσ . Using (72), V is computed as

V = - 1 2 η h d T Q η h d η h d +η h d T P η h d B η h d -K h η h φ +δ h (t) . (73) 
Using Rayleight-Ritz [START_REF] Decré | Extending itasc to support inequality constraints and non-instantaneous task specification[END_REF] and Schwartz (52) inequalities, (73) becomes

V ≤ - 1 2 λ(Q η h d ) η h d 2 + η h d P η h d B η h d K h η h φ + δ h (t) . (74) 
By putting ϕ = K h η h φ + δ h (t) , and given that λ(Q

η h d ) = K h i > 0, P η h d = λ(P η h d ), B η h d = 1, then V ≤ - 1 -ϑ 2 K h i η h d 2 - ϑ 2 K h i η h d η h d - 2λ(P η h d ) ϑK h i ϕ , (75) 
with 0 < ϑ < 1. Hence, if K h i is chosen such that

η h d ≥ 2λ(P η h d ) ϑK h i ϕ ∞ , ϕ ∞ = K h η h φ ∞ + δ h max , (76) 
then V ≤ - 
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 1 Fig. 1. Multi-objective control: HRP-4 robot right hand reaching a Cartesian target while being subject to several constraints.

Fig. 4 .

 4 Fig. 4. Different closed-loop QP control schemes for kinematic-controlled robots. The 'Double integrator' and 'Robot' blocks are detailed in Fig. 2 and Fig. 3, respectively. (a) Feedback QP. (b) Feedforward QP. (c) Proposed robust QP. A detailed overview is shown in Fig. 5.

qd τ l b 5 b 1 + b 2 Fig. 6 . 1 -

 51261 Fig. 6. 1-DoF joint-dynamics block scheme from which the system (35) is derived. It is DC motor servoed in position by a PD joint controller. The parameters a i=1,...,5 in Table I are as follows: a 1 = -b 1 b 3 , a 2 = -b 2 b 3b 4 , a 3 = -a 1 , a 4 = b 2 b 3 , a 5 = b 3 b 5 . The latter show the coupling between the PD gains (b 1 and b 2 ) of the joint controller and the electro-mechanical constants (b 3 , b 4 and b 5 ) of the DC motor. The systems 1 and 2 in TableIhave the same electro-mechanical constants but different PD gains.

Fig. 9 .

 9 Fig.9. RGUAS-Ω illustrative scheme. Two state trajectories are shown: the red one starts (squares) outside the residual set Ω then it converges to Ω over time, whereas the yellow one starts inside Ω and remains within it.

Definition 2 .

 2 Given a set C d ⊂ R 13+2n defined as the superlevel set of a 2-times continuously differentiable function

2 Fig. 10 .Fig. 11 .

 21011 Fig.10. System[START_REF] Shi | Multi-objective optimal torque control with simultaneous motion and force tracking for hydraulic quadruped robots[END_REF] response, with a i of System 1 in TableIand τ l = 5 N.m, under heterogeneous feedback[START_REF] Polverini | Robust constraint-based robot control for bimanual cap rotation[END_REF]. The integral gain K i = εK d . This choice follows the fact that both K i and K d act on velocity terms.

Fig. 12 . 5 Fig. 13 .

 12513 Fig. 12. The sets S, Sσ and R. R is open, Sσ is asymptotically stable and forward invariant, and S is robustly stable. If σ = 0, S and Sσ coincide. The colored trajectories denote three possible cases depending on the initial condition: in R (red), in Sσ (yellow), and in S (blue): the red one converges to Sσ and remains inside because of the set asymptotic stability; the yellow one cannot go out of Sσ because it is forward invariant; finally the blue one can slightly go out of S but remains inside Sσ (robust stability).

Fig. 14 .

 14 Fig. 14. Two superposed snapshots showing Panda end-effector converging to the two defined set-point pose targets.

Fig. 15 .

 15 Fig. 15. Panda response for the 'pick-and-place' task under different feedback controls. End-effector Cartesian coordinates and qd evolution under: output feedback (33) (a)-(c), heterogeneous feedback (37) (b)-(d). The horizontal scales under (a) and (b) denote the stiffness gain Ks within different time periods.

Fig. 16 .

 16 Fig.[START_REF] Johnson | Team ihmc's lessons learned from the darpa robotics challenge trials[END_REF]. Joint velocity tracking of the 2 nd joint. (a) Closed-loop system under output feedback[START_REF] Lim | Backward ladder climbing locomotion of humanoid robot with gain overriding method on position control[END_REF] at stiffness Ks = 500I leads to instability shown as fast oscillation of qd tracked by q. (b) Closed-loop system under heterogeneous feedback[START_REF] Polverini | Robust constraint-based robot control for bimanual cap rotation[END_REF] at stiffness Ks = 800I where qd is kept bounded even though it is not well tracked by q, leading to a stable response.

