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ABSTRACT

We propose a new approach for wet snow extent mapping in
Synthetic Aperture Radar (SAR) images by using a convolu-
tional neural network (CNN) designed to learn with respect to
snowpack outputs from the state-of-the-art snow model Cro-
cus. The CNN was trained to classify the wet snow conditions
based on features extracted from the SAR images, using both
the VV,VH channel and the ratio between these channels and
those of a reference image in summer. One of the key points
of this work is the comprehensive comparison we have made
between the performance of the CNN method and other ad-
vanced statistical methods. We found that the CNN was able
to achieve good accuracy in wet snow classification, and giv-
ing a complementary vision of the solutions obtained by other
machine learning algorithms such as the Random Forest clas-
sifier. The results of this study demonstrate the potential of
using CNNs and SAR images for wet snow classification and
highlight the importance of using physical information model
for training machine learning models in snow state identifica-
tion, a domain where collecting ground truth is intricate due to
the complexity of the snowpack moisture measurement sys-
tems.

Index Terms— SAR, Wet Snow, Classification, Convo-
lutional Neural Networks

1. INTRODUCTION
The identification of snow states is essential for many appli-
cations including understanding and management of water re-
sources on our planet. With the use of multi-spectral or SAR
data, it has become feasible to observe snow cover on a global
scale. In this context, SAR images are particularly interesting
because of their ability to observe day and night whatever the
meteorological conditions. Many studies have focused on the
use of backscattering signal to detect, map or quantify snow
[1]. More recently some works have integrated computer vi-
sion methods to perform these classification or segmentation
tasks [2]. The Sentinel-1 mission open data has made it possi-
ble to monitor snow conditions over large areas with a revisit
time of a few days. The characterization of wet snow remains
complex [3] and one of the first studies [4] proposed the map-

ping of wet snow by a thresholding on the decibel data using
one or two polarimetric channels [5]. Other studies have used
machine-learning methods using a large number of auxiliary
data [6].
In this work, we propose first, a procedure for labeling SAR
data with respect to simulation outputs from the snow evolu-
tion model CROCUS [7],[8]. The labeling procedure is given
in Section 2. In a second step, we propose in Section 3,
to exploit the recent advances in computer vision and deep-
learning networks to realize the binary classification task of
wet snow. We propose to compare a CNN architecture with
a low number of layers in order to keep the execution speed
and computational frugality, to a more traditional machine-
learning algorithm. The results are evaluated at the scale of a
complete massif with standard machine-learning metrics. We
focus on a portion of the test area on one date to study the wet
snow extension maps. These results are compared to the op-
tical and radar products provided by Copernicus, respectively
the Fractional Snow Cover (FSC) obtained by Sentinel 2 with
a resolution of 20m and the SAR Wet Snow (SWS) obtained
using Sentinel 1 with a resolution of 60m.

2. PHYSICAL MODEL BASED SAR LABELING

Fig. 1: Training areas in red, test areas in green and validation
areas (green rectangle) located in the north of the French Alps



Labels Xtrain Xtest

Wet 16560 2099
Not Wet 470597 2099

Table 1: Number of samples distributed in the classes for the
training (unbalanced) and test (balanced) datasets

We consider in this work the Sentinel 1 GRD data be-
tween July 2020 and August 2021, that is 69 images at 20m
resolution. These data are composed by two polarimetric
channels VV and VH. We rely on the CNES computing fa-
cilities to pre-process Sentinel-1 data; the pre-processing in-
cludes thermal noise removal, speckle filtering, radiometric
calibration and terrain correction using the SRTM DEM (30
m). In this study, we use only the ascending data. Indeed,
the acquisition time of the ascending data is 17:30 UTC. At
this time of the day, the snowpack has warmed up all day, al-
lowing the detection of larger areas of wet snow. We also use
the ratio between the current date and a reference date that
we select in summer when the snow extent is minimal. The
reference date is August 09, 2020. It is a generalization of
Nagler’s method [4], where a static thresholding is applied, in
contrast to our approach where thresholding can be adjusted
dynamically.
The study is carried out on a portion of the 31TGL tile, which
is part of the Sentinel-2 tiling system and the Military Grid
Reference System, located in the Northern French Alps. As
illustrated in Figure 1, this area includes 6 complete massifs
to realize the training dataset (in red) and 1 massif for the
test dataset (in green). We perform a paving of each massif
and select windows of size 16 by 16 pixels distant from 80
pixels for each date, in order to avoid a too important correla-
tion between the samples. The size of this analyzing window
allows a sufficiently deep decomposition by the joint use of
convolutions and max-pooling operations. We then perform
the normalization between 0 and 1 of all samples, using the
dynamics of the entire time series. Finally the dataset has the
following dimension : N × 16 × 16 × 4 with N the number
of samples in training or in test.
For labeling purposes, [9] provides a definition of wet snow
based on the temperature component of the snowpack, and
considers that if it is higher than zero degrees Celsius we are
in presence of wet snow. In our study we rely on snowpack
reanalyses from the snow model Crocus [8]. Snowpack simu-
lations were carried out using the detailed snow cover model
Crocus coupled with the ISBA land surface model within the
SURFEX (EXternalized SURFace) simulation platform.The
model chains (snow/soil) describe the evolution of the physi-
cal properties of the snowpack, its stratigraphy (up to 50 lay-
ers) and the underlying ground, under meteorological forcing
data. We consider two CROCUS variables of the snowpack
simulated à 6 PM: the minimum temperature Tn (in degrees
Celsius) and the snow height Hs (in meter). We use the fol-
lowing labeling rule:

