
HAL Id: hal-04171420
https://hal.science/hal-04171420

Submitted on 26 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Validation of Processor Timing Models Using
Cycle-Accurate Timing Simulators

Alban Gruin, Thomas Carle, Christine Rochange, Pascal Sainrat

To cite this version:
Alban Gruin, Thomas Carle, Christine Rochange, Pascal Sainrat. Validation of Processor Tim-
ing Models Using Cycle-Accurate Timing Simulators. 21st International Workshop on Worst-Case
Execution Time Analysis (WCET 2023), Jul 2023, Vienne, Austria. pp.2:1-2:12, �10.4230/OA-
SIcs.WCET.2023.2�. �hal-04171420�

https://hal.science/hal-04171420
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Validation of Processor Timing Models Using
Cycle-Accurate Timing Simulators
Alban Gruin #

IRIT – Univ. Toulouse 3 – CNRS, France

Thomas Carle #

IRIT – Univ. Toulouse 3 – CNRS, France

Christine Rochange #

IRIT – Univ. Toulouse 3 – CNRS, France

Pascal Sainrat #

IRIT – Univ. Toulouse 3 – CNRS, France

Abstract
We propose a workflow to help find errors in the processor models that are used to prove their
timing predictability. Recently, several papers have modeled processor cores using formal models
that represent how instructions progress through the pipeline in each execution cycle. However, such
models grow with the complexity of the cores and they are built by hand, using a description of the
core, usually the HDL-level code. Such a task is error-prone, and verifying that the model actually
captures the core’s timing behavior is required, otherwise the proofs become useless. Our workflow
simulates the execution of benchmark applications using the HDL specification of a core in order
to extract timing information as well as other relevant information (e.g. cache miss events, branch
mispredictions). This information is used to replay the execution in a simulator of the core timing
model, and to determine whether or not the model accurately represents the execution timing of
the instructions. To avoid writing the simulator by hand for each new core, or new variation of a
core, we developed a compiler that translates the timing model of a core into a C++ program. We
evaluated our approach on the open source MINOTAuR core and we show how it enabled us to
detect and correct errors in its model.

2012 ACM Subject Classification Hardware → Simulation and emulation; Hardware → Equivalence
checking; Hardware → Safety critical systems

Keywords and phrases Processor model, timing predictability, simulator generation

Digital Object Identifier 10.4230/OASIcs.WCET.2023.2

Funding This work was supported by a grant overseen by the French National Research Agency
(ANR) as part of the ProTiPP (ANR-22-CE25-0004) project.

1 Introduction

Ensuring the schedulability of real-time systems requires knowing the worst-case execution
time (WCET) of each critical task. Deriving such a WCET for tasks running on multicore
processors is particularly challenging because tasks running in parallel on separate cores
may request accesses to shared hardware components (e.g. shared cache, memory bus or
controller) at the same time. This makes the WCET of tasks dependent on their execution
context and would require a cycle accurate model of the execution of the whole task set,
which is untractable in practice. In order to reduce the complexity of the multi-core WCET
analysis, the community has adopted the compositional approach [10], in which the WCET
of each task is a composition of its worst-case duration in isolation and of a context-related
penalty that is computed as part of an interference analysis.

© Alban Gruin, Thomas Carle, Christine Rochange, and Pascal Sainrat;
licensed under Creative Commons License CC-BY 4.0

21st International Workshop on Worst-Case Execution Time Analysis (WCET 2023).
Editor: Peter Wägemann; Article No. 2; pp. 2:1–2:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alban.gruin@irit.fr
https://orcid.org/0000-0001-7306-1822
mailto:thomas.carle@irit.fr
https://orcid.org/0000-0002-1411-1030
mailto:christine.rochange@irit.fr
https://orcid.org/0000-0001-7257-7114
mailto:pascal.sainrat@irit.fr
https://orcid.org/0000-0003-1039-2290
https://doi.org/10.4230/OASIcs.WCET.2023.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

2:2 Automatic Processor Simulator Generation

However, this approach can be safely applied only if the cores are not prone to so-called
timing anomalies [14] i.e. situations in which a local worst case (e.g. a cache miss) does
not lead to the global worst case (i.e. the WCET of the analyzed task). Proving the
absence of timing anomalies in a core requires a formal timing model that expresses all the
details of the inner workings of the core [11, 8, 13]. This model is usually produced manually
from the VHDL or SystemVerilog specification of the core, which is particularly complex,
time-consuming and error-prone. As such, the formal model is the weak point of the chain, as
the applicability of the proofs relies on the fact that the model strictly reflects the behavior
of the processor as it is implemented in hardware.

