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Résumé. La théorie des priors de référence construit un cadre de réponse à la question
du choix du prior en analyse Bayésienne, via l’introduction d’un critère d’information dite
objective. Dans l’idée d’une définition plus globale d’un tel critère, nous mettons en avant
un lien entre la définition de celui-ci et des outils d’analyse de sensibilité, ouvrant la voie
à de nouvelles classes de mesures que nous jugeons utiles et interprétables pour le choix
d’un prior de référence. Dans le cadre que nous étudions, nous étayons la force du prior de
Jeffreys comme optimum de nos nouvelles métriques d’information objective. Celles-ci sont
introduites rigoureusement et accompagnées d’une preuve qui démontre le caractère optimal
du prior de Jeffreys sous les hypothèses adéquates.

Mots-clés. Prior de référence, prior de Jeffreys, information mutuelle, indices de sensi-
bilité

Abstract. The reference prior theory constructs a framework which helps the resolution
of the prior choice issue in Bayesian analysis, relying on the introduction of some information
criteria called objective. Within the idea of a more global definition of such criteria, we discuss
a connection between their definition and some sensitivity analysis tools, which opens the
way to numerous measures for the reference prior choice. In our framework, we demonstrate
the robustness of the Jeffreys prior as the optimum of our new objective information metrics.
Those are rigorously introduced and accompanied with a proof of the optimal characteristic
of the Jeffreys prior under appropriate assumptions.

Keywords. Reference prior, Jeffreys prior, mutual information, sensitivity indices
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1 Introduction

Reference prior theory in Bayesian analysis uses information-theoretical tools to choose a prior
distribution that limits the influence of the prior distribution on the posterior distribution.
The original definition of reference priors date back to the seminal paper of Bernardo (1979)
and was largely informal. A more rigorous definition was proposed in Berger et al. (2009).
Reference priors are usually defined as the prior that maximizes the mutual information
between the parameters and the data. Under asymptotic posterior normality, Clarke and
Barron (1994) established regularity conditions such that the reference prior is the well-
known Jeffreys prior.

Some generalizations of the mutual information metric have been proposed in the liter-
ature, and mostly consist into changes within the measure tool for the influence between
the prior and the posterior distributions Chen et al. (2010); Liu et al. (2014). Those works
highlight the role of the Jeffreys prior as the optimum for so-called objective information.

In this paper, we unveil a direct connection between the reference prior theory and global
sensitivity analysis Da Veiga (2015), this will enable to enlarge the notion of reference prior
for novel mutual information criteria and offer a clearer interpretation of the reference prior.
From a theoretical perspective, we show that the reference prior for a mutual information
defined using f -divergences Csiszár (1967) is also the Jeffreys prior.

The article is organized as follows. In Section 2, we formulate a standard framework
for Bayesian analysis and we remind the definition of the mutual information. Then, the
connection with global sensitivity analysis is stated and discussed in Section 3. From this
connection, we suggest a definition for generalized mutual information criteria in Section 4,
and we formulate a theorem that determines the reference prior for these criteria in Section 5
followed by a proof in Section 6 under appropriate assumptions. Finally, a discussion about
the perspectives and the applications of our work is given in Section 8.

2 Bayesian framework and notations

Let Y be an observation space over which Y is a σ-algebra. A statistical model is then
characterized by a collection of parameterized probability measures (PY |T=θ)θ∈Θ on Y . Y =
(Y1, . . . , Yk) denotes the observed items, it is a random variable taking values in Yk. In the
Bayesian framework, T is a random variable taking values in (Θ,T ) which follows a prior
distribution π, and the distribution of Y conditionally to T is PY|T = P⊗k

Y |T . From this we
can express the posterior distribution PT |Y and the marginal distribution PY as:

∀A ∈ Y ⊗k, PY(A) =

∫
Θ

P⊗k
Y |T=θ(A)dπ(θ),

∀B ∈ T , A ∈ Y ⊗k,

∫
A

PT |Y=y(B)dPY(y) =

∫
B

P⊗k
Y |T=θ(A)dπ(θ).

