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ABSTRACT 

 

This paper presents the newest version of the 

annotation software Stylization and Labelling of 

Speech Melody (SLAM), a language-independent 

prosodic model that automatically annotates pitch 

contours in linguistic units of arbitrary length. We 

review the core principles of SLAM before describing 

several shortcomings and the innovations introduced 

in SLAM 3 to address them. These notably include 

methods implemented to minimize the influence of 

F0 microvariations and alignment errors and to better 

model the perception of short-duration pitch changes. 

Secondly, we present additional functionality 

allowing speech segments to be annotated relative to 

the mean pitch of their nearest neighbors, reducing 

the influence of downdrift on annotations. Finally, we 

demonstrate the utility of these changes by comparing 

SLAM 3 against its predecessor in terms of measured 

distances between their stylized outputs and the 

natural pitch contours used as input.    
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1. FUNDAMENTALS OF THE SLAM MODEL 

Stylization and Labelling of Speech Melody 

(SLAM1) is a program for automatically labeling the 

pitch contours of any linguistic unit fixed by the user. 

SLAM was developed in line with other perception-

based approaches to intonation  [1, 2, 3], aiming to 

produce simplified descriptions of natural F0 

contours that represent only perceptually salient 
variations. SLAM describes pitch contours’ relative 

height and shape using a finite set of discrete labels. 

The most distinctive benefit of this model is that it can 

be applied to various linguistic units of any size (e.g., 

syllables, words or syntactic phrases). 
Users are prompted to define two separate 

TextGrid tiers. The target tier provides a 

segmentation based on the linguistic unit the user 

wishes to study. If the target tier segments the sound 

file into syllables, labels will be produced for every 

syllable. Meanwhile, a support tier provides a higher-

level segmentation providing a reference pitch on 

 
1 https://github.com/vieenrose/SLAMplus 

which these contours are computed. Users may, for 

example, select the syllable as the target tier, and the 

utterance as the support tier. In this case, syllables 

would be annotated according to their pitch relative 

to the overall F0 of the wider utterance. Annotations 

therefore take into account the broader context of 

linguistic units. 

The SLAM model represents each stylized pitch 

contour as a textual label containing three key pieces 

of information: 

• The initial pitch value of the segment. 

• The final pitch value of the segment 

• The pitch value and relative position of the 

most prominent internal saliency, if applicable. 

At each of these three points, pitch values are 

represented as one of five symbolic tones ranging 

from H (extreme-high) to L (extreme-low). Each of 

these tones traditionally covers a pitch span of 4 

semitones, with the medium tone being centered on 

the mean F0 of the support unit.  
A high flat contour would therefore be described 

with the label hh, while a falling contour beginning 

with a medium pitch and ending with a low pitch 

would be assigned the label ml. If an extreme internal 

F0 value is detected, the contour is described with an 

additional symbolic tone, while its approximate 

position is specified using a numeric value ranging 

from 1 (beginning) to 3 (end). The contour mmh2 

describes a contour beginning and ending with a 

medium pitch and a high pitch maximum in the 

middle position. These examples are illustrated in 

Figure 1. These contours are calculated from the raw 

pitch contours used as input, after an automatic 
preprocessing phase using the LOWESS smoothing 

algorithm [4].   

 
 

Figure 1: Examples of contour labels 
 

SLAM+, the second major iteration of SLAM, 

introduced the ability to differentiate between local 
and global intonational registers, thus producing two 



contours for each target. A global contour was based 

on the mean pitch of the unit located in the support 

tier. A local contour used the target segment as the 

support, effectively calculating the contour using the 

mean pitch of the target itself.  
For a more detailed overview of the SLAM model, 

and of the core differences between the prior 

iterations, see [5] and [6].  

2. IMPROVEMENTS IN SLAM 3 

The following section presents several shortcomings 

of the previous iterations of SLAM, as well as the 

solutions introduced in SLAM 3. 

2.1. Alignment errors and F0 microvariations 

All stylized labels produced by SLAM include the 

initial and final pitch values of each alignment. The 

model is therefore sensitive to minor alignment errors 

and F0 microvariations at the edges of units. 

Articulatory constraints can have imperceptible 

impacts on F0  [7, 8]. If these occur at the edges of a 

target, the edge pitch values may be unrepresentative 

of the contour as it is perceived. To address this 

problem, SLAM 3 performs a linear regression, 

which allows a better prediction of the pitch values 

observed in the original contour. The endpoints of this 

regression are then used to determine the symbolic 

tones used in the stylization, as shown in Figure 2.    

