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Abstract. The Dirichlet process is one of the most widely used priors
in Bayesian clustering. This process allows for a nonparametric estima-
tion of the number of clusters when partitioning datasets. The “rich-get-
richer” property is a key feature of this process, and transcribes that the
a priori probability for a cluster to get selected dependent linearly on its
population.
In this paper, we show that such hypothesis is not necessarily optimal. We
derive the Powered Dirichlet Process as a generalization of the Dirichlet-
Multinomial distribution as an answer to this problem. We then derive
some of its fundamental properties (expected number of clusters, conver-
gence). Unlike state-of-the-art efforts in this direction, this new formu-
lation allows for direct control of the importance of the “rich-get-richer”
prior. We confront our proposition to several simulated and real-world
datasets, and confirm that our formulation allows for significantly better
results in both cases.

Keywords: Dirichlet processes · Rich-get-richer · Discrete mathematics
· Clustering · Bayesian prior

1 Introduction

The Bayesian clustering approach received a broad attention over the last decades.
A non-exhaustive list of application includes medicine, [13], natural language pro-
cessing [4, 33], genetics [16, 20, 23], recommender systems [1, 10, 22], sociology [6,
12], etc. The key idea is to generate a set of independent observations according
to a set of latent variables (clusters). Given a set of existing observations, the
prior probability that the next one is generated by any cluster depends on the
number of observations they already generated. A very popular prior on clusters
distributions that allows this is the Dirichlet distribution. It can be expressed as
a process, the Dirichlet process, which allows new observations to be generated
by yet unobserved clusters (that have not generated any observations).
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However, the Dirichlet process’ (and the related Pitman-Yor process’) under-
lying hypothesis is that the prior probability depends linearly on the number of
existing observations from a cluster: the rich-get-richer property [7]. While this
seems a reasonable hypothesis in the complete absence of additional information
on the generative process, it fails to describe situations where data is available
beforehand. Depending on the data, there might not be any reason for clusters
growth to rely linearly on their population, if at all [23, 30] In most cases, an
ad-hoc solution is to fine-tune the Dirichlet process’ concentration parameter
α. However, this practice makes the resulting model unable to consider new
data without fine tuning the α parameter again. This is a major problem due
to most Dirichlet processes being used for online inference, where data is con-
sidered sequentially. Any new observation thus requires fitting the whole model
once again. The need for alternatives to vanilla Dirichlet processes has already
been pointed out in earlier works [31]. This problem is especially visible in the
case of imbalanced data and scale-dependent clustering.

As an example of the imbalance problem, consider a case where data is treated
sequentially –which is often the case when it comes to Dirichlet process. A new
observation would have a much larger a priori probability to belong to a popu-
lated but irrelevant cluster, than to open a new one (this probability decreases
as 1

Nobs
in vanilla Dirichlet processes). In most situations where it is used, the

“rich-get-richer” hypothesis does not transcribe the reality of a situation. For
instance, when sampling topics from news streams [30, 32], there is no reason for
a new topic to appear in the feed at a rate α logN as in Dirichlet processes.

As for scale-dependent clustering, similar problems arise. Consider clustering
people pinpointed on a map. Tiny clusters (at the scale of cities, for instance)
might go unnoticed if clusters are created for larger scales (countries, for in-
stance). The problem can be avoided by fine-tuning the α parameter so that
city-scale clusters are found. But then, adding new observations would break
the so-found balance on the clusters’ scale, because of the rich-get-richer prop-
erty. In vanilla Dirichlet processes, the number of clusters grow logarithmically
with the number of observations ; for instance, if the number of cities grows
sublogarithmically with the population instead, adding new observations would
require fine-tuning α and fitting the whole model again to get relevant results. In
this case, the “rich-get-richer” assumption as is may be too strong a hypothesis,
but a “rich-get-no-richer” [30] might as well fail to capture any density-related
effect; the optimal solution would be in-between these two priors, depending on
the clustering objective. We explore such a case in Fig. 4.

