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Abstract
The emission mechanism in ZnS-capped 3-nm CuInS2 nanocrystals was studied by using
time-resolved photoluminescence (TRPL). A typical TRPL spectrum demonstrates two broad
emission bands. The spectral shifts as functions of the excitation power density and delay
times from the excitation moment prove that both emission bands originate from
donor-acceptor pair recombinations. Moreover, the temperature-dependent TRPL
measurement revealed the importance of trapping sites in the emission mechanism of CuInS2

nanocrystals.
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1. Introduction

Cd-based quantum dots (QDs) or nanocrystals (NCs), such
as CdSe and CdTe, and their core/shell systems have
been successfully synthesized by different methods [1–5].
High-quality CdSe and CdTe QDs are characterized by
their narrow photoluminescence (PL) spectra (full-width at
half-maximum of 20–40 nm) resulting from a narrow size
distribution, and a high PL quantum yield (QY). These
characteristics make them potentially applicable in biological
labeling [1–3] and optoelectronic devices, including light
emitting diodes and solar cells [4, 5]. Besides many
advantageous features, however, the existence of Cd in
the mentioned QDs is problematic because of its toxicity
and the accumulation of heavy metals in the human
body. Recently, in searching for alternatives, some different
materials, such as ZnSe, InP, CuInS2, etc, have attracted
much attention [6, 7]. Among them, CuInS2 (hereafter
called CIS), a chalcopyrite semiconductor, seems to be a
good candidate from the optical point of view, along with
the requirement of Cd-free materials [8–12]. Chalcopyrite
semiconductors, such as Cu(In/Ga)(S/Se)2, have been
investigated mostly due to their potential in photovoltaic

devices, especially for use in space stations, because they
are very resistant to cosmic rays. In addition, the quantum
structure of chalcopyrite semiconductors enables them to
emit in the visible spectral range. Recently, there have been
some publications on the synthesis of CIS NCs and their
luminescence properties [13–18].

For single crystals of CIS, detailed studies of the optical
transitions and the identification of the origin of emission
have been reported [9, 11]. For CIS NCs, however, different
interpretations of the observed emission properties can be
found in literature. Castro et al assigned the observed PL
bands in CIS NCs to intrinsic defects based on a comparison
between the obtained emission energy and the energy
levels from CIS single crystals [13]. In another point of
view, Hamanaka et al considered that the emission in CIS
NCs originates from radiative recombination after stepwise
hopping of electrons and/or holes among surface sites [16].

The aim of this paper is to interpret the optical processes
in CIS/ZnS core/shell NCs based on the experimental results
obtained from absorption, steady-state PL (SSPL) and
temperature-dependent time-resolved PL (TRPL) measure-
ments. The latter technique helped us to make important
progress in the determination of the emission origin in CIS
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NCs. Moreover, temperature-dependent TRPL measurement
has helped us to reveal the importance of trapping sites in
their emission mechanism.

2. Experimental

For absorption and SSPL measurements, CIS/ZnS NCs
were measured in colloidal solution in chloroform. For
temperature-dependent TRPL measurements, the samples
were prepared as solid close-packed films by dropping
CIS/ZnS NCs in chloroform onto a Cu plate that then could
bind easily to the cold finger of a closed-cycle helium cryostat.
Details of the CIS/ZnS NCs preparation were described
in our previous article [18]. For comparison, a pulsed
nitrogen laser (emitting at 337.1 nm, ∼ 1 ns pulse duration
and repetition rate of 25 Hz) was used as the excitation source
for both SSPL and TRPL measurements. For SSPL, the PL
signals were dispersed by a 0.55-m grating monochromator
(Horiba Jobin-Yvon iHR550) and then detected by a
thermoelectrically cooled Si-CCD camera (Synapse). For the
TRPL measurements, the PL signal was dispersed by a
0.6-m double grating monochromator (Jobin-Yvon HRD1)
and detected by a fast and sensitive photomultiplier (PMT,
H7313 Hamamatsu). The excitation power density was set
in the range of 6 kW cm−2 to 1 MW cm−2 on the sample
surface by using different combinations of neutral density
filters. At each specific wavelength of the spectrum under
measurement, an electrical signal pulse from the PMT was
recorded showing the corresponding PL-decay curve. Thus,
we could determine the PL decay-time at every wavelength
in the PL spectrum. Then, by extracting the PL intensity
as a function of time delayed from the excitation moment,
the whole TRPL spectra at a certain delay time could be
reproduced. With a multi-pulse average at each spectral point
using a 1.5 GHz digital oscilloscope (LeCroy 9362), the
signal-to-noise ratio was significantly improved.

