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The Dirichlet process is one of the most widely used priors in Bayesian clustering. This process allows for a nonparametric estimation of the number of clusters when partitioning datasets. The "rich-getricher" property is a key feature of this process, and transcribes that the a priori probability for a cluster to get selected dependent linearly on its population. In this paper, we show that such hypothesis is not necessarily optimal. We derive the Powered Dirichlet Process as a generalization of the Dirichlet-Multinomial distribution as an answer to this problem. We then derive some of its fundamental properties (expected number of clusters, convergence). Unlike state-of-the-art efforts in this direction, this new formulation allows for direct control of the importance of the "rich-get-richer" prior. We confront our proposition to several simulated and real-world datasets, and confirm that our formulation allows for significantly better results in both cases.

Introduction

The Bayesian clustering approach received a broad attention over the last decades. A non-exhaustive list of application includes medicine, [START_REF] Guimerà | A network inference method for large-scale unsupervised identification of novel drug-drug interactions[END_REF], natural language processing [START_REF] Blei | Latent dirichlet allocation[END_REF][START_REF] Yin | A dirichlet multinomial mixture model-based approach for short text clustering[END_REF], genetics [START_REF] Jensen | Bayesian clustering of transcription factor binding motifs[END_REF][START_REF] Mcdowell | Clustering gene expression time series data using an infinite gaussian process mixture model[END_REF][START_REF] Qin | Identification of co-regulated genes through bayesian clustering of predicted regulatory binding sites[END_REF], recommender systems [START_REF] Airoldi | Mixed membership stochastic blockmodels[END_REF][START_REF] Godoy-Lorite | Accurate and scalable social recommendation using mixed-membership stochastic block models[END_REF][START_REF] Poux-Médard | Interactions in information spread: quantification and interpretation using stochastic block models[END_REF], sociology [START_REF] Cobo-López | Optimal prediction of decisions and model selection in social dilemmas using block models[END_REF][START_REF] Guimera | Predicting human preferences using the block structure of complex social networks[END_REF], etc. The key idea is to generate a set of independent observations according to a set of latent variables (clusters). Given a set of existing observations, the prior probability that the next one is generated by any cluster depends on the number of observations they already generated. A very popular prior on clusters distributions that allows this is the Dirichlet distribution. It can be expressed as a process, the Dirichlet process, which allows new observations to be generated by yet unobserved clusters (that have not generated any observations).

However, the Dirichlet process' (and the related Pitman-Yor process') underlying hypothesis is that the prior probability depends linearly on the number of existing observations from a cluster: the rich-get-richer property [START_REF] Ferguson | A Bayesian Analysis of Some Nonparametric Problems[END_REF]. While this seems a reasonable hypothesis in the complete absence of additional information on the generative process, it fails to describe situations where data is available beforehand. Depending on the data, there might not be any reason for clusters growth to rely linearly on their population, if at all [START_REF] Qin | Identification of co-regulated genes through bayesian clustering of predicted regulatory binding sites[END_REF][START_REF] Wallach | An alternative prior process for nonparametric bayesian clustering[END_REF] In most cases, an ad-hoc solution is to fine-tune the Dirichlet process' concentration parameter α. However, this practice makes the resulting model unable to consider new data without fine tuning the α parameter again. This is a major problem due to most Dirichlet processes being used for online inference, where data is considered sequentially. Any new observation thus requires fitting the whole model once again. The need for alternatives to vanilla Dirichlet processes has already been pointed out in earlier works [START_REF] Welling | Flexible priors for infinite mixture models[END_REF]. This problem is especially visible in the case of imbalanced data and scale-dependent clustering.

As an example of the imbalance problem, consider a case where data is treated sequentially -which is often the case when it comes to Dirichlet process. A new observation would have a much larger a priori probability to belong to a populated but irrelevant cluster, than to open a new one (this probability decreases as 1 N obs in vanilla Dirichlet processes). In most situations where it is used, the "rich-get-richer" hypothesis does not transcribe the reality of a situation. For instance, when sampling topics from news streams [START_REF] Wallach | An alternative prior process for nonparametric bayesian clustering[END_REF][START_REF] Xu | Dynamic clustering for short text stream based on dirichlet process[END_REF], there is no reason for a new topic to appear in the feed at a rate α log N as in Dirichlet processes.

