

Surface nano-structuration of 4H-SiC by controlled high-temperature annealing

IWUMD23

E. Vuillermet¹, E. Usureau¹, R. Deturche¹, M.Lazar¹

¹L2n, CNRS EMR 7004, UTT, France

NANO-PHOT

INTRODUCTION

Properties of SiC

	6H-SiC	4H-SiC	3C-SiC	Si
λ (W/cm.K)	4,9	3,7	3,6	1,56
T _s or T _f (K)	T _s : ~2840 T _f :			T _f : ~1690
Eg (eV)	3,0	3,26	2,2	1,12
Ec (x10 ⁶) (V/cm)	3 à 5	3 à 5	1	0,25 à 0,8

C-M. Zetterling and M. Östling, Ed. INSPEC, Process Technology for Silicon Carbide Devices (2002)

- More than 200 polytypes
- Wide bandgap semiconductor
- Great thermal conductivity and thermal resistance

INTRODUCTION

PN Junction Theory, https://www.electronics-tutorials.ws/diode/diode_2.html

- \rightarrow Not an active LED material
- → p-n junction: donor-to-acceptor pair luminescence (depends on doping, point defects...)

CONCLUSION

SiC for optoelectronics

Vertical UV LEDs on SiC

Hongwei Liang et al, Jpn. J. Appl. Phys. 55 (2016)

A. Lohrmann *et al, Nat. Commun.(2015)*

INTRODUCTION

lssue

High refractive index of SiC (2.65 at 590 nm) → extraction of light is not optimal Need surface micro(nano)-structuring → anti-reflectance structures

E-beam lithography of N-B doped 6H-SiC

Y. Ou et al, Mater. Sci. Forum. 740-742 (2013)

Nanosphere lithography of N-B doped 6H-SiC \rightarrow Si₃N₄ coating of nano-domes Y. Ou *et al*, Scientific Reports, 4 (2014)

Idea: control of Si sublimation at SiC surface with **high-temperature annealing** \rightarrow fast nanostructuring of surfaces for local and large areas

OUTLINE

7

UV PHOTOLITHOGRAPHY

Formation of p-n diodes

UV PHOTOLITHOGRAPHY

- SF6; 100/1000W
- 3µm etched

Formation of p-n diodes

Formation of p-n diodes

Formation of p-n diodes

SURFACE PROTECTION

- AET pyrolysis furnace
- Heating 30min at 750°C under Ar

Resist → Graphite layer

Formation of p-n diodes

HIGH-TEMPERATURE ANNEALING

- AET RTP graphite resistive furnace
- 2°C/s heating ramp
- Heating at 1500, 1600, or 1700°C for 30min

Si sublimation \rightarrow Rough surface

OHMIC CONTACTS

- E-beam evaporation
- Vacuum at ~5x10⁻⁶ bars
- Ti/Ni on the back
- Ti/Ni/Al/Ni on top
- 90s-annealing at 800 (top) or 900°C (back)

Vertical C-V measurements

Patent: Création d'une fenêtre de sortie de rayonnement pour un composant photoémetteur, *Mihai Lazar, Dominique Planson, Hervé Morel, Gilles Lerondel, Komla Dunyo Nomenyo.* France. N° FR2201067. 2022.

Formation of p-n diodes

Surface aspect after annealing at 1700°C

Optical microscope

SEM

Roughness of the surface after annealing (AFM)

• The needles are thinner when the annealing temperature increases

[•] Needle-shape morphology of the surface

Roughness of the surface after annealing (AFM)

- Needle-shape morphology of the surface
- The needles are thinner when the annealing temperature increases
- The roughness increases with the annealing temperature

Annealing T° (°C)	1500	1600	1700
Height of the steps (nm)	10	35	80

1700°C

3. ELECTROLUMINESCENCE

Electroluminescence

- Blue-green electroluminescence at 5V → extraction of light
- No change in intensity was seen under the microscope between the different annealing temperatures

4. PHOTOLUMINESCENCE

UV excitation 325nm

PL: Raman bench

PL at 390nm \lor when T $\nearrow \rightarrow$ phonon-assisted band-to-band recombination PL at 420nm \nearrow when T $\nearrow \rightarrow$ peak looks like induced by stacking faults (SF)

- Bipolar degradation (SF expansion)?
- Does annealing favor bipolar degradation?

CONCLUSION

- High-temperature annealing changed the surface morphology and roughness
- Slight etching of the surface occurs due to Si sublimation
- Electroluminescence of the p-n diodes obtained but not quantified (set up under revisions)
- PL measurements: high-temperature annealing induced stacking faults generation so we obtained a peak at 420nm

Thank you !

