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A common challenge in engineering design applications of Bayesian optimization is the
presence of non-computable domains, which are often called hidden or unknown constraints.
In these cases, the required function values cannot be computed in certain regions of the
design space. In this work, we propose a novel method to handle hidden constraints by
modifying a portion of the acquisition function of a typical Bayesian optimization algorithm
using classifiers. Specifically, the proposed approach considers the exploitation part of the
acquisition function, allowing the optimization algorithm to search unexplored regions of the
design space. Convergence properties are maintained regardless of the type of classifier used.
Results obtained for numerical experiments on analytical test problems confirm the usefulness
of the proposed method of handling hidden constraints in the context of Bayesian optimization.

I. Nomenclature

BO = Bayesian optimization
𝐶nf = predicted class of the simulation between failure and non-failure
EI = expected improvement acquisition function
EFI = expected feasible improvement acquisition function
EFIFE = feasibility enhanced expected feasible improvement acquisition function
GPC = Gaussian process classifier
kNN3 = 𝑘-nearest neighbors classifier with 𝑘 = 3
SVM = support vector machine
𝑁𝑎𝑛 = Not a number Python object
PI = probability of improvement acquisition function
𝑝𝑛 𝑓 = probability of non-failure of the simulation
SBO = surrogate-based optimization
WB2S = scaled Watson-Barnes acquisition function
𝑦min = minimum observed value of objective function
�̂�(𝑥) = mean value of objective function surrogate model
𝑠(𝑥) = standard deviation value of objective function surrogate model
Φ = normal cumulative distribution function
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𝜙 = normal probability density function
𝛼 = acquisition function exploration factor for failure regions of the design space.

II. Introduction

Surrogate-based optimization (SBO) refers to a class of methods where typically lower-fidelity physics- or data-based
models are used in lieu of higher-fidelity models under the premise that the former are less computationally expensive

and/or smoother than the latter. Model surrogates can be adapted during the optimization process. In this work, we
consider the Bayesian optimization (BO) paradigm where Gaussian processes are used to model the objective and
constraint functions. BO has become a popular method for solving optimization problems in aerospace engineering
design [1–4].

Optimization in engineering design problems often involves failed (“crashed") simulations that prevent the completion
of an optimization. A failed simulation during the optimization process is defined as a simulation that terminates
unexpectedly resulting in unsuccessful computation of objective or constraint function values. Such failed simulations
are often referred to as hidden or unknown constraints. Hidden or unknown constraints are not known explicitly to the
optimization algorithm [5].

Handling hidden constraints in SBO algorithms has been investigated in the literature. Lee et al. used a random
forest classifier to calculate a feasible probability and integrated the classifier within an expected improvement (EI)
acquisition function [6]. In [7], Sacher et al. extended a method developed by Basudhar et al. in [8]: they use a
least-squares support vector machine technique for classification of both known and hidden constraints which is used to
model the boundary of the feasible design space. Gelbart et al. proposed a framework to perform Bayesian optimization
under hidden constraints using a probabilistic approach where constraint satisfaction can be determined by meeting a
probability of feasibility threshold [9] . Antonio presented a sequential SBO framework for problems that are either
undefined or partially outside the feasible region [10]. His framework uses a support vector machine classification
method to estimate the boundary of the feasible design space which is then used to construct surrogate models of the
objective function. Tran et al. proposed the use of an external classifier using Gaussian processes that determines a
probability of feasibility [11]. The calculated probability is then used to condition the acquisition function directly,
similar to the approach proposed in [6]. Bachoc et al. developed a Gaussian process classifier and applied it to a
modified EI acquisition function [12]. Audet et al. proposed the use of k-nearest neighbor classifiers to build surrogate
models that guide the mesh adaptive direct search optimization algorithm [13].

A drawback of these methods is that classifier inaccuracies in the early stages of the optimization process may
impact the latter adversely. Therefore, we propose a new formulation of acquisition functions and consider different
classifiers to handle hidden constraints efficiently. The proposed approach entails modifying acquisition functions to
enable exploration of the design space where the classifier used to predict failure may be inaccurate.