3. Results and discussion

A typical absorption spectrum of the CIS/ZnS NCs dissolved
in chloroform is shown in figure 1. The observed shoulder
at ∼ 2.3 eV in the absorption spectrum could be assigned to
the excitonic transition in the CIS NCs. The peak energy
is about 0.7 eV larger than the bandgap energy (1.53 eV)
of CIS bulk crystal, indicating the quantum confinement
effect in the studied CIS NCs. The SSPL spectrum measured
under the 337.1-nm pulsed laser excitation is also presented
(figure 1(b)). A broad PL band with full width at haft
maximum of 380 meV and a large Stokes shift of several
hundreds of meV are observed. These features suggest that
the observed PL band does not originate from the excitonic
transition but from recombination of electrons and holes in
defect states. To further elucidate the origin of the PL band,
TRPL measurement was performed with the close-packed
CIS/ZnS NCs. The evolution of the emission with time
elapsed from the excitation moment demonstrates two spectral
components. At a very long delay time of 1 µs (figure 1(c)),
the TRPL spectrum looks similar to the SSPL spectrum of
the close-packed CIS/ZnS NCs because at that delay time
one can record only the long-lifetime spectral component
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Figure 1. (a) Absorption and (b) SSPL from the 3-nm colloidal CIS
NCs dissolved in chloroform; and (c) TRPL spectrum at long delay
time (of 1 µs) elapsed from the excitation moment. Note that the
TRPL spectrum was taken from close-packed CIS NCs in a thin
film.

in the low energy region. A small red-shift of its emission
peak energy as compared to that of colloidal CIS/ZnS NCs
dissolved in chloroform is expected due to superposition of
the two spectral components in the SSPL spectrum, while in
the TRPL spectrum only the long-lifetime spectral component
in the low energy region is observed. This is also due
to energy transfer and/or charge carrier transfer between
the close-packed CIS/ZnS NCs, consistent with what was
observed in the case of InP/ZnS NCs [19].

Deconvolution of the TRPL spectra at some different
delay times has been achieved, showing the peak energies of
the two spectral components as a function of the delay time
(figure 2). The spectral component located at higher energy
(∼ 1.9 eV) decays faster, with a decay-time estimated to be
tens of nanoseconds; the other one located at lower energy
(∼ 1.73 eV) decays in several hundreds of nanoseconds.
The decay times of both spectral components are very
long as compared to that of the excitonic transition, which
again rules out the assignment of these bands to originate
from the excitonic or excitonic-related transitions. With
increasing delay time from the excitation moment, both
peak energies of these two spectral components shift to the
lower energy region. The delay-time-dependent behavior of
the peak energies indicates the donor–acceptor pair (DAP)
recombination nature of the emission. This is because the
Coulomb interaction between donors and acceptors modifies
the binding energies, and hence the distant DAPs possess
lower transition energies. The transition probability between
nearby DAPs is higher than that between distant pairs due
to a larger overlap of donor and acceptor wavefunctions. As
a result, the recombination rate for high-energy transition
becomes high in comparison with that for a low-energy
transition, resulting in the red-shift of peak energies with the
delay time.

Figure 3 shows the zero-delay TRPL spectra of CIS/ZnS
NCs measured with various excitation densities changing
by factors of 1–100. The observed blue-shifts of the peak
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Figure 2. Peak energies of the two spectral components as a
function of the delay time from the excitation moment.
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Figure 3. Zero-delay TRPL spectra from the 3-nm close-packed
CIS/ZnS NCs, showing the evolution of the two spectral
components with the excitation power density. The dashed and solid
arrows indicate the peak energy positions of the low- and
high-energy bands, respectively.

energy with increasing excitation density, again, can be
interpreted in terms of DAP recombination due to the
decreasing contribution of distant DAPs. Therefore, we
conclude that both of the spectral components originate from
recombinations of electrons in donors and holes trapped in
acceptors.

A CIS NC is built up by hexagonally close-packed atoms,
composed of a central atom surrounded by a number of
dense-packed shells that depend on the particle’s size. The
average core size of the CIS/ZnS core/shell NCs used here
is ∼ 3 nm and the shell thickness ∼ 1 nm. Based on the
reported lattice constants of CIS bulk crystal, a = 0.5523 nm
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Figure 4. The integrated PL of the two emission bands as a
function of temperature in which the integrated PL of the higher
energy band and that of the lower energy band are shown by solid
triangles and circles, respectively.

and c = 1.1123 nm [8, 11], respectively, the total number of
atoms in one particle is approximated to be ∼ 150 and the
percentage of surface atoms is estimated to be ∼ 63% [20].
Furthermore, being a ternary compound, CIS contains more
complicated lattice imperfections than, for example, binary
II–VI semiconductors [9, 11]. Consequently, not only intrinsic
defects but also surface defects act as potential fluctuations to
localize charge carriers.