As for scale-dependent clustering, similar problems arise. Consider clustering people pinpointed on a map. Tiny clusters (at the scale of cities, for instance) might go unnoticed if clusters are created for larger scales (countries, for instance). The problem can be avoided by fine-tuning the α parameter so that city-scale clusters are found. But then, adding new observations would break the so-found balance on the clusters' scale, because of the rich-get-richer property. In vanilla Dirichlet processes, the number of clusters grow logarithmically with the number of observations ; for instance, if the number of cities grows sublogarithmically with the population instead, adding new observations would require fine-tuning α and fitting the whole model again to get relevant results. In this case, the "rich-get-richer" assumption as is may be too strong a hypothesis, but a "rich-get-no-richer" [START_REF] Wallach | An alternative prior process for nonparametric bayesian clustering[END_REF] might as well fail to capture any density-related effect; the optimal solution would be in-between these two priors, depending on the clustering objective. We explore such a case in Fig. 4.

We design a method to bridge the variety of possible priors between the Dirichlet process (DP) and the Uniform process (UP), in a continuous fashion. By generalizing these works, we show the existence of an unexplored class of behaviours, such as "rich-get-less-richer", "rich-get-more-richer" and "poor-getricher". Little has been done in exploring alternative forms of priors for nonparameteric Bayesian modeling. In the present work, we propose to explicitly tune the importance of the "rich-get-richer" assumption. The resulting Powered Dirichlet Process (PDP) generalizes state-of-the-art works such as UP [START_REF] Wallach | An alternative prior process for nonparametric bayesian clustering[END_REF] and DP. We show that controlling the "rich-get-richer" prior allows for better results on both synthetic and real-world datasets.

Background

Motivation

This work is motivated by the need to control the "rich-get-richer" assumption's importance in Dirichlet process priors. The "rich-get-richer" property of the DP may not always make it the suitable prior for modeling a given dataset. The usual motivation for using a DP prior is that a new observation has a prior probability of being assigned to any cluster proportional to its population. This leads to a prior probability of opening a new cluster decreasing as the inverse of the number of observations, which makes little sense in a number of real-world situations.

Most state-of-the-art works rely on tuning a parameter α (see Eq. 1) to get the "right" number of clusters. This parameter shifts the distribution of the number of clusters as E(K|N ) ∝ α log N with K the number of clusters and N the number of observations. However, we argue this is a bad practice in some cases, typically when clusters size N c grows sublinearly with the number of observations N [START_REF] Betancourt | Flexible models for microclustering with application to entity resolution 29[END_REF]. For instance, tackling entity resolution problems need such sublinear growth [START_REF] Steorts | Smered: A bayesian approach to graphical record linkage and de-duplication[END_REF][START_REF] Steorts | Entity resolution with empirically motivated priors[END_REF]. When data is treated sequentially, the α parameter has to be fine-tuned after the fit has been performed; because its value depends on the number of observations, it makes the model unsuitable to train on new data without fitting and fine-tuning α again.

To alleviate this problem, we derive a more general form of the DP process that allows for natural control of the "rich-get-richer" property.

Previous works

Dirichlet process A well-known metaphor for the Dirichlet process is referred to as "Chinese restaurant". The corresponding process is named "Chinese Restaurant Process" (CRP): if a n th client enters a Chinese restaurant, they will sit at one of the K already occupied table with a probability proportional to the number of persons already sat at this table. They can also go to a new table and be the first client to sit there with a probability inversely proportional to the total number of clients in the restaurant. It can be written formally as:

CRP (C i = c|α, C 1 , C 2 , ..., C i-1 ) = Nc α+N if c = 1, 2, ..., K α α+N if c = K+1 (1)
Where c is the cluster chosen by the i th customer, N k is the population of cluster k, K is the number of already occupied tables and α the concentration parameter. When the number of clients goes to infinity, this process is equivalent to a draw from a Dirichlet distribution over an infinite number of clusters with a uniform concentration parameter α. It can be shown that the expected number of clusters after N observations evolves as log N [START_REF] Arratia | Poisson process approximations for the ewens sampling formula[END_REF].