We design a method to bridge the variety of possible priors between the
Dirichlet process (DP) and the Uniform process (UP), in a continuous fashion.
By generalizing these works, we show the existence of an unexplored class of
behaviours, such as “rich-get-less-richer”, “rich-get-more-richer” and “poor-get-
richer”. Little has been done in exploring alternative forms of priors for non-
parameteric Bayesian modeling. In the present work, we propose to explicitly
tune the importance of the “rich-get-richer” assumption. The resulting Powered
Dirichlet Process (PDP) generalizes state-of-the-art works such as UP [30] and
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DP. We show that controlling the “rich-get-richer” prior allows for better results
on both synthetic and real-world datasets.

2 Background

2.1 Motivation

This work is motivated by the need to control the “rich-get-richer” assumption’s
importance in Dirichlet process priors. The “rich-get-richer” property of the DP
may not always make it the suitable prior for modeling a given dataset. The
usual motivation for using a DP prior is that a new observation has a prior
probability of being assigned to any cluster proportional to its population. This
leads to a prior probability of opening a new cluster decreasing as the inverse of
the number of observations, which makes little sense in a number of real-world
situations.

Most state-of-the-art works rely on tuning a parameter α (see Eq. 1) to
get the “right” number of clusters. This parameter shifts the distribution of the
number of clusters as E(K|N) ∝ α logN with K the number of clusters and N
the number of observations. However, we argue this is a bad practice in some
cases, typically when clusters size Nc grows sublinearly with the number of
observations N [3]. For instance, tackling entity resolution problems need such
sublinear growth [27, 26]. When data is treated sequentially, the α parameter
has to be fine-tuned after the fit has been performed; because its value depends
on the number of observations, it makes the model unsuitable to train on new
data without fitting and fine-tuning α again.

To alleviate this problem, we derive a more general form of the DP process
that allows for natural control of the “rich-get-richer” property.

2.2 Previous works

Dirichlet process A well-known metaphor for the Dirichlet process is referred
to as “Chinese restaurant”. The corresponding process is named “Chinese Restau-
rant Process” (CRP): if a nth client enters a Chinese restaurant, they will sit
at one of the K already occupied table with a probability proportional to the
number of persons already sat at this table. They can also go to a new table
and be the first client to sit there with a probability inversely proportional to
the total number of clients in the restaurant. It can be written formally as:

CRP (Ci = c|α,C1, C2, ..., Ci−1) =

{
Nc

α+N if c = 1, 2, ..., K
α

α+N if c = K+1
(1)

Where c is the cluster chosen by the ith customer, Nk is the population of
cluster k, K is the number of already occupied tables and α the concentration
parameter. When the number of clients goes to infinity, this process is equivalent
to a draw from a Dirichlet distribution over an infinite number of clusters with a
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uniform concentration parameter α. It can be shown that the expected number
of clusters after N observations evolves as logN [2].

The two best-known variations of the regular Dirichlet process that address
the “rich-get-richer” property control are the seminal Pitman-Yor process and
the Uniform process. Each of them can be expressed in a similar form as Eq. 1.

Uniform process The Uniform process has been used in some occasions [16,
23] without proper definition. More recently, it has been formalized and studied
in comparison with the regular Dirichlet and Pitman-Yor processes [30]. It reads:

UP (Ci = c|α,C1, C2, ..., Ci−1) =

{
1

α+K if c = 1, 2, ..., K
α

α+K if c = K+1
(2)

Its formulation completely gets rid of the “rich-get-richer” property. The prob-
ability of a new client joining an occupied table is a uniform distribution over
the number of occupied tables; it does not depend on the tables’ population. In
[30], it has been shown that the expected number of tables evolves with N as√
N . Removing the “rich-get-richer” property leads to a flat prior. As we show

later, our formulation allows to retrieve such flat priors and thus generalizes the
Uniform Process.

The authors also address the non-exchangeability of this process; they ar-
gue that it plays a minor role in inference tasks when using Gibbs sampling
algorithms. A recent extension of the Uniform process that guarantees its ex-
changeability has been proposed in [18]. In this work, the a priori probability
of opening a new cluster is a constant anymore, and the a priori probability
to belong to either cluster is constant as in [30]. However, it does not allow for
direct control of the “rich-get-richer” property, which is absent of the proposed
process.