Given the number k of observed realizations, the mutual information issued by the prior
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π is then defined as:

I(π|k) =
∫
Yk

KL(PT |y||π)dPY(y) (1)

with PT |y being a short notation for PT |Y=y, KL denotes the Kullback-Leibler divergence.

Suppose now that the model admits a likelihood: there exists a reference measure µ over
Y and density functions (ℓ(·|θ))θ∈Θ such that

∀A ∈ Y ,∀θ ∈ Θ, PY |θ(A) =

∫
A

ℓ(y|θ)dµ(y),

(PY |θ being a short notation for PY |T=θ). Thus PY and PT |y respectively admit the densities
pY w.r.t. µ⊗k and p(·|y) w.r.t. π defined as

∀y ∈ Yk, pY(y) =

∫
Θ

k∏
i=1

ℓ(yi|θ)dπ(θ) =
∫
Θ

ℓk(y|θ)dπ(θ),

∀y ∈ Yk,∀θ ∈ Θ, p(θ|y) = ℓk(y|θ)
pY(y)

,

so that ∀y ∈ Yk, ∀B ∈ T , PT |y(B) =
∫
B
p(θ|y)dπ(θ). This way, while the integral in

equation (1) is finite, the two following ones are finite as well and the equality holds:

I(π|k) =
∫
Yk

KL(PT |y||π)dPY(y) =

∫
Θ

KL(PY|θ||PY)dπ(θ),

with PY|θ denoting shortly PY|T=θ. The right-hand side of that equation could also be written
as an expectation as follows:

I(π|k) = ET∼π[KL(PY|T ||PY)]. (2)

Equation (2) shows that the mutual information I(π|k) can be interpreted as a global
sensitivity index in the sense of Da Veiga (2015). We thus propose in Section 3 a brief review
of global sensitivity analysis.

3 Global sensitivity analysis, a brief review

Since the early work of Sobol’ (see Sobol’ (1993)), Global Sensitivity Analysis (GSA) has
been thoroughly studied by the computer experiment community. Its main objective is
to measure the impact of the input parameters uncertainty of a system (deterministic or
stochastic) onto its output uncertainty by taking into account the overall uncertainty ranges
of the input parameters. More formally, denote by Y = η(X1, . . . , Xp) the system studied
which is considered as a function of the p input random variables (Xi)1≤i≤p where η : Rp 7→
R is supposed continuous. In a classical GSA setting, the Xi’s have a known probability
distribution and are mutually independent. A general class of global sensitivity indices is
proposed in Da Veiga (2015) to measure the impact of Xi to Y :

Si = EXi
[D(PY ,PY |Xi

)] , (3)
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where D is a dissimilarity measure between two probability distributions. This definition
covers a wide range of well-known quantities for sensitivity analysis.

A sub-class of them is considered in this work: the f -divergence df Csiszár (1967) is
expressed as

df (PY ||PY |Xi
) =

∫
Y
f

(
pY (y)

pY |Xi
(y)

)
pY |Xi

(y)dy,

where f is usually a convex function, and pY , pY |Xi
respectively denote the probability

distributions of Y and of Y |Xi. One would notice that setting f = − log leads to the
Kullback-Leibler divergence from PY to PY |Xi

.

Consider now a stochastic system where the output is the random vector Y = (Y1, . . . , Yk)
and the input parameters are gathered in the random variable T . Then, the mutual infor-
mation defined in equation (2) is a global sensitivity index in the sense of Da Veiga (2015),
with the Kullback-Leibler divergence as dissimilarity measure and that quantifies the impact
of T on the random vector Y of k observations distributed w.r.t. PY.