The two best-known variations of the regular Dirichlet process that address the "rich-get-richer" property control are the seminal Pitman-Yor process and the Uniform process. Each of them can be expressed in a similar form as Eq. 1.

Uniform process The Uniform process has been used in some occasions [START_REF] Jensen | Bayesian clustering of transcription factor binding motifs[END_REF][START_REF] Qin | Identification of co-regulated genes through bayesian clustering of predicted regulatory binding sites[END_REF] without proper definition. More recently, it has been formalized and studied in comparison with the regular Dirichlet and Pitman-Yor processes [START_REF] Wallach | An alternative prior process for nonparametric bayesian clustering[END_REF]. It reads:

U P (C i = c|α, C 1 , C 2 , ..., C i-1 ) = 1 α+K if c = 1, 2, ..., K α α+K if c = K+1 (2)
Its formulation completely gets rid of the "rich-get-richer" property. The probability of a new client joining an occupied table is a uniform distribution over the number of occupied tables; it does not depend on the tables' population. In [START_REF] Wallach | An alternative prior process for nonparametric bayesian clustering[END_REF], it has been shown that the expected number of tables evolves with N as √ N . Removing the "rich-get-richer" property leads to a flat prior. As we show later, our formulation allows to retrieve such flat priors and thus generalizes the Uniform Process.

The authors also address the non-exchangeability of this process; they argue that it plays a minor role in inference tasks when using Gibbs sampling algorithms. A recent extension of the Uniform process that guarantees its exchangeability has been proposed in [START_REF] Lee | Why the rich get richer? On the balancedness of random partition models[END_REF]. In this work, the a priori probability of opening a new cluster is a constant anymore, and the a priori probability to belong to either cluster is constant as in [START_REF] Wallach | An alternative prior process for nonparametric bayesian clustering[END_REF]. However, it does not allow for direct control of the "rich-get-richer" property, which is absent of the proposed process.

Pitman-Yor process Following the Chinese Restaurant process metaphor, the Pitman-Yor process [START_REF] Pitman | The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator[END_REF][START_REF] Ishwaran | Generalized weighted chinese restaurant processes for species sampling mixture models[END_REF] proposed to incorporate a discount β when a client opens a new table. Mathematically, the process can be formulated as:

P Y (C i = c|α, β, C 1 , C 2 , ..., C i-1 ) = Nc-β α+N if c = 1, 2, ..., K α+βK α+N if c = K+1 (3)
The introduction of the discount parameter increases the probability of creating new clusters. A table with fewer customers has significantly less chances to gain new ones, while the probability of opening a new table increases significantly. It can be shown that the number of tables evolves with the number of clients N as N β [START_REF] Goldwater | Producing power-law distributions and damping word frequencies with two-stage language models[END_REF][START_REF] Sudderth | Shared segmentation of natural scenes using dependent pitman-yor processes[END_REF]. However, this process does not control the arguable "rich-get-richer" hypothesis [START_REF] Welling | Flexible priors for infinite mixture models[END_REF], since the relation to the population of a table remains linear; it only scales the linear dependence of a value β. The Pitman-Yor process thus comes with two limitations. First, since β > 0, it cannot be tuned to generate fewer clusters. Second, the discount parameter does not affect the linear dependence on previous observations for cluster allocations -rich still get richer.

Other rich-get-richer priors Another similar prior, the Power-law Indian Buffet Process, has been proposed so that a realization would yield a number of clusters obeying a power-law as the number of observations increases [START_REF] Teh | Indian buffet processes with power-law behavior 22[END_REF]. This formulation can be seen as a generalization of the Pitman-Yor process; it adds an additional parameter that sums with the number of observations. However, the posterior probability for a new customer to belong to a cluster depends linearly on each cluster's size, and the "rich-get-richer" hypothesis is preserved.

Finally, the Generalized Gamma Process proposed a similar discount idea to increase the probability of opening new clusters in [START_REF] Lijoi | Controlling the reinforcement in bayesian non-parametric mixture models[END_REF]. The proposed prior [START_REF] Lijoi | Controlling the reinforcement in bayesian non-parametric mixture models[END_REF]-Eq. 4 modifies a cluster's probability to get chosen by subtracting a constant term to each cluster's population. Thus, the "rich-get-richer" property is not alleviated in their approach either, since the dependence on cluster's population is still linear. As for the PY process, this formulation only allows to increase the number of clusters and does not alleviate the "rich-get-richer" hypothesis.