In this paper, we present a methodology to obtain a better level of confidence on the
correctness of such formal models, by simulating the timing behavior of the formal model
of the processor using instruction traces obtained from the execution of programs on the
target processor. We applied our work on the open source MINOTAuR core [8], a processor
derived from the RISC-V CVA6 core [16] which was proven to be timing-anomaly free. Our
methodology has allowed us to uncover small mistakes in the formal model of MINOTAuR
and to fix them. Although this technique does not guarantee correctness, it allows us to gain
a higher confidence in the model. To facilitate the implementation of our methodology, we
also propose a model description language and an automatic model simulator generator.

The paper is organized as follows. In Section 2, we present the main lines of our model
of the MINOTAuR processor. Our validation workflow is introduced in Section 3 and is
evaluated on our model in Section 4. In Section 5, we show how model simulators can be
automatically generated from the description of a processor model. We discuss related work
in Section 6 and conclude the paper in Section 7.

2 Background

In [8], we introduced MINOTAuR, a 6-stage in-order RISC-V core of moderate complexity.
MINOTAuR is a timing-anomaly-free version of the CVA6 core [16]. Its monotonicity was
proven using a model similar to the one proposed for the SIC processor [11]. This model
is expressed in the logic of predicates. It describes the progression of an instruction in the
pipeline of the processor, depending on various factors, such as its kind, memory dependencies,
or data dependencies. The model is reproduced on Figure 1.

In the first part, it describes the basic structure of the pipeline: name and order of the
stages, latency of an instruction in each stage, next stage of an instruction depending on its
kind, etc. In each execution cycle c, an instruction i is in a stage c.stg(i), and has a counter
c.cnt(i) that indicates the remaining processing time of the instruction in this stage. The
cycle(c)(i) function describes what happens to instruction i at the end of cycle c: either the
instruction is ready to advance to the next stage and the next stage is ready to process it, in
which case the instruction advances, or the instruction remains in its current stage, in which
case its processing counter is decreased by one. When the counter reaches 0, the instruction
is considered processed in its current stage.

In the second part of the model, the c.ready(i) predicate describes whether an instruction
is ready to advance to the next stage in the next cycle: in the general case its processing
counter must be equal to 0 and it must be the oldest instruction in the stage. Depending on
the stage the instruction currently resides in, additional constraints may apply. For example,
in the issue stage, an instruction is not ready if it has a pending data dependency. Potential
branch misprediction is accounted for by the pwrong(i) predicate. We refer the interested
reader to the original MINOTAuR paper for a comprehensive description of the model.

A. Gruin, T. Carle, C. Rochange, and P. Sainrat 2:3

S := {pre, pc, if, id, is, alu, mul1, mul2, div, lsu, lu, su, csr, co, st, post}
pre ⊏S pc ⊏S if ⊏S id ⊏S is ⊏S {alu, mul1, lsu, csr, div} ⊏S {mul2, lu, su} ⊏S co ⊏S st ⊏S post

cycle(c)(i) :=

{
(c.nstg(i), c.nlat(i)) : c.ready(i) ∧ c.free(c.nstg(i))
(c.stg(i), c.ncnt(i)) : otherwise

c.nlat(i) :=

memlatf (i) : c.nstg(i) = if ∧ ¬ichit(i)
memlatd(i) : (c.nstg(i) = lu ∧ ¬dchit(i))

∨c.nstg(i) = st
exlat(i) : c.nstg(i) = div
0 : otherwise

c.ncnt(i) :=

{
c.cnt(i)− 1 : c.cnt(i) > 0
0 : otherwise

c.nstg ′(i) :=

pc : c.stg(i) = pre
if : c.stg(i) = pc
id : c.stg(i) = if
is : c.stg(i) = id
lsu : c.stg(i) = is ∧ opc(i) ∈ {load, store, atomic}
lu : c.stg(i) = lsu ∧ opc(i) = load
su : c.stg(i) = lsu ∧ opc(i) ∈ {store, atomic}
mul1 : c.stg(i) = is ∧ opc(i) = mul
mul2 : c.stg(i) = mul1
div : c.stg(i) = is ∧ opc(i) = div
csr : c.stg(i) = is ∧ opc(i) = csr
alu : c.stg(i) = is ∧ opc(i) /∈ {load, store, atomic, mul, div, csr}
co : c.stg(i) ∈ {alu, mul2, div, csr, lu, su}
st : c.stg(i) = co ∧ opc(i) ∈ {store, atomic}
post : (c.stg(i) = co ∧ opc(i) /∈ {store, atomic}) ∨ (c.stg(i) = st)

lstg(op) :=

lu : op = load
st : op = store
st : op = atomic
is : op = mul
div : op = div
co : op = csr
alu : op = branch

c.nstg(i) :=

{
post : c.stg(i) ̸= pre ∧ ¬c.pending(i, branch) ∧ pwrong(i)
c.nstg ′(i) : otherwise

c.isnext(s, i) := c.stg(i) = s ∧ ∀j < i . c.stg(j) ⊐S s
c.pending(i, op) := ∃j < i . opc(j) = op ∧ c(j) ⊏P (lstg(op), 0)

c.ready(i) := (c.stg(i) ̸= pre ∧ ¬c.pending(i, branch) ∧ pwrong(i))