To study further the role of defects in the optical
transitions in CIS/ZnS NCs, temperature-dependent emission
bands were analyzed. The integrated emission of the two
bands depicted as functions of temperature is shown in
figure 4. Both show a decrease in the integrated PL intensity
with decreasing temperature but in quite different ways.
The integrated emission of the lower energy emission
band is almost constant up to a temperature of 75 K and
then shows an abrupt increase in the higher temperature
region. In contrast, the integrated emission of the higher
energy emission band demonstrates a gradual increase with
increasing temperature. To explain this behavior, we suggest
the existence of surface and intrinsic defect energy levels in
NCs located below donor levels. For intrinsic defects, below
a certain temperature the thermal energy is not sufficient
for trapped electrons to be released from the defect states.
Consequently, the integrated emission resulting from the
radiative recombination of an electron in a donor level and
a hole localized at the acceptor site becomes weaker with
decreasing temperature. Subsequently, it becomes constant
when the temperature is lower than a critical value that defines
the lowest potential depth of the intrinsic defects, in this
case approximately 6–7 meV. The situation is rather different,
however, for the surface states, which possess various energy
levels due to various types of coordination sphere. As a
result, electrons trapped in surface defects are helped to
escape from the trapping site to move to an emission site
even at low temperatures. This process is thermally activated
and consequently the integrated PL intensity increases with
temperature. In the PL spectra, the higher energy emission
band is therefore assigned to the surface-related defects.
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Figure 5. The decay curves for the emission energies of 1.69 and
1.94 eV at 300 K, which are indicated by solid circles and triangles,
respectively. The solid lines show the bi-exponential fitting curves.

Figure 5 shows the typical decay curves at the emission
energy of 1.69 and 1.94 eV at 300 K, which can be fitted
qualitatively by bi-exponential functions. The faster decay
time, changing from 12 to 80 ns on the emission energy, can
be assigned to fast trapping processes of the non-radiative
surface and intrinsic defect levels, respectively. The slower
decay time varies from 120 to 390 ns, depending on the
emission energy. Zhong et al [15] recently reported similar
values for the decay time of optical transitions in CIS NCs.
The decay times of the slow-decay components at the two
emission energies of 1.69 and 1.94 eV are presented as
functions of temperature in figure 6. The decay times are
nearly independent of temperature at T > 75 K and can be
estimated to be 180 and 360 ns for the emission energies of
1.69 and 1.94 eV, respectively. We propose that these decay
times are the radiative lifetimes of DAP in CIS NCs. In
this temperature range, the thermal energy is high enough
compared to the potential barriers of the defects. As a result,
photoexcited electrons are almost not captured by the defects
but released smoothly to the emission sites. On the other hand,
the observed decay times increase sharply to values of several
microseconds when the temperature is low enough. These
long decay times can be described as ‘population times’,
defined as the times that excited electrons need to escape from
trap states and to go to the emission sites. Consequently, at
low temperature, the trapping of electrons at defects not only
lengthens the population processes of the emissive sites but
also partly reduces the emission intensity.

4. Conclusion

In conclusion, we have studied the optical transitions
in the 3-nm core CuInS2/ZnS NCs by using a
temperature-dependent TRPL technique with a variation
in the excitation power density. Two emission bands were
observed that evolve differently with the time elapsed
from the excitation moment. Spectral characteristics of both
observed emission bands demonstrate that they originate from
DAP recombinations. The emission band at higher energy is
assigned to surface-related defects in DAP recombination,
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Figure 6. Decay times of the slower decay components at the
emission energies of 1.94 eV (solid triangle) and 1.69 eV (solid
circle) as a function of temperature.

while the one at lower energy is attributed to DAP inside
the NCs. Below 50 K, the decay time is about four times
longer than those at higher temperatures. With increasing
temperature over 50 K, the decay time becomes much
shorter and almost constant until 300 K. These results are
explained in terms of charge carriers being released from
traps to contribute to the emission. Therefore, the decay
time observed at temperatures over 50 K means the radiative
lifetime of DAP in CIS NCs.
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