Pitman-Yor process Following the Chinese Restaurant process metaphor, the
Pitman-Yor process [21, 15] proposed to incorporate a discount β when a client
opens a new table. Mathematically, the process can be formulated as:

PY (Ci = c|α, β, C1, C2, ..., Ci−1) =

{
Nc−β
α+N if c = 1, 2, ..., K
α+βK
α+N if c = K+1

(3)

The introduction of the discount parameter increases the probability of cre-
ating new clusters. A table with fewer customers has significantly less chances
to gain new ones, while the probability of opening a new table increases signif-
icantly. It can be shown that the number of tables evolves with the number of
clients N as Nβ [11, 28]. However, this process does not control the arguable
“rich-get-richer” hypothesis [31], since the relation to the population of a table
remains linear; it only scales the linear dependence of a value β. The Pitman-Yor
process thus comes with two limitations. First, since β > 0, it cannot be tuned
to generate fewer clusters. Second, the discount parameter does not affect the
linear dependence on previous observations for cluster allocations — rich still
get richer.
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Other rich-get-richer priors Another similar prior, the Power-law Indian
Buffet Process, has been proposed so that a realization would yield a number of
clusters obeying a power-law as the number of observations increases [29]. This
formulation can be seen as a generalization of the Pitman-Yor process; it adds an
additional parameter that sums with the number of observations. However, the
posterior probability for a new customer to belong to a cluster depends linearly
on each cluster’s size, and the “rich-get-richer” hypothesis is preserved.

Finally, the Generalized Gamma Process proposed a similar discount idea to
increase the probability of opening new clusters in [19]. The proposed prior [19]-
Eq. 4 modifies a cluster’s probability to get chosen by subtracting a constant
term to each cluster’s population. Thus, the “rich-get-richer” property is not
alleviated in their approach either, since the dependence on cluster’s population
is still linear. As for the PY process, this formulation only allows to increase the
number of clusters and does not alleviate the “rich-get-richer” hypothesis.

2.3 Contributions

In the present work, we derive the Powered Dirichlet Process (PDP) that al-
lows controlling the “rich-get-richer” property while generalizing state-of-the-
art works. This allows to define new classes of a priori hypotheses: poor-get-
richer, rich-get-no-richer (Uniform process), rich-get-less-richer, rich-get-richer
(DP), and rich-get-more-richer. We detail some key-properties of the Powered
Dirichlet Process (convergence, expected number of clusters). Finally, we show
that controlling the “rich-get-richer” prior of simple models yields better results
on synthetic and real-world datasets.

3 The model

3.1 The Dirichlet-Multinomial distribution

We recall:

Dir(p|α) =

∏
k p

αk−1
k

B(α)
Mult(N |N,p) =

Γ (n+ 1)∏
k Γ (Nk + 1)

∏
k

pNk

k (4)

With N = (N1, N2, ..., NK) where Nk is the integer number of draws assigned
to cluster k, N =

∑
k Nk the total number of draws, Γ (x) = (x − 1)! and

B(x) =
∏

k Γ (xk)/Γ (
∑

k xk).
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The regular Dirichlet process can be derived from the Dirichlet-Multinomial
distribution. The Dirichlet-Multinomial distribution is defined as follows:

DirMult(N |α, n) =

∫
p

Mult(N |p, n)Dir(p|α)dp

=
B(α+N)Γ (n+ 1)

B(α)
∏

k Γ (Nk + 1)

∫
p

∏
k p

Nk+αk−1
k

B(α+N)︸ ︷︷ ︸
Dir(p|α+N)

dp

=
Γ (

∑
k αk)Γ (n+ 1)

Γ (
∑

k αk +Nk)

K∏
k=1

Γ (Nk + αk)

Γ (Nk + 1)Γ (αk)

(5)

In Eq. 5, we sample n values over a space of K distinct clusters each with
probability p = (p1, p2, ..., pK), using a Dirichlet prior with parameter α =
(α1, α2, ..., αK).

Now to express this as a Dirichlet Process, we need the probability for a new
observation to belong to either cluster given the history of draws. Given Eq. 5,
it is equivalent to drawing from a Categorical distribution with a Dirichlet prior
with concentration parameter α+N .