∨ (c.cnt(i) = 0 ∧ c.isnext(c.stg(i), i))

∧ (c.stg(i) = pc ⇒ (ichit(i)

∨ (¬c.pending(i, branch) ∧ ¬c.pending(i, load) ∧ ¬c.pending(i, store) ∧ ¬c.pending(i, atomic))))

∧ (c.stg(i) = is ⇒ (opc(i) /∈ {load, store, atomic} ⇒ ¬c.pending(i, csr))
∧ (opc(i) ∈ {mul, div} ⇒ ¬c.pending(i, div))
∧ (∀j < i . dep(i, j) ⇒ c.stg(j) ⊒S co))

∧ (c.stg(i) = lsu ⇒ (opc(i) ∈ {store, atomic} ∧ ¬c.pending(i, atomic))

∨ (opc(i) = load ∧ (¬c.pending(i, store) ∧ ¬c.pending(i, atomic))))

c.free(s) := s ∈ {alu, mul1, csr, mul2, co, post}
∨ (s ∈ {if, is, lsu, su} ∧ c.slot(s))

∨ (s ∈ {pc, id, div, lu, st} ∧ ((¬∃j . c.stg(j) = s) ∨ (∃j . c.stg(j) = s ∧ c.ready(j) ∧ c.free(c.nstg(j)))))

∨ (∃i . c.stg(i) = s ∧ pwrong(i) ∧ ¬c.pending(i, branch))
c.slot(if) := ((#{j | c.stg(j) = if} < fq size) ∨ c.free(id)) ∧ ∀j . c.stg(j) = if ⇒ c.cnt(j) = 0
c.slot(is) := #{j | is ⊑S c.stg(j) ⊑S co} < iq size ∨ (∃j′ . c.isnext(co, j′) ∧ c.ready(j′) ∧ (opc(j′) ∈ {store, atomic} ⇒ c.free(st)))
c.slot(su) := #{j | opc(j) = store ∧ lsu ⊏S c.stg(j) ⊏S post} < sq size ∨ ∃j′ . c(j′) = (st, 0)
c.slot(lsu) := #{j | c.stg(j) = lsu} < mq size

∨ (∃j′ . c.isnext(lsu, j′) ∧ ((opc(j′) = load ∧ c.free(lu)) ∨ (opc(j′) ∈ {store, atomic} ∧ c.free(su))))

Figure 1 Model of the MINOTAuR core, described in predicate logic, taken from [8].

In the third part, the c.free(s) predicate describes whether a pipeline stage will be free in
the next cycle, i.e. whether it can accept a new instruction. As the MINOTAuR core features
instructions queues, notably in its issue stage, we also have a feature to count instructions in
a stage, and a predicate, c.slot(s), that indicates whether there will be a slot available for an
instruction in the next cycle.

Some predicates (e.g. ichit(i), dep(i, j), pwrong(i)) and latencies (e.g. memlatd(i))
remain opaque: in order to simplify the model, how their value is obtained is not expressed
in the model. For example, ichit(i) is true iff the fetch of instruction i leads to an instruction
cache hit. Computing this value for a given instruction sequence would require adding the
description of the cache to the model. Instead, the proofs cover both possibilities for the
value of ichit(i), and the actual model of the cache is not required.

WCET 2023

2:4 Automatic Processor Simulator Generation

3 Validation workflow

Our validation workflow relies on a simulator of the formal processor model: it is a C++
implementation of the cycle(c)(i) function from this formal model, and thus it only focuses
on the timing aspects of the execution.

Figure 2 (upper part) displays the validation workflow. We use a bit-accurate cycle-
accurate simulator generated from the Verilog description of the processor and simulate
the execution of a benchmark application. For this simulation, we extract the information
corresponding to the opaque predicates in our model, allowing us to replay the execution in
our simulator. We obtain the following set of traces: reads to the insrtuction cache, reads
to the data cache, writes to the data cache, divisions, and finally, committed instructions.
These traces are obtained by adding probes to the SystemVerilog design of the core1.

The execution is then replayed in the model simulator, that extracts the predicate and
latency values from the traces, and generates itself a trace of committed instructions.