4 A generalized mutual information

Following the similarity between equation (2) for the mutual information and the similarity
indices of equation (3), in particular under the consideration of f -divergence as dissimilarity
measures as we discussed in previous section, we propose a new range of mutual information
measures.

Definition 1 (Generalized mutual information). Consider the Bayesian framework intro-
duced in section 2. Consider a dissimilarity measure D. The D-mutual information of a
prior π under k observations is

ID(π|k) = ET∼π[D(PY||PY|T )].

Definition 2 (f -divergence mutual information). Denote inv : x 7→ 1/x. Suppose f ◦ inv is
a concave function. The f -divergence-mutual information of π is defined as

Idf (π|k) = ET∼π[df (PY||PY|T )] =

∫
Θ

∫
Yk

f

(
pY(y)

ℓk(y|θ)

)
ℓk(y|θ)dµ⊗k(y)dπ(θ).

This proposition for generalization of mutual information interprets the reference prior
as the prior which maximizes its sensitivity to the data. Written as in equation (2) or more
globally as in the previous definition, a recursive optimization is possible to find numerically
the reference prior Nalisnick and Smyth (2017). An appropriate choice of the dissimilarity
measure D in this criterion could lead to an enhancement of the convergence of such meth-
ods, or to an easier approximation of the mutual information for a better computational
complexity, taking benefit of the numerous estimators for the different sensitivity indices
that exist in the literature Da Veiga (2015). Clarke and Barron (1994) demonstrated an
asymptotic maximization of the standard mutual information by the Jeffreys prior (i.e. with
f = − log). In this work, our target is to develop a similar result for a general f -divergence
mutual information.
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5 Main result

In this section we formulate a theorem which expresses an analogous reference prior under our
metric from the classical definition of Berger et al. (2009). For this purpose, we work under
the regularity assumptions of Clarke and Barron (1994), notably, the Fisher information
matrix is continuous and positive definite as well as the Hessian matrix of the negative log
likelihood. We suppose Θ is a compact subset of Rd. Also, an adaptation of (Clarke and
Barron, 1994, Condition 1) is required in our proof:

Assumption 1. There exist ξ > 0 and δ > 0 such that the function∫
Y
exp

(
ξ sup
∥θ̃−θ∥<δ

∥∇2
θ log ℓ(y|θ̃)∥

)
ℓ(y|θ)dµ(y)

is continuous w.r.t. θ. The norm ∥ · ∥ denotes the Euclidean norm when applied to a vector
in Rd and the associated operator norm when applied to a matrix in Rd×d (i.e. the largest
singular value of the matrix).

This way, under appropriate assumptions about the function f , the following theorem
can be seen as a definition of a reference prior for the f -divergence mutual information.

Theorem 1. Assume that f satisfies the two following conditions:

f(x) =
x→0+

αxβ + o(xβ), (4)

f(x) =
x→+∞

O(x), (5)

for some α, β, such that β < 0. For any prior π positive on Θ and absolutely continuous
w.r.t. the Lebesgue measure with continuous and positive Radon–Nikodym derivative denoted
by π as well, the quantity kdβ/2Idf (π|k) has a positive limit when k −→ ∞:

lim
k→∞

kdβ/2Idf (π|k) = αCβ

∫
Θ

π(θ)1+β|I(θ)|−β/2dθ, (6)

where Cβ = (2π)dβ/2(1− β)−d/2. Moreover, if α(β + 1) > 0, then

lim
k→∞

kdβ/2(Idf (J |k)− Idf (π|k)) ≥ 0, (7)

where J(θ) = |I(θ)|1/2/
∫
Θ
|I(θ̃)|1/2dθ̃ denotes the Jeffreys prior. The equality stands iff π = J .

Note that the condition α(β + 1) > 0 on α, β ensures the concavity of x 7→ f(1/x) in the
neighborhood of 0. This concavity and the convexity of f are close properties, but one does
not systematically imply the other. While the f -divergence is generally defined with a convex
f , our proof shows that it is the concavity of x 7→ f(1/x) (in a neighborhood of 0) that is
actually required in the framework of a general f -divergence-mutual mutual information.