3.2 Powered conditional Dirichlet prior

In the the standard Dirichlet-Multinomial posterior predictive, the categorical
distribution is coupled with a Dirichlet prior Dir(p|α + N). We propose to
modify this prior by defining the Powered Dirichlet prior that has a nonlinear
dependence on the history of draws:

Dirr(p|α,N) =
1

B(α+Nr)

∏
k

p
αk+Nr

k−1
k (6)

where Nr = (Nr
1 , ..., N

r
K) still represents the population of each cluster, but

at the power r. The parameter r ∈ R controls the intensity of the shift on the
concentration parameter. It is straightforward to demonstrate that the Powered
Dirichlet distribution is a conjugate prior of the Multinomial distribution.

3.3 Posterior predictive

We are looking for the probability of the nth draw belonging to cluster k.
Let c = (c1, ..., cK) where ck = 1 if the observation belongs to cluster k,
and 0 otherwise.The probability of a draw from the Categorical distribution
Cat(c|p) =

∏
k p

ck
k given a Powered Dirichlet prior as defined Eq. 6 reads:

DirCatr(c|α,N) =

∫
p

Cat(c|p)Dirr(p|α,N)dp

=

∫
p

1

B(α+Nr)

∏
k

p
ck+αk+Nr

k−1
k dp =

B(c+α+Nr)

B(α+Nr)

(7)
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3.4 Powered Dirichlet Process

We finally derive an expression for the Powered Dirichlet Process from Eq. 7.
Taking back the conditional probability for the nth observation to belong to
cluster c (Eq. 7), we have:

DirCatr(c|N ,α) =B(c+α+Nr)/B(α+Nr)

=
(Nr

c + αc)
∏

k Γ (Nr
k + αk)

(
∑

k N
r
k + αk)Γ (

∑
k N

r
k + αk)

·
Γ (

∑
k N

r
k + αk)∏

k Γ (Nr
k + αk)

=
Nr

c + αc∑
k N

r
k + αk

(8)

Now that we have the probability for each draw to belong to any cluster, we
can iterate Eq. 8 as a process over K clusters. Finally, we assume an infinity
of available clusters (K → ∞). When considering a new observation, we must
associate it to one of these clusters, that can be empty (Nk = 0) or non-empty
(Nk > 0).

From Eq. 8, the probability of choosing a non-empty cluster c linearly depends
on Nr

c + αc; the probability of choosing one empty cluster linearly depends on
αc. However, all empty clusters are rigorously interchangeable, because they
are fully characterized by their (null) population. We can therefore describe
the initial probability of choosing any cluster with a single value α :=

∑∞
k αk.

Because the number clusters is infinite, it follows that
∑K

k αk → 0 for any finite
set of K clusters. Therefore, for the finite set of non-empty clusters, αk = 0. On
the other hand, for the infinite set of empty clusters, the sum of their αk goes
to α.

In the following, we rewrite K the number of non-empty clusters, and K +1
any of the empty clusters. This transition between the finite Dirichlet-Categorical
distribution and the infinite Dirichlet Process is standard in the literature [17,
8]. From these considerations and Eq. 8, the Powered Dirichlet Process follows:

PDP (Cn = c|α,C1, C2, ..., Ci−1) =


Nr

c

α+
∑K

k Nr
k

if c = 1, 2, ..., K
α

α+
∑K

k Nr
k

if c = K+1
(9)

This formulation generalizes the Uniform process when r = 0 and the Dirich-
let process when r = 1.

We illustrate the change on prior probability for an existing cluster to get
chosen due to the Powered Dirichlet Process in Fig. 1. This figure plots the
population of clusters (grey bars) and their associated prior probability of being
selected. When r > 1, the most populated clusters are associated with a higher
prior probability than in the standard CRP, whereas the less populated ones
have even less chances to get chosen; rich-get-more-richer. When r < 1, the exact
opposite is observed; rich-get-less-richer. In the limit case r = 0, we recover the
Uniform Process; rich get-no-richer.
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Fig. 1. Illustration of the effect of r on the Powered Dirichlet Process prior probability.
Populations have been randomly sampled from a uniform distribution.

4 Properties of the Powered Dirichlet Process

4.1 Convergence

Proposition 1 For N → ∞, the Powered Dirichlet Process converges to a sta-
tionary distribution. When r < 1, it converges to a uniform distribution, and
when r > 1, it converges to a Dirac distribution.