Wet Snow = Tn > 0 and Hs > 0.4, (1)

In addition of the rule on the temperature of the snowpack
given by [9], we use a constraint on the snow depth Hs. This
requirement ensures that the radar signal comes primarily
from the presence of wet snow, rather than from the ground
response under a thin layer of snow or from rocky outcrops
with minimal snow cover.
The wet snow identification criteria given by Eq.1 makes la-
beling of large areas seen by SAR straightforward, whatever
the acquisition time. However, the spatial resolution of CRO-
CUS is low, with a discretization of approximately 20 degrees
in slope, 300 meters in altitude, and 22.5 degrees in orienta-
tion, representing sometimes important zones within a massif,
which are locally heterogeneous. Moreover this truth can be
subject to model errors, not present when using specific mea-
surement stations. Nevertheless, the use of a physical model
for supervised learning allows us to obtain a large and a varied
training dataset, representative of the inter and intra-massif
topological variabilities, allowing a sufficiently general repre-
sentation for its application to other geographical areas. The
created labeled dataset is divided into two classes: wet and
not wet, described in Table 1. The not wet class contains the
set of snow-free or dry-snow samples. The class wet contains
the samples likely to be wet snow under the constraints of the
CROCUS model estimation.

3. METHODOLOGY
Based on the study of CNN architectures for SAR proposed
by [10], we have developed a shallow CNN network as illus-
trated in Figure 2 with 5497 parameters to learn. The idea
is to exploit the specific characteristics of CNNs, namely the
learning of convolutional layers used for feature extraction.
This is achieved in our case by keeping only 3 blocks (in blue
and green in the figure) consisting in cascade of a 2D convo-
lution layer, a max-pooling (allowing to reduce the number
of parameters) and a ReLu activation. The second part of the
network (in orange in the figure) focuses on learning the com-
binations of these decompositions by fully connected layers.
Two dense layers make up this part in order to progressively
reduce the number of parameters to the number of classes.
To avoid overfitting we added a drop out layer which leaves
only 25% of the values of the previous layer randomly during
learning. The representation of the dataset is important for
this type of approach and in order to avoid a learning bias,
we perform a balancing of the training dataset between the
classes. This can be done by random sub-sampling to balance
the majority not wet class. This technique allows us to have
an equal number of samples in both classes, but if there is
a significant imbalance, it significantly reduces the majority
class, going in our case from 474K samples to 33K.
To study the whole dataset, we perform a K-fold study for
the training dataset for the majority class case: not wet. This
last one is randomly divided in K sub-parts of size equal to
the size of minority class wet, in this way we can study the



Fig. 2: CNN architecture

totality of the created dataset and the variability of the modal-
ity according to the full dataset. In our case, K = 29. We
give the performance of the classifier on the test dataset which
will be balanced and this for each training fold, with the fol-
lowing metrics: F1 score, Cohen’s kappa (κ), AUC. We also
give a mean confusion matrix for the training set calculated
on the balanced test dataset. We introduce two additional in-
dicators: the Best Accuracy-ROC (BAROC) and the Constant
False Positive Rate-ROC (FCROC). By looking at the output
of the unthresholded model, i.e. directly the probability of
belonging to the wet class, we study which threshold value on
these probabilities yields respectively the best accuracy and a
constant false positive rate. We set the false positive rate at
5%. Thus we apply this new thresholding to refine the results
provided by the CNN according to our use. Keeping the false
positive rate low and constant ensures that the amount of wet
or not wet snow is not overestimated. We compare the results
obtained by the CNN network with the use of a Random For-
est classifier on vectorized data used in a more complex way
in [6]. Finally, we present a map obtained with the two thresh-
olds (BAROC and FCROC at 5%). The code is available
online: https://github.com/Matthieu-Gallet/
CNN-WetSnow-CROCUS.