The outline of the paper is as follows. The theoretical background of Bayesian optimization and acquisition functions
is reviewed briefly in Section III. The proposed acquisition function is defined in Section III.B. Modeling of hidden
constraint classifiers is presented in Section III.C. Numerical experiments are conducted in Section IV. Conclusions and
perspectives of this work are drawn in Section V.

III. Bayesian Optimization
Consider the constrained optimization problem

min
𝑥∈Ω

𝑦(𝑥)

subject to 𝑐𝑖 (𝑥) ≤ 0, 𝑖 = 1, . . . , 𝑚,
(1)

where the objective function 𝑦 and the constraint functions 𝑐𝑖 are generally evaluated by means of blackboxes, i.e.,
computational models whose structure are not accessible by the design engineer.

In surrogate-based optimization, the objective and constraint functions are evaluated using surrogate models such
as Gaussian processes. In Bayesian optimization, these are adapted during the optimization process. Prior to the
optimization, a design of experiments (DOE) is typically conducted to generate sites that sample the design space. The
higher-fidelity models are evaluated at these sites to generate the data used to build the surrogate models and their
probability distributions, known as priors. The optimization loop is described in Algorithm 1; it entails the adaptation
of the surrogate models and the solution of a sequential enrichment problem, which aims at maximizing an acquisition
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function that balances exploration and exploitation. The high fidelity models are used to evaluate the objective and
constraint functions at the solution of the sequential enrichment problem and the new data are used to update the
surrogates. This process continues until a certain convergence criterion is met or until a maximum number of iterations
is reached.

Algorithm 1 Constrained Bayesian optimization
input initial surrogate models;

1: for 𝑖 = 1 to 𝑚𝑎𝑥𝑖𝑡 do
2: Update surrogate models of objective and constraint functions using Gaussian processes;
3: Solve a sequential enrichment problem by maximizing a selected acquisition function to find 𝑥𝑖+1

4: Use high-fidelity models to evaluate objective and constraint functions at 𝑥𝑖+1

5: If the convergence criterion is met then Stop
6: end for

output The best feasible point

A. Acquisition Functions
Several acquisition functions have been proposed and investigated, ranging from traditional and widely used functions

such as probability of improvement (PI) [14] and expected improvement (EI) [15] to newly developed functions such as
scaled Watson Barnes (WB2S) [16]. The probability of improvement [14] is given by

PI(𝑥) = P(𝑦(𝑥) ≤ 𝑦min) = Φ

(
𝑦min − �̂�(𝑥)

𝑠(𝑥)

)
(2)

where 𝑦min is the minimum value of the objective function observed so far, �̂�(𝑥) and 𝑠(𝑥) are mean and standard
deviation of the Gaussian process, and Φ is the normal cumulative distribution function. The expected improvement
(EI) [15] is of the form:

EI(𝑥) =
{
(𝑦min − �̂�(𝑥))Φ

(
𝑦min − �̂�(𝑥)

𝑠(𝑥)

)
+ 𝑠(𝑥) 𝜙

(
𝑦min − �̂�(𝑥)

𝑠(𝑥)

)
,

0, if 𝑠 = 0,
(3)

where 𝑦min is the minimum value of the objective function observed so far, �̂�(𝑥) and 𝑠(𝑥) are mean and standard
deviation of the Gaussian process.