Proof. We start with a simple situation where only 2 clusters are involved. The
generalization to the case where K → ∞ clusters are involved is straightfor-
ward. When clusters’ population is large enough, we make the following Taylor
approximation:

(Ni + 1)r = Nr
i (1 +

1

Ni
)r = Nr

i + rNr−1
i +O(Nr−2) (10)

Since the population of a cluster Ni is a non-decreasing function of N , we
assume that first order Taylor approximation holds when N → ∞. Given clusters
population at the N th observation, we perform a stability analysis of the gap
between probabilities ∆p(N) = p1(N) − p2(N). We recall that the probability
for cluster i to get selected at step N is pi(N) = Nr

i /(
∑

k N
r
k ). Either cluster is

selected with this probability at step N + 1: ∆p(N + 1) = p1(N + 1) − p2(N)
with probability p1(N), and ∆p(N + 1) = p1(N) − p2(N + 1) with probability
p2(N)). Explicitly, the variation of the gap between probabilities when N grows
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is written as:

p1(N)(p1(N + 1)− p2(N)) + p2(N)(p1(N)− p2(N + 1))−∆p(N)

∆p(N)

Eq. 10
≈ 1

p1(N)− p2(N)
×
(
p1(N)

Nr
1 −Nr

2 + rNr−1
1

Nr
1 +Nr

2 + rNr−1
1

+ p2(N)
Nr

1 −Nr
2 − rNr−1

2

Nr
1 +Nr

2 + rNr−1
2

)
=

2rNr
1N

r
2

(Nr
1 +Nr

2 + rNr−1
1 )(Nr

1 +Nr
2 + rNr−1

2 )

(
Nr−1

1 −Nr−1
2

Nr
1 −Nr

2

)
(11)

We see in Eq. 11 that the sign of the variation of the gap between probabili-
ties depend only on the term Nr−1

1 −Nr−1
2

Nr
1−Nr

2
. We can therefore perform a stability

analysis of the Powered Dirichlet Process using only this expression.
— For 0 < r < 1 the following relation holds: Nr−1

1 − Nr−1
2 < 0 ⇔ Nr

1 −
Nr

2 > 0 ∀N1, N2, and conversely. That makes right hand side of Eq. 11 negative.
Therefore adding a new observation statistically reduces the gap between the
probabilities of the two clusters. We could forecast this prediction from Eq. 10.
We see that the more a cluster is populated, the less a new observation increases
its probability at the next step – rich-get-less-richer. Moreover, we see from
Eq. 10 that a crowded cluster (such as Nr

1 ≫ Nr
2 ) see its probability evolve as

Nr−1. Asymptotically, the only fixed point of Eq. 11 when N → ∞ is N1 → N2,
which implies a uniform distribution. We verify this result numerically in Fig. 2-
left.

— For r > 1 the following relation holds: Nr−1
1 −Nr−1

2 > 0 ⇔ Nr
1 −Nr

2 >
0 ∀N1, N2; ; that makes right hand side of Eq. 11 positive. Adding a new ob-
servation statistically increases the gap between probabilities. From Eq. 10, we
see that the more a cluster is populated, the more a new observation increases
its probability at the next step – rich-get-more-richer. In this case, Eq. 11 has
K + 1 fixed points, with K the number of clusters. The uniform distribution is
an unstable fixed point, while K Dirac distributions (each on one cluster) are
stable fixed points of the system. It means the gap converges to 1, that is a
probability of 1 for one cluster and a probability of 0 for the others.

— For r = 1, the right hand side of Eq. 11 is null. It means the gap remains
statistically constant ∀Ni, which is a classical result for the regular Dirichlet
process. This convergence has already been studied on many occasions [7, 2].

— For r → 0, Eq. 11 is not defined anymore. That is because the probability
for a cluster to be chosen does not depend on its population anymore. In this
case, p1(N)−p2(N) ∝ N0

1 −N0
2 = 0: the probability for any cluster to be chosen

is equal at all times, hence the Uniform process – “rich-get-no-richer”.