Fig. 18 .

 18 Fig. 18. Top-view of the humanoid robot HRP-4. The conservative equilibrium polygon is shown in red, the CoM in a yellow dot and the edges normal vectors in orange. The polygon is a rectangle in XY plane such that Xmax = 5 cm, X min = -2 cm, Ymax = 5 cm, Y min = -5 cm.

Fig. 19 .

 19 Fig. 19. Rubber bushes (yellow) and dampers (orange) under HRP-4 ankles that induce non-modeled flexibilities.

Fig. 20 .

 20 Fig. 20. Time Evolution of CoM(x), CoM(x d ) and their respective velocities coordinates along X and Y axes. (a) Feedforward ECBF constraint (31). (b) Feedback ECBF constraint (36). (c) RECBF constraint (42). The gray time slot is zoomed-in in Fig. 21.

Fig. 21 .

 21 Fig. 21. Zoom-in of the gray time slot in Fig. 20(c). The bold dashed line denotes the moment when the RECBF constraint relative to Xmax boundary is inserted in QP (43).

Fig. 22 .

 22 Fig. 22. Superposed snapshots of robust against pushing (experiment 4) in X (right-top) and Y (left-top) directions, with the corresponding top-view perspectives (bottom).

Fig. 23 .Fig. 24 .

 2324 Fig.[START_REF] Singletary | Safety-critical kinematic control of robotic systems[END_REF]. Robustness of RECBF[START_REF] Siciliano | Robotics: modelling, planning and control[END_REF] against external pushes. The blue time slot denotes a persistent external push (Fig.24(a)), and the green one denotes a brief external push (Fig.24(b)).

where γ 1 2

 12 are class K ∞ functions, and P η d = P T η d > 0 is the solution of the following Algebraic Riccati Equation (ARE)FT η d P η d + P η d Fη d = -Q η d = -T Q η d η d -η d T P η d B η d Kη φ . Given that B η d = 1, P η d = λ(P η d ) and λ(Q η d ) = λ(K i ) > 0,and using Rayleight-Ritz[START_REF] Decré | Extending itasc to support inequality constraints and non-instantaneous task specification[END_REF] and Schwartz (52) inequalities, V is bounded such that

TABLE I PARAMETERS

 I USED FOR SYSTEM (35) NUMERICAL SIMULATIONS.

		System 1	System 2	Units
	a 1	-376.5977 -2380.6356	s -2
	a 2	-158.5073	-173.5712	s -1
	a 3	376.5977	2380.6356	s -2
	a 4	2.8245	17.8884	s -1
	a 5	4.7034	4.7034	rad / N.m.s 2

  ) x d (t) is bounded implying that, given[START_REF] Englsberger | Overview of the torque-controlled humanoid robot toro[END_REF], ∃ αq d ∈ U such that x d (t) is bounded. As in Proposition 1 proof, Proposition 2 proof is established for η d (the same steps apply for η h d ) and the dependency on time (t) is made explicit. Let us consider system[START_REF] Dedonato | Team wpi-cmu: Achieving reliable humanoid behavior in the darpa robotics challenge[END_REF] and assume that there exists µ such that η d (t) is (uniformly) ultimately bounded. Then, there exists an ultimate boundη d > 0, such that ∀M η d > 0, ∃T η d = T η d (M η d , η d ) > 0 such that [49, Definition 4.6] η d (t 0 ) ≤ M η d ⇒ η d (t) ≤ η d , ∀t ≥ t 0 + T η d . (61)From Proposition 1 proof in Appendix B and[START_REF] Golub | Matrix Computations[END_REF], it yields that there exists xd = xd ( η d ) > 0 such that xd (t) ≤ xd , ∀t ≥ t 0 + T η d . Hence, from Assumption 1, we get φ(t) = x(t) -xd (t) ≤ σ ⇒ x(t) ≤ σ+ xd (t) ≤ σ+ xd , ∀t ≥ t 0 +T η d .

	C. Proof of Proposition 2
	Proof.

  1-ϑ 2 λ(K i ) η d 2 . By the virtue of [49, Theorem 4.18], η d is uniformly ultimately bounded with ulti-Given (67), the residual set Ω η d can be made arbitrarily small by K i . Hence, η d is robustly practically stable w.r.t Ω η d [57, Defintion 3.2]. E. Proof of Theorem 2 Proof. The matrix gain Ǩh is chosen to ensure that h d is ECBF for the nominal system η h φ = 0. Now, let us prove that η h d is uniformly ultimately bounded. Inequality (42) can be expressed as

	mate bound =	λ(Pη d ) λ(Pη d )	2λ(Pη d ) K ϑλ(Ki)
			(68)

η φ ∞ . Furthermore, ∀ η d (t 0 ) ≤ M there exist T = T (M, ) > 0, a class KL function β, and a closed set Ω η d = η d ∈ H : η d ≤ such that η d (t) Ωη d ≤ β η d (t 0 ) Ωη d , t -t 0 , ∀t 0 ≤ t ≤ t 0 + T, η d (t) Ωη d = 0, ∀t ≤ t 0 + T.