Finally, we compare the commit traces from the SystemVerilog simulator and from the
model simulator: if they are identical, that means that the model accurately describes the
timing behavior of the core for this benchmark. Otherwise, it indicates that there is an error
in the model. In that case, the trace can help in narrowing down the search of the error.

bit-accurate
cycle-accurate

Verilog simulator
commit

reads to Dcache
writes to Dcache
reads to Icache

divisions
branch mispred.

model
simulator

commit

generator of
model

simulators

description of
the formal model

Verilog description
of the processor

identical?

Validation workflow

Simulator generation (Section 5)

Figure 2 Overview of our validation workflow.

Traces formats

The traces are stored in a simple, plain-text format, with one event (i.e. one cache access, or
one division, or one branch misprediction) per line.

1 For cores whose SystemVerilog design is unavailable, we are currently looking at the feasibility of using
a hardware probe e.g. Lauterbach debugging probe.

A. Gruin, T. Carle, C. Rochange, and P. Sainrat 2:5

Instruction cache reads trace. An event consists of 5 fields: whether the request is valid or
not (i.e. it has not been cancelled by the frontend due to a branch misprediction), start cycle,
read address, end cycle, and instruction binary code. The address of the instruction allows
its identification all along its progression in the pipeline, and the binary code is necessary
to send the instruction to the correct functional unit during the simulation, as well as to
track instruction dependencies (predicate dep(i, j)). The start and end cycles determine the
ichit(i) predicate and the memlatf (i) latency. Listing 1 shows 3 lines of an instruction cache
trace.

Data cache reads trace. An event contains 3 fields: validity of the request, start and end
cycles. This is enough to determine the dchit(i) predicate and the memlatd(i) latency. Other
information, such as the address of the access, are not needed for the model simulation.

Data cache writes and divisions traces. They both have 2 fields per line: start and end
cycle of the operation. They determine the dchit(i) predicate and memlatd(i) and exlatd(i)
latencies.

Branch misprediction trace. An event only contains the cycle at which a branch is de-
termined to be mispredicted by the ALU. This is used to set pwrong(i) for all the younger
instructions residing in the pipeline at the time the branch reaches the ALU.

Commit trace. In MINOTAuR, a trace of committed instructions is written by default
when simulating. It contains a lot of information, such as the commit time and cycle, the
instruction address, the opcode and the decoded instruction, or register values. For our
purpose, we only need to extract the commit cycle and the address of the instruction. Hence,
the commit traces written by our model simulator contain only these two fields.

Listing 1 Extract of the instruction cache reads trace for the CoreMark benchmark. From left to
right: validity, start cycle, read address, end cycle, instruction binary code.

1 1 282 00000810 286 7 b241073
2 1 287 00000814 291 7 b351073
3 1 292 00000818 296 00000517

4 Evaluation

In this section, we discuss the results obtained by applying our methodology to the processor,
i.e., what issues we found in the model, and the limitations of the methodology.

We began by implementing new tracers to the description of the core (in addition to the
existing commit tracer) in order to generate all the aforementioned traces. We then ran
the CoreMark benchmark and the full TACLe benchmark suite [7] under QuestaSim2, a
cycle-accurate SystemVerilog simulator, to obtain the traces required by the model simulator.

2 https://eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/

WCET 2023

https://eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/

2:6 Automatic Processor Simulator Generation

4.1 Issues found in MINOTAuR’s model and solutions
During our experiments, we found issues in the formal model of MINOTAuR, sometimes
related to confusion or misunderstanding of the behavior or structure of the pipeline, and
sometimes due to a misinterpretation of the formal logic used in the model. We present 3 of
them in the remainder of this section.

Issue 1. One of the most important issues we found using our validation workflow, was
related to data dependencies. In function c.ready(j), our model states that an instruction is
ready (i.e. can progress) when it has no pending data dependency, or when the instruction it
depends on is in or after the commit stage. While this definition is sufficient for read-after-
write (RaW) dependencies, it does not cover most write-after-write (WaW) dependencies.
Actually, most RaW dependencies can be resolved as soon as the oldest instruction has
completed its execution and reached stage co: the result will be forwarded to the newer
instruction. One exception to this principle are CSR3 read instructions: the read is done only
when the instruction is committed. In the case of WaW dependencies, the newer instruction
has to wait for the oldest instruction to be committed before it can be issued. To solve this,
we replaced the dep() predicate with two predicates, one for WaW hazards, and another for
RaW hazards (resp. depWaW () and depRaW ()). The dependency check becomes:

∀j < i . (depWaW (i, j) ⇒ c.stg(j) ⊐S co)
∧ (depRaW (i, j) ⇒ ((opc(j) = csr ∧ c.stg(j) ⊐S co) ∨ (c.stg(j) ⊒S co)))