4.2 Expected number of tables

Proposition 2 When N is large,
∑

k N
r
k varies with N as N

r2+1
2 when r < 1,

and with Nr when r ≥ 1.
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Proof. Taking back Eq. 9, we are interested in the variation of pi =
Nr

i∑
k Nr

k

according to N when Nr
i is large. Since Ni is either way a non-decreasing function

of N , we reformulate the constraint Nr
i large into Nr large:

pi(N + 1)− pi(N) =

{
rNr−1

i +O(Nr−2)∑
k Nr

k
if Ni grows

0 otherwise
(12)

— For r < 1, the larger Ni the slower the variation of pi. It means that for
large Nr

i , we can write Ni ∝ Npi, with pi being now independent N .
— For r > 1, the probability pi varies greatly with N and quickly converges to

1 for large N (see Proposition 1), and so Ni ≈ N for cluster i and Nj ̸=i ≪ Ni ∀j.
Because the sum

∑
k N

r
k mostly varies according to large Nk, we approximate∑

k N
r
k ≈ Nr

∑
k p

r
k for large Nr.

Besides, we showed in Proposition 1 that for large N the process converges
to a uniform distribution for r < 1 and to a Dirac distribution when r > 1.
Therefore, we can express

∑K
k prk as:

K∑
k

prk
N≫1
≈

{
K · ( 1

K )r = K1−r for r < 1

1 for r ≥ 1
(13)

Based on the demonstration of Eq.4 in [30], we assume that K evolves with
N as N

1−r
2 when r < 1. We verify that this assumption holds in the Experiment

section, Fig. 2-middle.
Therefore, we can write:

∑
k

Nr
k ≈ Nr

K∑
k

prk ≈

Nr
(
N

1−r
2

)1−r

= N
1+r2

2 for r < 1

Nr for r ≥ 1
(14)

Proposition 3 For N ≫ 1, the expected number of tables of the Powered
Dirichlet Process grows with N as H r2+1

2

(N) for r < 1 and as Hr(N) when
r ≥ 1, where Hm(n) is the generalized harmonic number.

Proof. In general, the expected number of clusters at the N th step can be written
as:

E(K|N, r) =

N∑
1

α∑
k N

r
k + α

Nr≫1∝
N∑
1

1∑
k N

r
k

(15)

We showed in Proposition 2 that we can rewrite
∑

k N
r
k ∝ N

r2+1
2 when r < 1

and
∑

k N
r
k ∝ Nr when r ≥ 1. Injecting this result in Eq. 15, we get:

E(K|N, r)
Nr≫1∝


∑N

1 N− r2+1
2 = H r2+1

2

(N) for r < 1

∑N
1 N−r = Hr(N) for r ≥ 1

(16)

This result is verified numerically in Fig. 2-right.
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Fig. 2. Numerical validation of Propositions 1 (left), 2 (middle), 3 (right). In the first
plot, K is the number of non-empty clusters. In the second and third plots, the theoret-
ical results are the solid lines and the associated numerical results are the transparent
lines of same color. Except for small N , the difference between theory and experiments
is almost indistinguishable.

— For r = 1, E(K|N, r = 1) ∝ H1(N) ≈ γ + log(N) where γ is the Eu-
ler–Mascheroni constant, which is a classical result for the regular Dirichlet pro-
cess.

— For r > 1 and N → ∞, the term H r2+1
2

(N) converges towards a finite
value and the sum

∑
k p

r
k goes to 1 (see Proposition 1). By definition E(K|N, r >

1)
N→∞∝ ζ( r

2+1
2 ), where ζ is the Riemann Zeta function.

— For r < 1, we need to approximate the harmonic number in a continuous
setting. We rewrite Eq. 16 as:

N∑
n=1

n− r2+1
2

Nr≫1
≈

∫ N

1

n− r2+1
2 dn =

2

1− r2
(N

1−r2

2 − 1) (17)

One can show that N1−x−1
1−x = Hx(N) + O( 1

Nx ). Therefore, the number of ex-
pected clusters in the Powered Dirichlet Process exhibits a power-law behaviour,
similar to the Pitman-Yor process for r =

√
1− 2β for 0 < r < 1. For values

of r > 1 ⇔ β < 0, the equivalent Pitman-Yor process is not defined. Note that
there is no a priori reason for r to be constrained in the domain of positive real
number. Complex and negative analysis of the process might be an interesting
lead for future works.