 

Figure 2: Improved labels enabled by linear regression 

(hh instead of mm) 

Minor alignment errors could also cause significant 

inaccuracies in previous iterations of SLAM. If a 

target segment’s alignment boundaries were slightly 

overstepped by a neighboring segment’s F0 contour,  

that inaccurate information would be used in 

computing the target’s stylized contour. This issue is 

typical in automatically aligned corpora. Figure 3 

provides an example of a highly inaccurate contour 

label introduced by small misalignments at the left 

and right boundaries of the target.  
To reduce these errors, SLAM 3 disregards 

continuous F0 measurements of 30 milliseconds or 

less, provided that they occur at the very edge of a 

target segment and are isolated from other voiced 

segments by a gap of 50 milliseconds or greater. We 

find this heuristic sufficient to resolve most observed 

alignment errors in our corpora without excluding 

relevant pitch information elsewhere.  

 

 
Figure 3: Annotation error caused by misalignment 

2.2. Duration and the perception of pitch change 

The SLAM model was designed to model pitch 
contours as they are perceived in linguistic units of 

any length. Though prior versions of SLAM could 

theoretically be applied to syllables and other short 

segments, they neglected the influence of duration in 

the perception of pitch changes at these levels.  
Whether contours are perceived as flat tones or as 

glissandos is influenced not only by the pitch range 

traversed from start to finish, but also by the duration 

of the segments in question. A small pitch rise may 

be inaudible in a short-duration segment but easily 

perceived when spread over a longer timespan [9]. 

The glissando threshold refers to the rate of pitch 

change above which glissandos are perceived, and 

below which flat tones are heard. Hart et al. [1] 

estimated this using Formula 1, where Gt represents 

the threshold in semitones per second, and T the 

duration of the segment.  
   

(1) 
 
In SLAM 3, this formula is applied several times to 

ensure that annotations represent only pitch changes 

that are perceptible within a given duration. For a 

contour to be annotated as a rise or fall, it must now 

meet two conditions. As in previous versions of 

SLAM, its start and end points must fall within 

separate pitch windows associated with differing 

symbolic tones. However, the pitch difference 

between the endpoints must also exceed the glissando 

threshold calculated according to the timespan 

between those points. Otherwise, it is annotated as a 

flat tone whose pitch equals the mean of its endpoints.  

 

 

Figure 4: Differentiated annotations based on length 



The same principle is used in the detection of F0 

saliences, which are only included in the final 

annotation if the pitch changes on each side exceed 

the threshold, as shown in Figure 5.  

 

 

Figure 5: Differentiated annotation of pitch saliencies  

In addition to annotations that better represent how 

short-duration F0 variations are perceived, 

integrating the glissando threshold also resolves a 

longstanding problem with the SLAM model. 

Associating each of the five symbolic tones with a 

rigid pitch range can result in flawed and inconsistent 

annotations in some cases. If a nearly flat F0 contour 

nevertheless crossed the boundary between two 

symbolic tones, previous versions would 

automatically annotate it as a glissando, even in cases 

where the pitch movement was imperceptibly small. 

This problem is thoroughly described in [10], from 

which Figure 6 is adapted. 

Figure 6: Inconsistent annotations from rigid categories 

In this example, an imperceptible difference in height 
causes contour 1 and contour 2 to receive different 

annotations (mh and mm respectively) despite being 

perceptively indistinguishable. Meanwhile, contour 3 
is given the same annotation as 1, despite being 

highly distinct from it in both shape and pitch range.  
The glissando threshold ensures that contours 1 

and 2 would be treated as flat tones. Meanwhile, 

contour 3 would be correctly annotated as a rise (mh), 

assuming its duration is long enough to permit an 

audible pitch change. In this specific example, linear 

regressions also provide additional protection against 

inconsistent annotations. Since contour 1 falls within 

the medium window for most of its duration, the 

associated linear regression would fall entirely within 

the medium window. Consequently, contours 1 and 2 

would both be annotated as mm.  

2.3. Local contours and the F0 of target neighbors   

As discussed in section 1, the previous version of 

SLAM provided two different registers for generating 

stylized contours: a global register based on the mean 

F0 of a larger linguistic unit used as the support, and 

a local register that used the target as the support. 

Under this system, local contours accurately depicted 

rises, falls, and internal pitch saliencies. However, flat 

contours were systematically labeled mm regardless 

of their pitch values because the m label was centered 

on the mean F0 of the segment. This meant that even 

contours at the extremely high or low ends of the pitch 

spectrum were labeled mm, signaling a high degree of 

information loss regarding height.  
To increase the utility of the local register, 

SLAM 3 introduces a sliding local support window 

spanning N units to the left and right of the target. Its 

size can be directly set by the user. When producing 

a local contour label for a syllable, the m tone label is 

therefore centered on the mean F0 of a larger segment 

comprising the target and its neighbors. If it is 

assigned a size of 1, the window will span from the 

beginning of the target’s left neighbor to the end of its 

direct neighbor to the right. A window of size 2 will 

include two neighbors on each side, while a window 

of size 0 will function like SLAM+ by considering 

only the mean F0 of the target. Note that segments are 

only included in this window if they fall within the 

same support segment. This sliding support window, 

visualized in Figure 7, also helps to mitigate 

downdrift’s effects on the stylization, since the pitch 

labels only consider the target’s most immediate 

context. 