Contributions

In the present work, we derive the Powered Dirichlet Process (PDP) that allows controlling the "rich-get-richer" property while generalizing state-of-theart works. This allows to define new classes of a priori hypotheses: poor-getricher, rich-get-no-richer (Uniform process), rich-get-less-richer, rich-get-richer (DP), and rich-get-more-richer. We detail some key-properties of the Powered Dirichlet Process (convergence, expected number of clusters). Finally, we show that controlling the "rich-get-richer" prior of simple models yields better results on synthetic and real-world datasets.

3 The model

The Dirichlet-Multinomial distribution

We recall:

Dir(p|α) = k p α k -1 k B(α) M ult(N |N, p) = Γ (n + 1) k Γ (N k + 1) k p N k k (4) 
With N = (N 1 , N 2 , ..., N K ) where N k is the integer number of draws assigned to cluster k, N = k N k the total number of draws, Γ (x) = (x -1)! and

B(x) = k Γ (x k )/Γ ( k x k ).
The regular Dirichlet process can be derived from the Dirichlet-Multinomial distribution. The Dirichlet-Multinomial distribution is defined as follows:

DirM ult(N |α, n) = p M ult(N |p, n)Dir(p|α)dp = B(α + N )Γ (n + 1) B(α) k Γ (N k + 1) p k p N k +α k -1 k B(α + N ) Dir(p|α+N ) dp = Γ ( k α k )Γ (n + 1) Γ ( k α k + N k ) K k=1 Γ (N k + α k ) Γ (N k + 1)Γ (α k ) (5) 
In Eq. 5, we sample n values over a space of K distinct clusters each with probability p = (p 1 , p 2 , ..., p K ), using a Dirichlet prior with parameter α = (α 1 , α 2 , ..., α K ). Now to express this as a Dirichlet Process, we need the probability for a new observation to belong to either cluster given the history of draws. Given Eq. 5, it is equivalent to drawing from a Categorical distribution with a Dirichlet prior with concentration parameter α + N .

Powered conditional Dirichlet prior

In the the standard Dirichlet-Multinomial posterior predictive, the categorical distribution is coupled with a Dirichlet prior Dir(p|α + N ). We propose to modify this prior by defining the Powered Dirichlet prior that has a nonlinear dependence on the history of draws:

Dir r (p|α, N ) = 1 B(α + N r ) k p α k +N r k -1 k (6)
where N r = (N r 1 , ..., N r K ) still represents the population of each cluster, but at the power r. The parameter r ∈ R controls the intensity of the shift on the concentration parameter. It is straightforward to demonstrate that the Powered Dirichlet distribution is a conjugate prior of the Multinomial distribution.

Posterior predictive

We are looking for the probability of the n th draw belonging to cluster k. Let c = (c 1 , ..., c K ) where c k = 1 if the observation belongs to cluster k, and 0 otherwise.The probability of a draw from the Categorical distribution Cat(c|p) = k p c k k given a Powered Dirichlet prior as defined Eq. 6 reads:

DirCat r (c|α, N ) = p Cat(c|p)Dir r (p|α, N )dp = p 1 B(α + N r ) k p c k +α k +N r k -1 k dp = B(c + α + N r ) B(α + N r ) (7) 

Powered Dirichlet Process

We finally derive an expression for the Powered Dirichlet Process from Eq. 7.

Taking back the conditional probability for the n th observation to belong to cluster c (Eq. 7), we have:

DirCat r (c|N , α) =B(c + α + N r )/B(α + N r ) = (N r c + α c ) k Γ (N r k + α k ) ( k N r k + α k )Γ ( k N r k + α k ) • Γ ( k N r k + α k ) k Γ (N r k + α k ) = N r c + α c k N r k + α k (8) 
Now that we have the probability for each draw to belong to any cluster, we can iterate Eq. 8 as a process over K clusters. Finally, we assume an infinity of available clusters (K → ∞). When considering a new observation, we must associate it to one of these clusters, that can be empty (N k = 0) or non-empty (N k > 0).