  , and Fηh d = A η h d -B η h

	us consider the following Lyapunov function [47] 16	d	Ǩh . Let
		V =	1 2 η h d	0, if x d ∈ C d T P η h d η h d , otherwise	(71)
	where P η h d = P T d η h	> 0 is the solution of the following ARE
	FT η h d	P η h d + P η h d Fη h d	

  ∞ . In addition, there exists a closed set C dσ which is asymptotically stable and forward invariant17 . Given that C d ⊆ C dσ then following from Definition 1, C d is robustly stable, and thereby, from Definition 2, h d is a RECBF. F. Proof of Proposition 3 Proof. The superscript i is dropped for the sake of clarity. Substituting (44) in (17) yields to ηd = Fη d η d -B η d Kη φ + B η d δ(t). Let us consider Lyapunov function V in (64) such that (65) holds. Following the same steps in Theorem 1 proof, V is bounded such that K η φ ∞ + δ max . Following the same steps in (68), η d is robustly practically stable w.r.t the residual set Ω η d = {η d ∈ H : η d ≤ }.

	1 2 K h i d is uniformly ultimately bounded with ultimate bound σ = η h d 2 . By the virtue of [49, Theorem 4.18], η h λ(P η h d ) λ(P η h d ) 2λ(P η h d ) i ϑK h ϕ V ≤ -1 2 (1-ϑ)λ(K i ) η d 2 -ϑλ(K i ) 2 η d η d -2λ(P η d ) ϑλ(K i ) K η φ + δ(t) . If K i is chosen such that η d ≥ 2λ(Pη d ) ϑλ(Ki) K η φ ∞ +δ max then V ≤ -1 2 (1 -ϑ)λ(K i ) η d 2 . From [49, Theorem 4.18], it follows that η d is uniformly ultimately bounded with ultimate bound λ(Pη d ) 2λ(Pη d ) = λ(Pη d ) ϑλ(Ki)

In literature, they are referred to in different ways: position-controlled robots, velocity-controlled robots, low-level impedance-controlled robots[START_REF] Yang | Learning whole-body motor skills for humanoids[END_REF],[START_REF] Iskandar | Joint-level control of the dlr lightweight robot sara[END_REF] and stiffness-controlled robots[START_REF] Pang | Easing reliance on collision-free planning with contact-aware control[END_REF].

https://youtu.be/gTVi1QsLQU4

The parameters of the joint-dynamics (joint controllers + actuators) are generally not known as they depend on the joint controller gains (fixed by the manufacturer not intended to be modified by the operator in almost all robots[START_REF] Kim | Dynamic behaviors on the nao robot with closed-loop whole body operational space control[END_REF]) and the actuators electro-mechanical constants.

For the sake of generality, both qd or qd (joint commands) are encompassed by xd in the joint-dynamics f φ in[START_REF] Hamed | Quadrupedal locomotion via event-based predictive control and qp-based virtual constraints[END_REF].

[START_REF] Djeha | Adaptive-gains enforcing constraints in closed-loop qp control[END_REF] A benchmark problem has been proposed in[START_REF] Moberg | A benchmark problem for robust feedback control of a flexible manipulator[END_REF] to simulate such disturbances.

Conversely to h(x) ≥ 0 which does not depend on the decision variables.

In the literature, there are reciprocal and zeroing barrier functions. They are equivalent to characterize forward invariance[START_REF] Ames | Control barrier function based quadratic programs for safety critical systems[END_REF]. Albeit, zeroing barrier functions are convenient for robustness study[START_REF] Xu | Robustness of control barrier functions for safety critical control[END_REF].

For a fixed-base robot, S = In.

In[START_REF] Hopkins | Compliant locomotion using whole-body control and divergent component of motion tracking[END_REF], feedback term related to ( ėdė) is added to αq d post QP computation, and thereby it may not be feasible. Moreover, only experimental observations have been reported about the effect of the joint-space leaky integrator gain without any explicit condition on its values.

An inequality constraint is active if it is enforced as equality.

https://jrl-umi3218.github.io/mc rtc/index.html

The value of this threshold is conservative (user choice), but it can be decided by a high-level task scheduler or a task planner. In this experiment, we chose this value to confine the region within which the CoM acceleration is unconstrained. This helps to keep the CoM acceleration at low values.

Note that (71) allows to use the same theoretical tools as in the proof of Theorem 1 in Appendix D.

Forward invariance and asymptotic stability follow from the uniform ultimate boundedness property of η h d .

This work is supported in part by the Research Project I.AM. through the European Union H2020 program (GA 871899).

M.