5 Experiments

5.1 Use case: infinite Gaussian mixture model

We consider a classical infinite Gaussian mixture model coupled with a Powered
Dirichlet Process prior. We choose this application to ease visual understanding
of the implications of the PDP, but the argument holds for other models using
DP priors as well (text modeling, gene expression clustering, etc.). We fit the
data using a standard collapsed Gibbs sampling algorithm for IGMM [24, 30, 33],
with a Normal Inverse Wishart prior on the Gaussians’ parameters. The order
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Fig. 3. Application on synthetic data. (Top) Original datasets used for the experiments
(Density, Diamond and Grid). (Bottom) Results for various values of r; the x and y
axes all the same. The dashed line indicates the regular DP prior as r = 1. The error
correspond to the standard error of the mean over all runs.

in which input data is processes is set at random at each iteration, so that we
reduce the ordering bias from the dataset [30]. Note that we cannot completely
get rid of it because the Powered Dirichlet Process is not exchangeable for all r.
The problem has been addressed on numerous occasions (Uniform process [30],
distance-dependent CRP [5, 9], spectral CRP [25], balance-neutral partition [18])
and shown to induce negligible variations of results in the case of Gibbs sampling.
We stop the sampler once the likelihood reaches stability; we perform 100 runs
for each value of r. Finally, the parameter α is set to 1.1

Note that we choose not to compare to other types of clustering algorithms.
This section aims to demonstrate the usefulness of a generalized form of the
Dirichlet process with respect to the vanilla one. The argument on a simple
model (here a regular DP combined with IGMM) extends to other priors built on
Dirichlet processes (Hierarchical and Nested Dirichlet processes). Comparison of
DP-based priors to other clustering methods (KNN, DBScan, Spectral clustering,
etc.) has already been done numerous times and is out of our scope.

Synthetic data Synthetic datasets are represented in Fig. 3-top, and comprise
N=1000 observations each, that have been generated by sampling from 2D Gaus-
sian distributions. We present the results on synthetic data in Fig. 3-bottom and
in Table 1. We consider standard metrics in clustering evaluation with a non-
fixed number of clusters: mutual information score and rand index both adjusted
for chance (Adj.MI and Adj.RI, higher is better), normalized variation of in-
formation (Norm.VI, lower is better), Fowlkes-Mallow score (higher is better),
marginal likelihood (normalized for visualization, higher is better) and absolute
relative variation of the inferred number of clusters according to the number
used in the generation process (Kinf−Ktrue

Ktrue
, lower is better). The datasets are

designed to investigate the effect varying r when clustering can take place on
different scales.
1 Codes and datasets available at https://github.com/GaelPouxMedard/PDP
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Table 1. Numerical results of the various priors coupled to a standard IGMM. PDP
allows to outperform the baselines consistently. The standard error on the last digit(s)
over 100 runs is given in shorthand notation (0.123(12) ⇔ 0.123± 0.012).

Adj.MI (↑) Adj.RI (↑) Norm.VI (↓) Kinf−Ktrue

Ktrue
(↓)

D
en

si
ty PDP (r=0.60) 0.992(1) 0.980(2) 0.006(1) 0.045(5)

DP (r=1.00) 0.951(4) 0.797(17) 0.037(3) 0.128(10)
UP (r=0.00) 0.939(2) 0.854(4) 0.050(1) 0.548(1)

D
ia

m
on

d PDP (r=0.50) 0.982(2) 0.956(5) 0.011(1) 0.063(7)
DP (r=1.00) 0.909(7) 0.731(19) 0.053(4) 0.202(12)
UP (r=0.00) 0.927(2) 0.844(6) 0.051(2) 0.544(2)

G
ri

d PDP (r=0.85) 0.997(1) 0.990(2) 0.003(1) 0.014(2)
DP (r=1.00) 0.995(1) 0.977(4) 0.004(1) 0.018(3)
UP (r=0.00) 0.811(1) 0.517(3) 0.154(1) 2.120(1)

Ir
is

PDP (r=0.90) 0.868(4) 0.866(7) 0.057(2) 0.000(0)
DP (r=1.00) 0.843(6) 0.820(12) 0.065(2) 0.030(10)
UP (r=0.00) 0.544(2) 0.295(3) 0.303(2) 2.777(32)