B. Enhanced Acquisition Function for Hidden Constraints
Previous methods adapted BO to handle hidden constraints through conditioning the acquisition function by either

the probability of non-failure or class of non-failure [6, 7, 9, 11, 12]. Another approach aims at constraining the design
space of an optimization based on regions of predicted failures [7, 8, 10]. The expected feasible improvement acquisition
functions associated with the aforementioned approaches are formulated as

EFIP (𝑥) = 𝑝nf (𝑥) EI(𝑥) (4)

and
EFIC (𝑥) = 𝑐nf (𝑥) EI(𝑥), (5)

where 𝑝nf is the probability of non-failure and 𝑐nf is the class of non-failure calculated using some surrogate model 𝑍 .
The main drawback of these methods that condition the acquisition function by the probability or class of non-failure
is that during the early phase of an optimization process EFIP (𝑥) and EFIC (𝑥) could be incorrectly driven by the
non-failure predictor 𝑍 away from exploration regions of the design space, especially if a non-sequential framework is
used. In addition, global convergence cannot always be guaranteed using the expected feasible improvement acquisition
functions in Eq. (4) and Eq. (5) for all types of classifiers. Global convergence for Eq. (4) has been shown using a
Gaussian process classifier in [12]; however, this cannot be always guaranteed for other types of classifiers.

We therefore propose a new acquisition function that conditions its exploitation term and reduces the impact on
its exploration term by means of an exploration factor 𝛼. We named it feasibility-enhanced expected improvement
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acquisition function (EFIFE); it aims at handling hidden constraints both in terms of exploitation (obtaining a better
value of 𝑦) and exploration of the feasible domain. It is formulated as

EFIFE (𝑥) =
{
𝑝nf (𝑥) (𝑦min − �̂�(𝑥))Φ

(
𝑦min − �̂�(𝑥)

𝑠(𝑥)

)
+ 𝑝nf (𝑥)𝛼𝑠(𝑥)𝜙

(
𝑦min − �̂�(𝑥)

𝑠(𝑥)

)
,

0, if 𝑠 = 0,
(6)

where 𝛼 ∈ [0, 1] is the previosly mentioned exploration factor that allows the acquisition function to approach failure
regions of the design space. The EFIFE (𝑥) acquisition function conditions the exploitation portion of EI(𝑥) similar to
EFIP (𝑥); however the impact on the exploration portion is minimized by the term 𝛼 except when the probability of
non-failure 𝑝nf (𝑥) is close to zero.

C. Modeling of Hidden Constraints using Supervised Machine Learning Classifiers
Several models have been proposed in the literature to represent hidden constraints using supervised machine

learning techniques. The use of Gaussian process classifiers, conditioned by signs of observations was proposed in [12].
Random forests were used in [6]. We consider additional classification means, including nearest neighbor classifiers,
decision trees and rule-based classifiers, probabilistic models, and support vector machines. We use labeled data To
construct and adapt these classifiers.

The k-nearest neighbors classifier is commonly based on the Euclidean distance 𝑑 between a sample 𝑥 and the
specified training samples 𝑥𝑡𝑟𝑎𝑖𝑛 ∈ 𝑁 samples [17]. In a 2 class set where simulation failure is one class and non-failure
is another, the probability of the non failure class at a given point 𝑥 is computed by

𝑝nf (𝑥) =
∑

𝑖∈𝑁 𝐼 (𝑥)𝑑 (𝑥, 𝑥𝑖)∑
𝑖∈𝑁 𝑑 (𝑥, 𝑥𝑖)

, (7)

where 𝑑 (𝑥, 𝑥𝑖) is the distance between the point 𝑥 and a training point 𝑥𝑖 and 𝐼 (𝑥) is an index function that is equal to
one when the predicted class is non-failure and zero otherwise [18].

Decision trees use a set of tree-like hierarchical decisions on the input variables to model the classification process;
however, such methods may suffer from over-fitting or coarse approximations of a true classification boundary layer if
the amount of training data is insufficient [19]. In this context, the probability for a decision tree for 𝑝nf is computed at a
terminal node 𝑚 of the tree with 𝑁𝑚 samples by

𝑝nf (𝑥) =
1
𝑁𝑚

∑︁
𝑥∈𝑁𝑚

𝐼 (𝑥). (8)

Probabilistic classifiers such as logistic regression construct a relationship between the input features and output
class as a probability [17]. In logistic regression, the probability of a class-membership is expressed in terms of feature
variables using a discriminative function. In a binary classification problem of failure and non-failure, the probability of
an instance 𝑥 belonging to the non-failure class is modeled using the logistic function from [17, 19]

𝑝nf (𝑥) =
1

1 + 𝑒 (\0+\⊤𝑥 )
, (9)

where \0 is an offset parameter and \ is a coefficient with the same dimensions as 𝑥. Training a logistic regression
model entails solving an optimization problem that maximizes a likelihood function using \0, \ as design variables
where the likelihood function is defined as the product of the probabilities of all the training examples predicting their
assigned classes using Eq. (9).