Issue 2. We also found an inconsistency related to the data cache in the LU stage. The
Verilog simulator shows that, whenever a cache miss occurs in the LU, no instruction is
processed in the cycle that follows the end of the access. This was not represented in the
model, and to account for this, we changed the definition of the c.free() function. The
relevant part of the model is the following:

s ∈ {pc, id, div, lu, st} ∧ ((¬∃j . c.stg(j) = s)
∨ (∃j . c.stg(j) = s ∧ c.ready(j) ∧ c.free(c.nstg(j))))

which states that the LU is free if there is no instruction in the stage, or if the instruction
in the LU exits the stage in the next cycle. Instead, the stage can be special cased to the
following:

s = lu ∧ ((¬∃j . c.stg(j) = lu)
∨ (∃j . c.stg(j) = lu ∧ c.ready(j) ∧ c.free(c.nstg(j)) ∧ dchit(j)))

The relevant change is highlighted. It means that, if there is an instruction in the LU, the
stage will be free if the current instruction is a hit, but not if it is a miss.

Issue 3. Another inconsistency concerns the behavior of instructions in the issue stage: the
model specifies that all instructions, except loads, stores and atomics, will not be issued in
the presence of an uncommitted CSR instruction. In reality, this does not happen (this error
was due to misunderstanding when reading the SystemVerilog code), and the part of the
expression that is highlighted below can be removed:

c.stg(i) = is ⇒ (opc(i) /∈ {load, store, atomic} ⇒ ¬c.pending(i, csr))
∧ (opc(i) ∈ {mul, div} ⇒ ¬c.pending(i, div)) ∧ (∀j < i . dep(i, j))

3 Control and Status Register

A. Gruin, T. Carle, C. Rochange, and P. Sainrat 2:7

Validation summary. After correcting the model, we were able to run all our benchmarks
and found no difference between the commit trace generated by the Verilog simulator and
the one obtained by our model simulator.

4.2 Limitations of our methodology
Our validation workflow is based on testing and thus does not provide any guarantee that
the chosen benchmarks cover all the possible errors in the model. However, it helped us find
and correct a few errors in our model, and thus gain confidence in the revised model.

Additionally, we emphasize that applying our validation workflow with the same bench-
marks as those used for performance evaluation purposes guarantees (once all the discrepancies
have been fixed) that the performance results have been obtained with a model that reflects
the processor’s behavior accurately.

5 Automatic generation of timing simulators

One major shortcoming of our method is having to write a simulator that corresponds to
the model of the core: this task is error-prone and must be done each time a new core is
considered. To ease up the transition from the formal model described in predicate logic, like
the one in Figure 1, to an efficient C++ simulator, we designed a domain-specific description
language that stays as close as possible to the predicate logic formulas of the model, as well
as a compiler written in OCaml. Listing 6 gives the formal definition of our language in
EBNF.

It is a functional language similar to both the logic language used in the SIC [11] and
MINOTAuR [8] models, and, to some extent, to OCaml. It features some basic data types
(integers, booleans, lists, and tuples), with the possibility to define custom enumerations, and
optionally, to define an order on the elements of the enumeration. Basic constructs such as
simple pattern matching are also available. The types of variables and functions are inferred
by the compiler, using a Hindley-Milner type system.

In the remainder of this section, we present key features of our language, using examples
taken from the MINOTAuR model on Figure 1, and later explain the compilation process in
more details.

5.1 Description of the language
Our language allows the definition of custom enumerations with the set or type keywords,
as well as partial orders on their elements. This can be used to reproduce the definition of
the pipeline and instruction kinds in the beginning in our model:

Listing 2 Declaration of the stages and opcodes of the MINOTAuR core.
1 set stage = | Pre | PC | IF | ID | IS | ALU | MUL1 | MUL2
2 | DIV | LSU | LU | SU | CSR | CO | ST | Post
3
4 order stage as s = Pre < PC < IF < ID < IS < {ALU, MUL1, LSU, CSR, DIV} <
5 {MUL2, LU, SU} < CO < ST < Post
6
7 type opcode = | Nop | Alu | Mul | Div | Load | Store
8 | Atomic | Branch | Csr | Fence | FenceI | Unknown

The order keyword marks the beginning of the declaration, and the as keyword is used
to define a suffix for the <, <=, >, and >= operators. Here, to compare two stages, one will
have to use the <s, <=s, >s, and >=s operators, respectively. Elements between curly braces

WCET 2023

2:8 Automatic Processor Simulator Generation

are given the same level: IS <s ALU and IS <s LSU are true, but ALU <s LSU and LSU <s
ALU are false, for instance. But, even though ALU and LSU are different, ALU <=s LSU and
LSU <=s ALU are true.