4. RESULTS
Quantitative evaluation: The comparison between the pro-
posed network and the random forest approach is given in Ta-
ble 2. We observe that whatever the metric, the CNN network
outperforms the Random Forest. The most important differ-
ence is the kappa coefficient. We can note a more important
variability on the side of the CNN, which can be explained by
the facility of the latter to overfit in certain folds, demonstrat-
ing the need to consider the data in their entirety and thus to
take into account the balancing of the dataset directly in the
cost function. The confusion matrices for the BAROC and
FCROC thresholds given in Table 3 show, in addition to the
superior performances on the positive and negative true num-
ber obtained with the CNN, a better balance between the false
detections related to the wet and non-wet labels than the false
detections obtained by the random forest. It is interesting to

F1 AUC κ BAROC FCROC
CNN 76.3 +/- 1.8 83.9 +/- 0.6 52.8 +/- 3.2 78.1 +/- 0.6 69.3 +/- 0.9
RF 75.2 +/- 0.2 83.6 +/- 0.1 50.6 +/- 0.4 77.0 +/- 0.2 68.8 +/- 0.4

Table 2: Comparison of results between a CNN and a Ran-
dom Forest classifier (x100)

nw 40.7 41.4 9.3 8.6

Tr
ue

w 12.6 14.5 37.4 35.5
nw w

Predict

(a) BAROC

47.5 47.6 2.5 2.4
28.2 29.1 21.8 20.9

nw w
Predict

(b) FCROC

Table 3: Confusion matrices for BAROC and FCROC thresh-
olds for the CNN (black) and the Random Forest (red) in %
for the not wet (nw) and wet (w) classes.

note that the thresholds give a specific information: while the
BAROC thresholding favors a high global accuracy and a bal-
anced false detection rate between the 2 classes, the FRCOC
thresholding allows to have a low false detection rate for the
not wet class, at the expense of a higher false detection rate
for the wet class. Two things can be concluded from this, the
first is that the two pieces of information can be complemen-
tary to each other in order to estimate the amount of wet snow.
Second interesting aspect is that the accuracy of convolutional
networks is limited to some extent, by the complexity of dif-
ferentiating the two classes. Note that a physical model error
or bias can generate a systematic misclassification, and there-
fore there is a need for some measure of imperfect labelling.
Visual comparison: Figure 3 presents the study area spec-
ified in green in Figure 1 in the melt period on March 31st,
2021. Figure 3.B corresponds to the logical combination of
the two classifiers (RF and CNN) using BAROC threshold-
ing, on which the FSC product was added in Figure 3.C, the
SWS product in Figure 3.D and the CROCUS map with the
condition in (1) in Figure 3.E. We notice that the four maps
are similar from a global point of view. More in detail, in fig-
ure 3.B we notice that the 2 classifiers (RF and CNN) share
large areas. The main distinction between the two is the pres-
ence of wider edges on the areas detected with the random
forest. Those only detected by the CNN are few and very lo-
calized. On March 31, 2021, the snowpack has already begun
to moisten, allowing us to compare the results obtained with
the optical snow cover product (3.C). The two maps are very
close visually. One can see a large area at the top of the im-
age, which is seen as snow but is not considered as wet in
the results. Otherwise the boundaries between wet snow and
the rest, especially in the lower part of the image, are close to
those detected by FSC. The major difference is the diagonal
in the right part of the image, which does not show snow in
the FSC but is detected by the RF as wet snow. The RF seems
to overestimate the areas. We can only speculate that the re-
sponse of this area may be due to a larger roughness due to
the presence of rock and the outcrop of rock or an area that

https://github.com/Matthieu-Gallet/CNN-WetSnow-CROCUS
https://github.com/Matthieu-Gallet/CNN-WetSnow-CROCUS
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Fig. 3: Results for the validation area in 1 on March 31st, 2022. Layover and shadow are masked in black. A. Sentinel 1
image. B. Overlaid results of the BAROC (orange) and FCROC (red) methods. C. Overlay on the results of the FSC product.
D. Overlay on the results of the SWS product. E. Overlay on the results of the CROCUS model under the rule given in (1).

can be almost considered as a shadow-type distortion. This
diagonal is partly found in the SWS wet snow product (3.D).
The higher resolution at which the network works makes it
possible to obtain on other areas (bottom left) a fairly accu-
rate cutout of the mixture between the presence of wet snow
and not wet snow compared to the FSC and SWS product.
Finally the last map shows the overlay of our results with the
the labeling rule obtained by the CROCUS model. As pointed
out, the model is subject to imperfections. Some parts of the
image are given as wet snow by the CROCUS model but are
not seen as having snow by the FSC. However it is interesting
to note that the CROCUS model has a lower spatial extension
than our results and the SWS product (more precisely on the
right side of the image). One can assume that this discrepancy
comes from the sensitivity of the methods to wet snow for all
considered snow heights and not only above 40 cm.

5. CONCLUSIONS
In this paper we have illustrated the ability of CNN networks
to detect wet snow from a SAR image dataset with a reso-
lution of 20m per pixel and labeled using simulations from
the physical model of the snowpack: CROCUS. This devel-
opment has been compared from a machine learning point
of view to a more conventional classifier: the random forest,
against which it has demonstrated a slight superiority on the
studied metrics. Moreover, we were able to compare directly
on a study area at a given date the wet snow mapping obtained
by this approach with the existing Copernicus products (FSC
and SWS). This evaluation allowed us to assess the relative
good correspondence between the 3 estimates.The limitations
of this method are related to 2 major points: the reliability of
the physical model used to determine the labels of the sam-
ples and the balance of the dataset that could be directly taken
into account in the cost function.
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