Non-linear support vector machines (SVM) classify instances by defining a boundary that separates classes of
samples from a dataset. In a binary classification problem, a SVM model predicts the class 𝑠𝑖𝑔𝑛(𝐹) of an instance 𝑥
from [17] using data from 𝑁 training samples

𝐹 (𝑥) = 𝑏 +
𝑁∑︁
𝑖=1

_𝑖𝑦𝑖𝐾 (𝑥𝑖 , 𝑥), (10)

where 𝑏 is a bias, 𝑥𝑖 is the 𝑖th training sample, _𝑖 is the corresponding Lagrangian multiplier of the sample and is
obtained by solving a so-called Lagrangian relaxation problem defining the boundary of the SVM , 𝑦𝑖 is the class of
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the training sample, and 𝐾 is a kernel function used to handle non-linearity in the defined boundary. Several kernel
functions can be used; a popular choice is the Gaussian radial basis function kernel [10]

𝐾 (𝑥𝑖 , 𝑥) = (𝑥⊤𝑖 𝑥 + 1) 𝑝 , (11)

where 𝑝 is the kernel polynomial degree. The polynomial kernel used in [8] is defined by

𝐾 (𝑥𝑖 , 𝑥) = 𝑒−
| |𝑥𝑖−𝑥 | |2

2𝜎2 , (12)

where 𝜎2 is the hyper-parameter of the Gaussian radial basis function kernel that determines the similarity of 𝑥 and 𝑥𝑖 .
In this work, we use the Gaussian radial basis function kernel for SVM modeling. SVM does not directly compute

probability to obtain class predictions. We present the method used in [18] to compute this probability. In a case of two
class classification, the class probabilities are calibrated using the scaling proposed in [20], where logistic regression is
performed on the SVM’s scores similar to Eq. (9).

Gaussian processes can be used as classifiers using Laplace approximation over R [21]:

𝑝nf (𝑥) =
∫

𝜎( �̂�(𝑥))𝑞( �̂�(𝑥))𝑑�̂�(𝑥), (13)

where 𝜎 is a sigmoid function and 𝑞 is a Gaussian with a mean of �̂�.

IV. Numerical Experiments
The proposed acquisition function with the considered classifiers were coded in an open-source Python Bayesian

optimization tool [22] Scikit-learn libraries [18]. We conducted numerical experiments using four examples with
different problem sizes.

A. Examples
The first numerical test case is an unconstrained optimization problem inspired by the test case presented in [6]:

min
𝑥∈R2

𝑦(𝑥)

with 𝑦(𝑥) = −𝑤(𝑥1)𝑤(𝑥2),

where 𝑤(𝑧) = 𝑒−(𝑧−1)2 + 𝑒−0.8(𝑧+1)2 − 0.5 sin(8(𝑧 + 0.1))

(14)

We confined 𝑥1, 𝑥2 ∈ [−2, 2]2. A hidden failure region inside of an ellipse returns non-valid (i.e., NaN) to represent
a hidden constraint as shown in the top middle graph of Fig. 1, where the dark-shaded (blue) region represents the
region where simulation failure occurs. The masked function then overlays the hidden constraint over the objective
function, hiding thus a portion of the design space. Without the hidden constraint, the function has a global minimum at
𝑥1 = 𝑥2 = −1.04. However, with the introduction of the failure region (hidden constraint), 2 local minima are feasible
on each side of the ellipse with the new minimum value being -1.09 at (-1.04, 1.14) and (1.14, -1.04). As a first example
a k-nearest neighbor classifier is used with 𝑘 = 3. The acquisition function exploration factor 𝛼 was set to 0.3. It is
noted that the behaviour of the hidden constraint estimate is captured in the EFIFE acquisition function and the new
minima regions are identified with higher values of the acquisition function.