One can declare variables and functions with the let keyword in our language. They
can be recursive and co-recursive, as this is required to implement the c.free(s) and c.slot(s)
predicates. The user must take care of providing a base case for them. In our case, a
recursive call is made to c.free(c.nstg(j)), which will eventually be equal to c.free(post). As
an example, here is our implementation of the c.ready(i) function:

Listing 3 Implementation of the c.ready(i) function in our language.
1 let ready(opc, limit c, i, pwrong) =
2 (stg(c, i) <> Pre /\ !pending(opc, c, i, Branch) /\ pwrong)
3 \/ (cnt(c, i) = 0 /\ isnext(c, stg(c, i), i) /\
4 (stg(c, i) = IS ->
5 (opc[i] in {Mul, Div} -> !pending(opc, c, i, Div))
6 /\ (forall j in c, (j < i -> !dep(opc, c, i, j))))
7 /\ (stg(c, i) = LSU ->
8 (opc[i] in {Store, Atomic} /\ !pending(opc, c, i, Atomic))
9 \/ (opc[i] = Load /\ !pending(opc, c, i, Atomic))))

The syntax of the language is very similar to the predicates logic used by the model of
MINOTAuR. This example demonstrates multiple features in our language: the multiple
comparators and logic connectors, and lists.

Lists are essential in our language to represent traces. Here, opc and c are lists, used
to represent the opcode and the state of an instruction, respectively. To access a specific
element, one can use the [] operator, as seen on Line 8. It is not advised to use it with a
constant or an ad-hoc variable, as it may be out-of-bounds. Instead, one can use the forall,
exists, and #{} constructs to scan lists. The indices they generate are guaranteed to be
valid. Table 1 lists the builtin functions working on lists, as well as their logic equivalent.

Lists exists in two kinds: “normal” lists, and “limited” lists. This distinction exists to
allow the code generator to specify bounds for the forall, exists, and count functions.
This allows to load only parts of the traces in memory if the generator elects to do so. The
exact bounds are hidden and cannot be manipulated in our language. The only way to obtain
a “limited” list is by adding an annotation on a parameter, like on c in the example above.

The bounds of a “limited” list cannot be manipulated directly from our language.
It is possible to downcast a “limited” list to a regular list, in which case the bounds will

be dropped. It is also possible to upcast a regular list to a “limited” list. In this case, the
bounds will cover the whole list.

Table 1 Builtin functions for lists.

Construct Logic equivalent

c[i], index(c, i) c[i]
forall i in c, (...) ∀i

exists i in c, (...) ∃i

#{j in c | ...} #{j|...}

A. Gruin, T. Carle, C. Rochange, and P. Sainrat 2:9

5.2 Compilation of the model
We developed a compiler for our language, which takes care of type checking and code
generation in C++. This compiler only generates code for the portions of the model that vary
with each processor (the ready, free, nstg, lstg and slot functions). The high-level functions
(cycle, nlat) are hard-coded in a template file that is used for all processors, as well as the
I/O functions that read the traces, decode the instructions (find their kind, latencies and
dependencies) and set the opaque predicate values.

In our language, all constructs are expressions, which is not the case of conditional blocks
and for loops in C++. Thus, boolean expressions, like in Listing 3, may be translated as
pure expressions or as a sequence of conditional blocks when loop constructs are required.
Loop constructs are generated when using the forall, exists, or #{} list builtins, as shown
on Listing 4.

Listing 4 Example of translation of the forall, exists, and #{} constructs.
1 // forall j in c, stg(c, j) = s -> j < i
2 bool tmp0 {true };
3 for (unsigned int j {0}; j < c.size (); ++j)
4 tmp0 = tmp0 && (j < i || !(stg(c, j) == s));
5
6 // exists j in c, stg(c, j) = s -> j < i
7 bool tmp1 {false };
8 for (unsigned int j {0}; j < c.size (); ++j)
9 tmp1 = tmp1 || (j < i || !(stg(c, j) == s));

10
11 // #{j in c | stg(c, j) = s -> j < i}
12 unsigned int tmp2 {0};
13 for (unsigned int j {0}; j < c.size (); ++j) {
14 if (j < i || !(stg(c, j) == s))
15 ++ tmp2;
16 }

Notice that the j index has a value ranging from 0 to the size of the list minus 1. This
is the behavior for regular lists. For limited lists, the index would have a value within
the bounds. When a function takes a limited list as a parameter, the bounds are added
automatically by the compiler in the prototype and at each call site. The prototype of the
ready function is generated as shown on Listing 5. The compiler does not modify the bounds,
thus it is up to the interface between the generated code and the rest of the simulator to
handle them.