Figure 7: Target (Syl 2) and local support of size N 

2.4. Customizability and ease of use 

This paper has so far presented various improvements 

introduced in SLAM 3. While the correction of 

misalignments, the use of linear regressions, the 

glissando threshold, and the sliding window for local 

contours are all valuable additions, we have also 

aimed to make this iteration of SLAM as 

customizable as possible. All these additions can 

therefore be activated or deactivated independently in 
the software parameters. If all of them are 

deactivated, the software simply functions according 

to the same principles as its predecessor, SLAM+. 



Finally, SLAM 3 allows annotations to be 

automatically exported to a tsv file containing each 

segment's duration, textual content, and stylized 

contours in the target tier. This lets users directly 

analyze results using statistical analysis packages or 

spreadsheet software.  

3. EVALUATING SLAM 3 

3.1. Data and methodology 

To compare the effectiveness of SLAM 3 to that of its 

immediate predecessor, we produced a series of 

stylizations using both versions of the software. Our 

dataset was comprised of two random samples of ten 

files selected from two corpora representing 

languages of differing prosodic typologies: the 

Rhapsodie [11] corpus of French (Corpus 1), and the 

NaijaSynCor [12] corpus of Nigerian Pidgin (Corpus 

2). In all files, word-level alignments were used as the 

target, with the utterance used as the 

support. Contours were also generated using a variant 

of SLAM 3 that disregarded the glissando threshold 

(represented as S3-G in section 3.2).  

The stylizations were then converted into 

numerical lists representing pitch contours, from 

which the mean absolute error (MAE) and mean 

squared error (MSE) were computed between the 

reconstructed contours and smoothed versions of the 

originals. Only the global register was considered in 

this study, since SLAM 3 bases its local register on a 

sliding support that was not featured in previous 

versions.  

3.2. Results 

Table 1: Results of evaluation (best scores in bold) 

This test yielded similar results on both corpora. 

SLAM 3 consistently produced a lower MAE and 

MSE than SLAM+. This indicates a meaningful 

improvement over the previous version. Excluding 

the glissando threshold resulted in a more modest 

reduction in the mean error in most cases. In 

Corpus 2, this yielded an approximately 3% reduction 

in both MAE and MSE compared to SLAM 3. The 

impact of this approach on Corpus 1 is negligible, 

with an approximately 1% reduction in MAE coupled 

with an equivalent increase in MSE.  

4. CONCLUSION AND DISCUSSION 

We have presented several changes introduced to 

address shortcomings in the previous versions of the 

SLAM prosodic modeling software. These 

innovations were then evaluated by comparing the 

performances of the most recent version of SLAM 

and its predecessor in a task designed to measure 

similarity between their stylizations and the original 

contours used as input.  

For both corpora used in this study, SLAM 3 

performed significantly better than SLAM+ at 

modeling the smoothed pitch contours used as inputs. 

These results nevertheless contain an inconsistency 

that merits further exploration. In Corpus 1, 

excluding the glissando threshold made a negligible 

difference in the mean error between the input 

contours and those reconstructed from the stylized 

labels. However, doing so significantly improved the 

performance of SLAM 3 on Corpus 2. 

 These varying results can be explained by 

fundamental differences between the two corpora. 

Files in Corpus 2 are characterized by a higher speech 

rate and more spontaneous discourse. The corpus 

should therefore contain more short-duration 

segments labeled as flat tones when the threshold is 

considered, leading to less accurate labels when 

measured in terms of objective pitch movements. 

Corpus 1, with its slower speech rate, would contain 

fewer pitch movements labeled as flat tones. Prosodic 

differences between French and Nigerian Pidgin are 

also likely to have played a role. Given the presence 

of lexical tone in the latter, it is logical that Corpus 2 

would contain more monosyllabic words with large 

pitch changes. 

These results highlight the utility of the features 

introduced by SLAM 3. However, they also underline 

the need to supplement our evaluations with 

perceptual tests. While the glissando threshold 

contributed to inconsistent mean error rates, it should 

not be concluded that it weakens the model. Indeed, 

this addition is intended to better represent pitch 

changes as they are perceived. The test performed in 

this study measures how well the model represents 

any change in F0, including those that are not 

perceptible.  

In future studies of SLAM, we will provide a more 

comprehensive evaluation approach that combines 

both objective metrics and perception tests involving 

multiple unbiased participants. Informal explorations 

of our data already reveal promising results in this 

regard, with labels based on the glissando threshold 

better representing contours as we perceive them. 

Given the highly customizable nature of this latest 

version, SLAM 3 also allows users to choose the 

modeling approach which best suits their needs.  

 Corpus 1 Corpus 2 

 MAE MSE MAE MSE 

S+ 1.106 1.467 1.036 1.347 

S3 1.021 1.369 0.975 1.278 

S3-G 1.011 1.381 0.943 1.258 
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