Firstly, the newly developed acquisition function behaviour is validated by comparing it to the 𝐸𝐼 and EFIP
acquisition functions using a DOE of 50 points. Figure 2 shows that the new method improves exploration of the
acquisition function especially in regions close to the hidden constraints. It is obvious that the use of an unconditioned
EI acquisition function without the use of a classifier (left graph in Fig. 2) leads to an incorrect model of the design
space where the higher values of the acquisition function (red contours) are within the failure region of the design space.
The middle and right graphs of Fig. 2 then compare EFIP in Eq. (4) to the proposed method EFIFE in Eq. (6) using a
kNN classifier with k = 3. It is noted the proposed method favors exploration in the top left region of the graph where
another minimum is found.

The second numerical test case is based on the Branin function [23] with a failure region defined by

min
𝑥∈R2

𝑦(𝑥)

𝑦(𝑥) =
(
𝑥2 −

5.1
4𝜋2 𝑥

2
1 +

5
𝜋𝑥1

− 6
)2

+ 10
(
1 − 1

8𝜋

)
cos 𝑥1 + 10,

(15)
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Fig. 1 Top left: negative objective function; top middle: hidden constraint; top right: negative function masked
with hidden constraint; bottom left: GP estimate; bottom middle: hidden constraint classifier estimate; and
bottom right: acquisition function for the problem in Equation (14) using a DOE of 50 points. Red contours
represent higher values and blue contours represent lower values.

where 𝑥1 = 15𝑥1 − 5, 𝑥2 = 15𝑥2, and 𝑥1, 𝑥2 ∈ [0, 1]. A hidden region returns a code failure acting as a hidden
constraint when |𝑥1 − 0.5| < 0.5 and |𝑥2 − 0.5| < 0.4.

The third numerical test case is the 4-dimensional Rosenbrock function minimization problem defined by

minimize
𝑥∈R4

𝑦(𝑥)

𝑦(𝑥) =
3∑︁
𝑖=1

[100(𝑥𝑖+1 − 𝑥2
𝑖 )2 + (𝑥𝑖 − 1)2],

(16)

where 𝑥𝑖 ∈ [−2.048, 2.048], for all 𝑖 = 1, ..., 4. A failure region is identified when 0 < 𝑥𝑖 < 1 for 𝑖 = 1, 2 and 1 < 𝑥𝑖 < 2
for 𝑖 = 3, 4.

The fourth and last problem is 6-dimensional; it is used to test the approach based on the Schwefel function [24]
defined by

min
𝑥∈R6

𝑦(𝑥)

𝑦(𝑥) = 2513.895 −
6∑︁
𝑖=1

𝑥𝑖 sin
√︁
|𝑥𝑖 |,

(17)

where 𝑥𝑖 ∈ [−500, 500], for all 𝑖 = 1, ..., 6. A failure region is identified when 350 < 𝑥𝑖 < 420 for 𝑖 = 1..., 6. The
failure region is close to the global minimum located at 𝑥𝑖 = [420.9687] for all 𝑖 = 1, ..., 6 to test the capability of
EFIFE in problems where the hidden constraint is close to the global minimum.
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Fig. 2 Comparison of acquisition functions for the problem in Equation (14) using a DOE of 50 points. Red
contours represent higher values and blue contours represent lower values.