Remark also that if β = −1 the function x 7→ x−β is both convex and concave. A look at
our proof in that case shows that the limit (6) in the theorem above does not depend on the
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prior. This is the case with f(x) = 1/x making therefore df corresponding to the chi-squared
distance (see Clarke and Sun (1997)). A conclusion about the optimum of such generalized
mutual information thus requires stronger regularity assumptions on the likelihood to push
the asymptotic analysis further. Clarke and Sun (1997) show in a particular context that
this could lead to the inverse of Jeffreys prior as the optimum.

6 Proof of theorem 1

For any θ ∈ Θ, we denote by P|θ the probability distribution such that P|θ(Y ∈ B1 × · · · ×
Bk) =

∏k
i=1 PY |T=θ(Bi) for any B1, . . . , Bk ∈ Y . We denote by E|θ the expectation w.r.t. P|θ.

First, we note that for any θ, θ̃ ∈ Θ, there exists ξ(θ̃, θ) on the segment between θ and θ̃
such that

log

(∏k
i=1 ℓ(yi|θ̃)∏k
i=1 ℓ(yi|θ)

)
= (θ̃ − θ)T

k∑
i=1

∇θ log ℓ(yi|θ) +
1

2
(θ̃ − θ)T

k∑
i=1

∇2
θ log ℓ(yi|ξ(θ̃, θ))(θ̃ − θ).

Let ε, ε̃ > 0 and fix θ ∈ Θ. Denote Sk =
1√
k

∑k
i=1 ∇θ log ℓ(yi|θ). For any θ ∈ Θ, the central

limit theorem gives that while y ∼ PY|T=θ, Sk converges in distribution to N (0, I(θ)).

ChooseM > 0 and denote Ak = {∥Sk∥ > M}. We can chooseM to have P|θ(Ak) −→
k→∞

ε/4.

On another hand, denoteKi = {−xT∇2
θ log ℓ(yi|θ′)x, θ′ ∈ Θ, ∥x∥ = 1} which is a compact

subset of (0,+∞) as the Hessian matrix ∇2
θ log ℓ(yi|θ′) is assumed to be negative definite.

We have 1
k

∑k
i=1 infKi −→

k→∞
E|θ infθ′,x −xT∇2

θ log ℓ(y|θ′)x > 0 P|θ-a.s. We choose an m > 0

smaller than this limit and we denote Bk = { 1
k

∑k
i=1 infKi < m}. Then P|θ(Bk) −→

k→∞
0.

Denote

C = sup
k>0

sup
θ̃,θ∈Θ

exp(
√
kM∥θ̃ − θ∥) exp

(
−mk

2
∥θ̃ − θ∥2

)
; c = inf

θ∈Θ
π(θ)(2π)d/2|I(θ)|−1/2

which are finite and positive. There exists a ν and a η such that for any c < |x| < C, |l| < ν
and |h| < η, |f(xh+ lh)−hβxβα| ≤ ε̃|hβ|. Using the P|θ-a.s. convergence of − 1

k
∇2

θ log ℓk(y|θ)
to I(θ), we have P|θ(Ck) −→

k→∞
0 where

Ck =

{
∀∥x∥ ≤ M,

∣∣∣∣π(θ)(2π)d/2|kI(θ)|−1/2 exp

(
1

2
xTI(θ)−1x

)
−π(θ)(2π)d/2|∇2

θℓk(y|θ)|−1/2 exp

(
−k

2
xT∇2

θ log ℓk(y|θ)−1x

)∣∣∣∣ ≥ νk−d/2

}
.