From Eq. 8, the probability of choosing a non-empty cluster c linearly depends on N r c + α c ; the probability of choosing one empty cluster linearly depends on α c . However, all empty clusters are rigorously interchangeable, because they are fully characterized by their (null) population. We can therefore describe the initial probability of choosing any cluster with a single value α :

= ∞ k α k .
Because the number clusters is infinite, it follows that K k α k → 0 for any finite set of K clusters. Therefore, for the finite set of non-empty clusters, α k = 0. On the other hand, for the infinite set of empty clusters, the sum of their α k goes to α.

In the following, we rewrite K the number of non-empty clusters, and K + 1 any of the empty clusters. This transition between the finite Dirichlet-Categorical distribution and the infinite Dirichlet Process is standard in the literature [START_REF] Jordan | Dirchlet processes, chinese restaurant processes and all that[END_REF][START_REF] Frigyik | Introduction to the dirichlet distribution and related processes[END_REF]. From these considerations and Eq. 8, the Powered Dirichlet Process follows:

P DP (C n = c|α, C 1 , C 2 , ..., C i-1 ) =    N r c α+ K k N r k if c = 1, 2, ..., K α α+ K k N r k if c = K+1 (9) 
This formulation generalizes the Uniform process when r = 0 and the Dirichlet process when r = 1.

We illustrate the change on prior probability for an existing cluster to get chosen due to the Powered Dirichlet Process in Fig. 1. This figure plots the population of clusters (grey bars) and their associated prior probability of being selected. When r > 1, the most populated clusters are associated with a higher prior probability than in the standard CRP, whereas the less populated ones have even less chances to get chosen; rich-get-more-richer. When r < 1, the exact opposite is observed; rich-get-less-richer. In the limit case r = 0, we recover the Uniform Process; rich get-no-richer. Proof. We start with a simple situation where only 2 clusters are involved. The generalization to the case where K → ∞ clusters are involved is straightforward. When clusters' population is large enough, we make the following Taylor approximation:

(N i + 1) r = N r i (1 + 1 N i ) r = N r i + rN r-1 i + O(N r-2 ) (10) 
Since the population of a cluster N i is a non-decreasing function of N , we assume that first order Taylor approximation holds when N → ∞. Given clusters population at the N th observation, we perform a stability analysis of the gap between probabilities ∆p(N ) = p 1 (N ) -p 2 (N ). We recall that the probability for cluster i to get selected at step N is p i (N ) = N r i /( k N r k ). Either cluster is selected with this probability at step N + 1: ∆p(N + 1) = p 1 (N + 1) -p 2 (N ) with probability p 1 (N ), and ∆p(N + 1) = p 1 (N ) -p 2 (N + 1) with probability p 2 (N )). Explicitly, the variation of the gap between probabilities when N grows is written as:

p 1 (N )(p 1 (N + 1) -p 2 (N )) + p 2 (N )(p 1 (N ) -p 2 (N + 1)) -∆p(N ) ∆p(N )
Eq. 10

≈ 1 p 1 (N ) -p 2 (N ) × p 1 (N ) N r 1 -N r 2 + rN r-1 1 N r 1 + N r 2 + rN r-1 1 + p 2 (N ) N r 1 -N r 2 -rN r-1 2 N r 1 + N r 2 + rN r-1 2 = 2rN r 1 N r 2 (N r 1 + N r 2 + rN r-1 1 )(N r 1 + N r 2 + rN r-1 2 ) N r-1 1 -N r-1 2 N r 1 -N r 2 (11) 
We see in Eq. 11 that the sign of the variation of the gap between probabilities depend only on the term

N r-1 1 -N r-1 2 N r 1 -N r 2
. We can therefore perform a stability analysis of the Powered Dirichlet Process using only this expression.

-For 0 < r < 1 the following relation holds:

N r-1 1 -N r-1 2 < 0 ⇔ N r 1 - N r 2 > 0 ∀N 1 , N 2
, and conversely. That makes right hand side of Eq. 11 negative. Therefore adding a new observation statistically reduces the gap between the probabilities of the two clusters. We could forecast this prediction from Eq. 10. We see that the more a cluster is populated, the less a new observation increases its probability at the next step -rich-get-less-richer. Moreover, we see from Eq. 10 that a crowded cluster (such as N r 1 ≫ N r 2 ) see its probability evolve as N r-1 . Asymptotically, the only fixed point of Eq. 11 when N → ∞ is N 1 → N 2 , which implies a uniform distribution. We verify this result numerically in Fig. 2left.