B. Sensitivity Analysis of Key Parameters and Classifiers
The impact of the exploration factor 𝛼 on optimization convergence using the four numerical test case from

Eqs. (14), (15), (16), and (17) is assessed. Each test case is run 20 times using a common DOE of 10 points for different
values of 𝛼 and 90 optimization iterations. Figure 3 depicts the convergence rate using four different values of 𝛼: 0.3,
0.1, 0.02, and 0.01. The selected values are all below 0.5 to highlight the impact of the exploration factor since a higher
value of 𝛼 leads to closer results to EFIP where at 𝛼 = 1, EFIFE = EFIP. Comparison of results between EFIFE and
EFIP is shown in Section IV.C. It is noted from Fig. 3 that for all test cases, the minimum was practically achieved for
all considered values of 𝛼, demonstrating that the impact of 𝛼 is not significant. We use 𝛼 = 0.3 for the remainder of the
numerical investigations.

Different types of classifiers were also tested by comparing convergence results of the four numerical test cases
similarly by running 20 different optimizations with the same initial DOE of 10 points and a total budget of 100 objective
function evaluations. The six tested classifiers, as detailed in Section III.C, are:

1) a k-nearest neighbors classifier with k=3 (kNN3),
2) an SVM classifier (SVM),
3) a Gaussian process classifier (GPC),
4) a decision tree classifier (DecisionTree),
5) a random forest classifier (RandomForest), and
6) a logistic regression classifier (LogisticRegression).

Figure 4 shows that kNN3 and SVM classifiers produce the best convergence rates consistently for the four test cases. For
that reason, in the remainder of this paper, a kNN3 classifier will be used.

C. Comparison of Results
Optimization results of the new method EFIFE versus EFIP are compared for the four numerical test cases. Each test

case is compared using 20 optimization runs with common DOE of 10 points and 90 iterations of optimization. Results
are compared by showing convergence rates and box plots of the best valid objective values for the 20 optimization runs
for both EFIFE and EFIP.

For test case 1, Fig. 5 shows that EFIFE produces better convergence results than EFIP for all of the optimization
runs. For test case 2, comparing the convergence of optimization results between EFIFE with EFIP in Fig. 6 (a), it is
noted that both acquisition functions reach the minimum. However, comparing the scatter of optimization minima for
each of the acquisition functions shows that EFIFE results are more robust as shown in Fig. 6 (b). Similarly, results of
test case 3 (see Fig. 7) show that the convergence and minimum scatter are improved when using the EFIFE acquisition
function over EFIP. Similar to previous test cases, the masked Schwefel function in test case 4 (see Fig. 8) showed that
EFIFE improved the convergence speed and lowered the achieved minimum compared to EFIP.
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Fig. 3 A sensitivity analysis (average of 20 runs) with respect to the choice of 𝛼.

V. Conclusion and Perspectives
We proposed a new acquisition function to handle hidden constraints in Bayesian optimization. Our approach aims

at enabling exploration of the design where the classifier used to predict failure may be inaccurate. The proposed
method was tested on four analytical test cases with problem size ranging from 2 to 6, showing benefits over existing
methods and thus great potential.

Including constraints and mixed-categorical design variables will allow to solve more realistic conceptual aircraft
design problems, e.g., [4]. In this context, inspired by the recent software developments [25, 26], an extension of the
method to solve realistic aircraft design optimization problems shall be investigated in a near future.
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(b) Test case 2
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(c) Test case 3

0 20 40 60 80 100
Number of evaluations

0

250

500

750

1000

1250

1500

1750

Av
er

ag
e 

be
st

 v
al

id
 o

bj
ec

tiv
e 

va
lu

e

kNN3
SVM
GPC
DecisionTree
RandomForest
LogisticRegression

(d) Test case 4

Fig. 4 A sensitivity analysis (average of 20 runs) with respect to the choice of classifier.
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Fig. 5 Optimization results (using 20 runs) for the first test case using failure classifier kNN with 𝑘 = 3.
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Fig. 6 Optimization results (using 20 runs) on the second test case using failure classifier kNN with 𝑘 = 3.
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Fig. 7 Optimization results (using 20 runs) on the third test case using failure classifier kNN with 𝑘 = 3.
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Fig. 8 Optimization results (using 20 runs) on the fourth test case using failure classifier kNN with 𝑘 = 3.
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