We write df (PY||PY|T=θ) = E|θ

[
f
(∫

Θ
hy(θ̃, θ)π(θ̃)dθ̃

)]
where

hy(θ̃, θ) = exp

(
(θ̃ − θ)T

k∑
i=1

∇θ log ℓ(yi|θ)

)
exp

(
1

2
(θ̃ − θ)T

k∑
i=1

∇2
θ log ℓ(yi|ξ(θ̃, θ))(θ̃ − θ)

)
.
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Firstly, we focus on what happens upon the event Ac
k ∩ Bc

k ∩ Cc
k, and we bound hy(θ̃, θ)

under it:

hy(θ̃, θ) ≤ exp(M
√
k∥θ̃ − θ∥) exp

(
−k

2
m∥θ̃ − θ∥2

)
≤ C.

Therefore, consider δk = Dk−1/2 and notice thatD > 0 can be chosen such that
∫
∥x∥>δk

eM
√
kxe−

k
2
x2

supΘ |π|dx < k−d/2ν, to have both∫
∥θ̃−θ∥>δk

hy(θ̃, θ)π(θ̃)dθ̃ < νk−d/2

∫
∥θ̃−θ∥>δk

exp((θ̃ − θ)T
√
kSk) exp

(
1

2
(θ̃ − θ)T∇2

θ log ℓk(y|θ)(θ̃ − θ)

)
π(θ)dθ̃ < νk−d/2.

By using the uniform continuity on Θ of π one can choose k such that for any ∥θ − θ̃∥ < δk,
|π(θ)− π(θ̃)| ≤ ν/(CDd). We then have∣∣∣∣∫

∥θ̃−θ∥<δk

hy(θ̃, θ)π(θ)̃dθ̃

−
∫
∥θ̃−θ∥<δk

exp((θ̃ − θ)T
√
kSk) exp

(
1

2
(θ̃ − θ)T∇2

θℓk(y|θ)(θ̃ − θ)

)
π(θ)dθ̃

∣∣∣∣ ≤ νk−d/2.

Also, as∫
Rd

exp((θ̃ − θ)T
√
kSk) exp

(
1

2
(θ̃ − θ)T∇2

θℓk(y|θ)(θ̃ − θ)

)
π(θ)dθ̃

= π(θ)(2π)d/2|∇2
θ log ℓk(y|θ)|−1/2 exp

(
−k

2
ST
k ∇2

θ log ℓk(y|θ)−1Sk

)
, (8)

we have under Cc
k that

∣∣(8)− π(θ)(2π)d/2|kI(θ)|−1/2 exp
(
1
2
ST
k I(θ)−1Sk

)∣∣ ≤ νk−d/2. Eventu-

ally, if k is large enough so that k−d/2 < η/4, then we have under Ac
k ∩Bc

k ∩ Cc
k:∣∣∣∣∣f

(∫
Θ

hy(θ̃, θ)π(θ̃)dθ̃

)
− αk−dβ/2

(
π(θ)(2π)d/2|I(θ)|−1/2 exp

(
1

2
ST
k I(θ)−1Sk

))β
∣∣∣∣∣ ≤ ε̃k−dβ/2.

Choosing k large enough let P(Ak ∪ Bk ∪ Ck) < ε, this states the following limit in
P|θ-probability:

kdβ/2

∣∣∣∣∣f
(

py(y)

ℓk(y|θ)

)
− αk−dβ/2

(
π(θ)(2π)d/2|I(θ)|−1/2 exp

(
1

2
ST
k I(θ)−1Sk

))β
∣∣∣∣∣ P|θ−→
k→∞

0. (9)

As we look for a convergence in L1(P|θ) we must show that this family of random variables
is equi-integrable in L1(P|θ). Choose an event A such that P|θ(A) ≤ ρ. Write

E|θ

[
1Ak

dβ/2

∣∣∣∣∣f
(

py(y)

ℓk(y|θ)

)
− αk−dβ/2

(
π(θ)(2π)d/2|I(θ)|−1/2 exp

(
1

2
ST
k I(θ)−1Sk

))β
∣∣∣∣∣
]