-For r > 1 the following relation holds:

N r-1 1 -N r-1 2 > 0 ⇔ N r 1 -N r 2 > 0 ∀N 1 ,
N 2 ; ; that makes right hand side of Eq. 11 positive. Adding a new observation statistically increases the gap between probabilities. From Eq. 10, we see that the more a cluster is populated, the more a new observation increases its probability at the next step -rich-get-more-richer. In this case, Eq. 11 has K + 1 fixed points, with K the number of clusters. The uniform distribution is an unstable fixed point, while K Dirac distributions (each on one cluster) are stable fixed points of the system. It means the gap converges to 1, that is a probability of 1 for one cluster and a probability of 0 for the others.

-For r = 1, the right hand side of Eq. 11 is null. It means the gap remains statistically constant ∀N i , which is a classical result for the regular Dirichlet process. This convergence has already been studied on many occasions [START_REF] Ferguson | A Bayesian Analysis of Some Nonparametric Problems[END_REF][START_REF] Arratia | Poisson process approximations for the ewens sampling formula[END_REF].

-For r → 0, Eq. 11 is not defined anymore. That is because the probability for a cluster to be chosen does not depend on its population anymore. In this case, p 1 (N ) -p 2 (N ) ∝ N 0 1 -N 0 2 = 0: the probability for any cluster to be chosen is equal at all times, hence the Uniform process -"rich-get-no-richer".

Expected number of tables

Proposition 2 When N is large, k N r k varies with N as N r 2 +1 2 when r < 1, and with N r when r ≥ 1.

Proof. Taking back Eq. 9, we are interested in the variation of p i = N r i k N r k according to N when N r i is large. Since N i is either way a non-decreasing function of N , we reformulate the constraint N r i large into N r large:

p i (N + 1) -p i (N ) = rN r-1 i +O(N r-2 ) k N r k if N i grows 0 otherwise (12) 
-For r < 1, the larger N i the slower the variation of p i . It means that for large N r i , we can write N i ∝ N p i , with p i being now independent N . -For r > 1, the probability p i varies greatly with N and quickly converges to 1 for large N (see Proposition 1), and so N i ≈ N for cluster i and N j̸ =i ≪ N i ∀j.

Because the sum k N r k mostly varies according to large N k , we approximate k N r k ≈ N r k p r k for large N r . Besides, we showed in Proposition 1 that for large N the process converges to a uniform distribution for r < 1 and to a Dirac distribution when r > 1. Therefore, we can express K k p r k as:

K k p r k N ≫1 ≈ K • ( 1 K ) r = K 1-r for r < 1 1 for r ≥ 1 (13) 
Based on the demonstration of Eq.4 in [START_REF] Wallach | An alternative prior process for nonparametric bayesian clustering[END_REF], we assume that K evolves with N as N 1-r 2 when r < 1. We verify that this assumption holds in the Experiment section, Fig. 2-middle.

Therefore, we can write:

k N r k ≈ N r K k p r k ≈    N r N 1-r 2 1-r = N 1+r 2 2 for r < 1 N r for r ≥ 1 (14) 
Proposition 3 For N ≫ 1, the expected number of tables of the Powered Dirichlet Process grows with N as H r 2 +1 2 (N ) for r < 1 and as H r (N ) when r ≥ 1, where H m (n) is the generalized harmonic number.

Proof. In general, the expected number of clusters at the N th step can be written as:

E(K|N, r) = N 1 α k N r k + α N r ≫1 ∝ N 1 1 k N r k (15) 
We showed in Proposition 2 that we can rewrite

k N r k ∝ N r 2 +1 2 when r < 1 and k N r k ∝ N r when r ≥ 1.
Injecting this result in Eq. 15, we get:

E(K|N, r) N r ≫1 ∝        N 1 N -r 2 +1 2 = H r 2 +1 2 (N ) for r < 1 N 1 N -r = H r (N ) for r ≥ 1 (16) 
This result is verified numerically in Fig. 2-right. -For r = 1, E(K|N, r = 1) ∝ H 1 (N ) ≈ γ + log(N ) where γ is the Euler-Mascheroni constant, which is a classical result for the regular Dirichlet process.