Listing 5 C++ prototype of the ready function.
1 bool ready(opcode opc , std :: vector <stage , unsigned int > c, unsigned int

↪→ c_start , unsigned int c_end , unsigned int i, bool pwrong);

As seen on Listing 5, lists are compiled to standard C++ vectors, which requires to
load the entire trace in memory. This works for the majority of programs of the TACLe
benchmark suite, but some, such as ammunition, were so big that their traces did not fit in
the memory of our test machine. To alleviate this problem, our simulator loads chunks of the
trace files as they are needed through a special vector type. To benefit from this mechanism,
the generated code has to be modified manually for now.

Sets (resp. orders), as shown in Listing 2, are compiled to enumerations (resp. operator
overload) in C++. When an order is defined for a set, a function converting each element to
an integer is generated. The lowest element (e.g. Pre) is assigned the value 0, with this value
growing for each level. The overloaded operators then convert each element to an integer,
and compare the results.

WCET 2023

2:10 Automatic Processor Simulator Generation

6 Related Work

Various kinds of formal models of the timing behavior of processors have been proposed in
the literature. These models are designed to support the estimation of worst-case execution
times [12, 6, 2, 9] or the proof of properties, such as the absence of timing anomalies [11, 4, 1].
They describe how an instruction or a code sequence flows through the pipeline using so-called
execution graphs [12, 2], timed automata [6, 9], a transition system [4] or a set of logic
predicates [11]. These models are usually designed by hand, either from the processor user
manual or from its HDL description.

A few papers consider automatically deriving the processor’s model from HDL code [15, 3]
to alleviate the risk of errors in the model but they only provide preliminary solutions.

In [5], the authors model the functional and timing behavior of simple processor using
the L3 domain specific language, translate it in a HOL4 version and confront it to the
execution on the real processor of short code snippets. The processor we consider in this
paper implements complex mechanisms (e.g. speculative execution) that are not addressed
in their paper.

7 Conclusion and Future Work

We introduced a workflow to validate that a timing model of a processor corresponds to
the actual execution timing on the real processor. This workflow is based on a simulator
of the model that replays traces obtained by executing (or simulating) the execution of a
benchmark on the actual processor. Since the model focuses only on the timing aspects of
the core, so does our simulator. This allows the simulator to be very simple, compared to a
functional simulator. By comparing the original execution trace to the one obtained with
the model simulator, we can detect errors in the model and correct them. We applied this
methodology to the model of the open-source MINOTAuR core and were able to find and
correct several issues in the model, using the CoreMark and TACLe benches. In order to
facilitate the use of this workflow, we also presented a compiler that automatically generates
the model simulator from a language that is very close to the predicate language in which
the cores are described.

Being based on testing, our workflow does not provide a guarantee that all mistakes have
been corrected in a model, but it still allows to increase the confidence one can have in a
given model. As part of future work, we envision to extend our workflow to more complex
cores featuring out-of-order execution, and to use our description language to automatically
generate proofs of the absence of timing anomalies in Coq. We could thus generate proofs
and simulators from the exact same model.

References
1 Mihail Asavoae, Belgacem Ben Hedia, and Mathieu Jan. Formal executable models for

automatic detection of timing anomalies. In Florian Brandner, editor, 18th International
Workshop on Worst-Case Execution Time Analysis,WCET, 2018.

2 Zhenyu Bai, Hugues Cassé, Thomas Carle, and Christine Rochange. Computing execution
times with execution decision diagrams in the presence of out-of-order resources. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023.

3 Samira Ait Bensaid, Mihail Asavoae, Farhat Thabet, and Mathieu Jan. Work in progress:
Automatic construction of pipeline datapaths from high-level HDL code. In 28th Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2022.

A. Gruin, T. Carle, C. Rochange, and P. Sainrat 2:11

4 Benjamin Binder, Mihail Asavoae, Belgacem Ben Hedia, Florian Brandner, and Mathieu
Jan. Is this still normal? putting definitions of timing anomalies to the test. In 27th IEEE
International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA), 2021.

5 Brian Campbell and Ian Stark. Randomised testing of a microprocessor model using SMT-solver
state generation. In Formal Methods for Industrial Critical Systems, 2014.

6 Franck Cassez, Pablo Gonzalez de Aledo, and Peter Gjøl Jensen. Wuppaal: Computation of
worst-case execution-time for binary programs with uppaal. In Models, Algorithms, Logics
and Tools, pages 560–577. Springer, 2017.

7 Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang Puffitsch, Christine
Rochange, Martin Schoeberl, Rasmus Bo Sorensen, Peter Wägemann, and Simon Wegener.
TACLeBench: A benchmark collection to support worst-case execution time research. In 16th
International Workshop on Worst-Case Execution Time Analysis, WCET 2016, July 5, 2016,
Toulouse, France, pages 2:1–2:10, 2016.