≤ E|θ

[
1Ak

dβ/2

∣∣∣∣f ( py(y)

ℓk(y|θ)

)∣∣∣∣]+HE|θ

[
1A exp

(
β

2
ST
k I(θ)−1Sk

)]
, (10)
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for some constant H > 0. Under the assumption that β < 0, the second expected value is
bounded from above by ρĤ for some constant Ĥ > 0. In order to bound from above the
first expectated value, we use the following convergence in probability stated in Clarke and
Barron (1990):

log
ℓk(y|θ)
pY(y)

− d

2
log

k

2π
+ log π(θ)− 1

2
log det I(θ) + 1

2
ST
k I(θ)Sk

P|θ−→
k→∞

0.

Choose γ > 0 such that ∀x > γ, |f(x)| ≤ Ĉ(1 + x), ∀x < γ, |f(x)| ≤ Ĉ ′xβ and write
Dk = {pY(y) > γℓk(y|θ)} to state

E|θ

[
1Ak

dβ/2

∣∣∣∣f ( pY(y)

ℓk(y|θ)

)∣∣∣∣] ≤ ρ1/22Ĉkβd/2P|θ(Dk)
1/2 + Ĉ ′ρ1/2K

using Lemma 1 proved in Section 7. Finally, as β < 0, the resulting upper bound of the
expected value from equation (10) makes the sequence from equation (9) equi-integrable.
Thus, its convergence holds in L1(P|θ).

Using the convergence in distribution under P|θ of Sk to a normal distribution, we get

df (PY||PY|θ) =
k→∞

αk−dβ/2π(θ)β(2π)dβ/2|I(θ)|−β/2E[e
β
2
∥X∥2 ] + o(k−dβ/2)

where X ∼ N (0, Id). We will now dominate those terms to integrate this limit w.r.t. θ. We
choose γ > 0 such that ∀x > γ, |f(x)| ≤ Ĉ(1 + x), ∀x < γ, |f(x)| ≤ Ĉ ′xβ. We have

kdβ/2df (PY||PY|θ) = kdβ/2E|θ

[
1Dk

f

(
pY(y)

ℓk(y|θ)

)]
+ kdβ/2E|θ

[
1Dc

k
f

(
pY(y)

ℓk(y|θ)

)]
≤ 2Ĉkdβ/2 + Ĉ ′K ≤ 2Ĉ + Ĉ ′K

by Lemma 1. This domination allows to write

lim
k→∞

kdβ/2Idf (π|k) = α(2π)βd/2(1− β)−d/2

∫
Θ

π(θ)β|I(θ)|−β/2π(θ)dθ

as E[e
β
2
∥X∥2 ] = (1− β)−d/2. This concludes the first assertion of the theorem.

Now let J be the Jeffreys prior on Θ: J(θ) = |I(θ)|1/2/
∫
Θ
|I(θ̃)|1/2dθ̃. We have

lim
k→∞

kdβ/2(Idf (J |k)− Idf (π|k)) =− α(2π)dβ/2(1− β)−d/2

∫
Θ

π(θ)β|I(θ)|−β/2π(θ)dθ

+ α(2π)dβ/2(1− β)−d/2

(∫
Θ

|I(θ)|1/2dθ
)−β

.

Under the assumption of the concavity of x 7→ αx−β (i.e. α(β + 1) > 0) we can write

α

∫
Θ

π(θ)β|I(θ)|−β/2π(θ)dθ ≤ α

(∫
Θ

π(θ)−1|I(θ)|1/2π(θ)dθ
)−β

= α

(∫
Θ

|I(θ)|1/2dθ
)−β

and we get lim
k→∞

kdβ/2(Idf (J |k)− Idf (π|k)) ≥ 0.
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7 A technical lemma

In this section we prove the following lemma:

Lemma 1. Let ζ < 0. There exists a constant K independent of θ such that

kdζ/2

∫
Yk

(
pY(y)

ℓk(y|θ)

)ζ

ℓk(y|θ)dµ⊗k(y) ≤ K.