W
in

es PDP (r=0.10) 0.712(15) 0.637(20) 0.102(5) 0.157(17)
DP (r=1.00) 0.589(19) 0.461(16) 0.128(4) 0.327(13)
UP (r=0.00) 0.713(17) 0.657(21) 0.103(5) 0.147(17)

C
an

ce
r PDP (r=0.10) 0.254(17) 0.278(21) 0.118(1) 0.000(0)

DP (r=1.00) 0.085(16) 0.094(19) 0.108(2) 0.000(0)
UP (r=0.00) 0.271(17) 0.300(21) 0.118(1) 0.000(0)

20
-N

G PDP (r=0.80) 0.421(4) 0.119(3) 0.477(3) -
DP (r=1.00) 0.404(4) 0.105(4) 0.491(3) -
UP (r=0.00) 0.000(4) 0.000(0) 0.830(3) -

Real-world data In Table 1, we report the results for the 20Newsgroup (20-
NG) real-world dataset, which is a collection of 18 000 users posts published
on Usenet, organized in 20 Newsgroup (which are our target thematic clusters).
As a model, we consider a modified version of LDA [4] that uses a PDP prior
instead of DP in the words sampling step. Note that because the number of
clusters must be provided to LDA, we do not compute Kinf−Ktrue

Ktrue
. We also run

additional experiments on well known real-world datasets from sklearn: Iris (4
attributes, 3 classes), Wines (13 attributes, 3 classes), and Cancer (30 attributes,
2 classes). We see PDP allows for improved performances on every dataset.

We now illustrate the interest of using an alternate form of prior for the
IGMM on real-world data. We consider a dataset of 4.300 roman sepulchral
inscriptions comprising the substring “Antoni” that have been dated between
150AC and 200AC and assigned with map coordinates. The dates correspond
to the reign of Antoninus Pius over the Roman empire. The dataset is available
on Clauss-Slaby repository2. It was common to give children or slaves the name
of the emperor; the dataset gives a global idea of the main areas of the roman
empire at that time [14]. The task is to discover spatial clusters of individuals
named after the emperor. We present the results in Fig. 4.

2 http://www.manfredclauss.de/fr/index.html
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Fig. 4. Application to spatial clustering on geolocated data for r = 0.8 (left), r = 1
(right) and r = 0.9 (middle). We see that the model using a PDP prior for r = 0.9 and
r = 0.8 describes the data better than the same model using a DP prior (r = 1).

We see that when r = 1, the classical DP prior is not fit for describing
this dataset, as it misses most of the clusters. The problem could be solved by
fine-tuning the α parameter, but such model would not be hold if we added
new observations. On the other hand, when r = 0.9, the infinite Gaussian mix-
ture model retrieves relevant clusters. It also finds some clusters that were not
expected, such as the north Italian cluster or the long cluster going through
Spain and France that corresponds to roman roads layout (via Augusta and via
Agrippa; it was common to bury the dead on roads edges). Finally, when r = 0.8,
some of the main clusters are broken into smaller ones (Italy breaks into Rome,
North Italy, and South Italy; Britain becomes an independent cluster, etc.). In
this case, tuning r controls the level of details of the clustering.

6 Conclusion

We discussed the need for controlling the “rich-get-richer” property that arises
from the usual Dirichlet Process. We then derived the Powered Dirichlet Process
to allow for its control. This formulation allows reducing the expected number
of clusters, which is not possible with existing processes, while generalizing two
of them. We derived elementary results on convergence and expected number of
clusters of the PDP. Finally, we showed that it yields better results on both syn-
thetic and real-world data. For future works, it might be interesting to investigate
cases where r takes non-positive values (which might lead to a “poor-get-richer”
kind of process), and to develop a procedure to infer this parameter based on
data (by minimizing a dispersion criterion, for instance).

The regular Dirichlet Process has been used for decades as a powerful prior
in many real-world applications. However, alternate forms for this prior have
been little explored. It would be very interesting to study the changes brought
to state-of-the-art models based on Dirichlet priors by varying the importance
of the “rich-get-richer” assumption as proposed in this paper.
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