8 Alban Gruin, Thomas Carle, Christine Rochange, Hugues Cassé, and Pascal Sainrat.
MINOTAuR: A timing predictable RISC-V core featuring speculative execution. IEEE
Transactions on Computers, 72(1):183–195, 2022.

9 Andreas Gustavsson, Andreas Ermedahl, Björn Lisper, and Paul Pettersson. Towards WCET
Analysis of Multicore Architectures Using UPPAAL. In 10th International Workshop on
Worst-Case Execution Time Analysis, 2010.

10 Sebastian Hahn, Michael Jacobs, and Jan Reineke. Enabling compositionality for multicore
timing analysis. In Proceedings of the 24th international conference on real-time networks and
systems, pages 299–308, 2016.

11 Sebastian Hahn and Jan Reineke. Design and analysis of SIC: a provably timing-predictable
pipelined processor core. Real-Time Systems, 56(2):207–245, 2020.

12 Xianfeng Li, A. Roychoudhury, and T. Mitra. Modeling out-of-order processors for software
timing analysis. In 25th IEEE International Real-Time Systems Symposium, 2004.

13 Michael Platzer and Peter Puschner. Vicuna: a timing-predictable RISC-V vector coprocessor
for scalable parallel computation. In 33rd Euromicro Conference on Real-Time Systems
(ECRTS 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

14 Jan Reineke, Björn Wachter, Stefan Thesing, Reinhard Wilhelm, Ilia Polian, Jochen Eisinger,
and Bernd Becker. A definition and classification of timing anomalies. In 6th International
Workshop on Worst-Case Execution Time Analysis (WCET’06). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2006.

15 Marc Schlickling and Markus Pister. Semi-automatic derivation of timing models for WCET
analysis. SIGPLAN Not., 45(4):67–76, April 2010.

16 Florian Zaruba and Luca Benini. The cost of application-class processing: Energy and
performance analysis of a Linux-ready 1.7-GHz 64-bit RISC-V core in 22-nm FDSOI technology.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 27(11):2629–2640, 2019.

A Appendix

A.1 Formal definition of our language

Listing 6 Formal definition of our language in EBNF.
1 digit = "0" | ... | "9";
2 letter = "a" | ... | "z";
3 id = letter , {"a" | ... | "z" | "0" | ... | "9" | "_" | " -"};
4 number = ["-" | "+"] , {digit };
5 subset = "{", {id , "|"} , id , "}";
6
7 description = { type_declaration | order_declaration |

↪→ function_declaration };

WCET 2023

2:12 Automatic Processor Simulator Generation

8 type_declaration = (" type" | "set "), id , "=", ["|"] , {id , "|"} , id;
9 order_declaration = "order", id , "as", id , "=", {(id , subset), "<"}, (id ,

↪→ subset);
10
11 param = id | (" limit" id);
12 param_list = {param , ","}, param;
13 function_contents = id , ["(" , param_list , ")"], "=", expression ;
14 function_declaration = "let", [" rec "], function_contents , {" and",

↪→ function_contents };
15
16 comparison = expression , ("/\" | "\/" | "->" | "=" | "<>" | ((" <" | ">"),

↪→ ["="] , [id])), expression ;
17 inside = expression , [" not "], "in", subset ;
18 negation = ("!" | "not "), expression ;
19 forall = (" forall " | " exists "), id , "in", expression , ",", "(",

↪→ expression , ")";
20 count = "#{" , id , "in", expression , "|", expression , "}";
21 list_access = expression , "[", expression , "]";
22 tuple = "(", {expression , ","}, expression , ")";
23 priority = "(", expression , ")";
24 funcall = expression , "(", [{[" limited "], expression , ","}, [" limited "],

↪→ expression], ")";
25 immediate = id | "true" | "false" | number | tuple;
26 match = "match", expression , "with", {"|" , immediate , "->", expression },

↪→ ["|" , "_", "->, expression], "end ";
27 if = "if", expression , "then", expression , "else", expression ;
28 expression = function_declaration | comparison | inside | negation |

↪→ forall | count | list_access | priority | funcall | immediate |
↪→ match | if;

	1 Introduction
	2 Background
	3 Validation workflow
	4 Evaluation
	4.1 Issues found in MINOTAuR's model and solutions
	4.2 Limitations of our methodology

	5 Automatic generation of timing simulators
	5.1 Description of the language
	5.2 Compilation of the model

	6 Related Work
	7 Conclusion and Future Work
	A Appendix
	A.1 Formal definition of our language