Set θ ∈ Θ, write δk = D/
√
k with D > 0 such that −ζD2/2 = ξ (see Assumption 1) and

consider k ≥ k0 where k0 is chosen such that δk0 < δ. We compute

E|θ

[(
pY(y)

ℓk(y|θ)

)ζ
]
≤ E|θ

[(∫
∥θ̃−θ∥≤δk

exp((θ̃ − θ)T
√
kSk)

· exp
(
−k

2
(θ̃ − θ)T (Îk(ξ(θ̃, θ))− I(θ))(θ̃ − θ)

)
exp

(
−k

2
(θ̃ − θ)TI(θ)(θ̃ − θ)

)
π(θ̃)dθ̃

)ζ
]
,

with Îk(θ
′) denoting − 1

k

∑k
i=1∇2

θ log ℓ(yi|θ′). Denote Gk = sup∥θ̃−θ∥≤δk,∥x∥=1 x
T (Îk(θ̃) −

I(θ))x, and mπ = infΘ π. We have

E|θ

[(
pY(y)

ℓk(y|θ)

)ζ
]
≤ E|θ

[
mζ

πe
−D2ζ

2
Gk

(
k−d/2

∫
∥x∥<D

ex
TSke−

1
2
xT I(θ)xdx

)ζ
]

≤ E|θ

[
mζ

πe
−D2ζ

2
Gkk−dζ/2(2π)2ζ/2|I(θ)|ζ/2e

ζ
2
ST
k I(θ)−1Ske−ζD∥Sk∥e−

D2ζ
2

∥I(θ)∥Ddζ

]
.

Let H ′′ be an upper bound of the function x 7→ e
ζ
2
inf∥x′∥=1,θ′ (x

′T I(θ′)−1x′)∥x∥2e−ζD∥x∥. It comes

E|θ

[(
pY(y)

ℓk(y|θ)

)ζ
]
≤ k−dζ/22−ζ(2π)dζ/2|I(θ)|ζ/2H ′′e−

D2ζ
2

∥I(θ)∥DdζE|θ

[
e−

D2ζ
2

Gk

]
.

The first term of the right-hand side is a continuous function of θ. It remains to bound the
last expected value to conclude. For any θ̃ such that ∥θ̃ − θ∥ ≤ δk,

xT (I(θ)− Îk(θ̃))x ≤ sup
Θ

∥I∥+ 1

k

k∑
i=1

sup
∥ϑ̃−θ∥<δk

∥∇2
θ log ℓk(y|ϑ̃)∥.

Therefore, E|θ

[
e−

D2ζ
2

Gk

]
≤ e−

ζD2

2
supΘ ∥I∥E|θ

[
exp

(
− ζ2D

2
sup∥θ̃−θ∥<δ ∥∇2

θ log ℓ(y1|θ̃)∥
)]

, which

is bounded uniformly in θ ∈ Θ by Assumption 1. This concludes the proof of the lemma.

8 Conclusion and perspectives

From the initial definition of the reference prior introduced by Bernardo (1979), we have
constructed a generalization of the objective information criterion. Using a connection with

9



global sensitivity analysis, we suggest a different point of view for the interpretation of such
reference prior. Within various areas of study, Bayesian analysis is a tool for estimation
which relies on the prior choice. Our emphasis on how the Jeffreys prior as a reference choice
beyond the standard mutual information metric reinforces its use for studies which seek
for objectivity (e.g. Van Biesbroeck et al. (2023)). Also, the expression of our generalized
criterion as a sensitivity index of the prior to the data simplifies the numerical methods for
approximation of an optimal prior through a Neural Network based iterative process Nalisnick
and Smyth (2017).
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