-For r > 1 and N → ∞, the term H r 2 +1 2 (N ) converges towards a finite value and the sum k p r k goes to 1 (see Proposition 1). By definition E(K|N, r > 1)

N →∞ ∝ ζ( r 2 +1
2 ), where ζ is the Riemann Zeta function. -For r < 1, we need to approximate the harmonic number in a continuous setting. We rewrite Eq. 16 as:

N n=1 n -r 2 +1 2 N r ≫1 ≈ N 1 n -r 2 +1 2 dn = 2 1 -r 2 (N 1-r 2 2 -1) (17) 
One can show that N 1-x -1

1-x = H x (N ) + O( 1 N x ).
Therefore, the number of expected clusters in the Powered Dirichlet Process exhibits a power-law behaviour, similar to the Pitman-Yor process for r = √ 1 -2β for 0 < r < 1. For values of r > 1 ⇔ β < 0, the equivalent Pitman-Yor process is not defined. Note that there is no a priori reason for r to be constrained in the domain of positive real number. Complex and negative analysis of the process might be an interesting lead for future works.

Experiments

Use case: infinite Gaussian mixture model

We consider a classical infinite Gaussian mixture model coupled with a Powered Dirichlet Process prior. We choose this application to ease visual understanding of the implications of the PDP, but the argument holds for other models using DP priors as well (text modeling, gene expression clustering, etc.). We fit the data using a standard collapsed Gibbs sampling algorithm for IGMM [START_REF] Rasmussen | The infinite gaussian mixture model[END_REF][START_REF] Wallach | An alternative prior process for nonparametric bayesian clustering[END_REF][START_REF] Yin | A dirichlet multinomial mixture model-based approach for short text clustering[END_REF], with a Normal Inverse Wishart prior on the Gaussians' parameters. The order in which input data is processes is set at random at each iteration, so that we reduce the ordering bias from the dataset [START_REF] Wallach | An alternative prior process for nonparametric bayesian clustering[END_REF]. Note that we cannot completely get rid of it because the Powered Dirichlet Process is not exchangeable for all r. The problem has been addressed on numerous occasions (Uniform process [START_REF] Wallach | An alternative prior process for nonparametric bayesian clustering[END_REF], distance-dependent CRP [START_REF] Blei | Distance dependent chinese restaurant processes[END_REF][START_REF] Ghosh | Nonparametric clustering with distance dependent hierarchies[END_REF], spectral CRP [START_REF] Socher | Spectral chinese restaurant processes: Nonparametric clustering based on similarities[END_REF], balance-neutral partition [START_REF] Lee | Why the rich get richer? On the balancedness of random partition models[END_REF]) and shown to induce negligible variations of results in the case of Gibbs sampling. We stop the sampler once the likelihood reaches stability; we perform 100 runs for each value of r. Finally, the parameter α is set to 1. 1 Note that we choose not to compare to other types of clustering algorithms. This section aims to demonstrate the usefulness of a generalized form of the Dirichlet process with respect to the vanilla one. The argument on a simple model (here a regular DP combined with IGMM) extends to other priors built on Dirichlet processes (Hierarchical and Nested Dirichlet processes). Comparison of DP-based priors to other clustering methods (KNN, DBScan, Spectral clustering, etc.) has already been done numerous times and is out of our scope.

Synthetic data Synthetic datasets are represented in Fig. 3-top, and comprise N =1000 observations each, that have been generated by sampling from 2D Gaussian distributions. We present the results on synthetic data in Fig. 3-bottom and in Table 1. We consider standard metrics in clustering evaluation with a nonfixed number of clusters: mutual information score and rand index both adjusted for chance (Adj.MI and Adj.RI, higher is better), normalized variation of information (Norm.VI, lower is better), Fowlkes-Mallow score (higher is better), marginal likelihood (normalized for visualization, higher is better) and absolute relative variation of the inferred number of clusters according to the number used in the generation process ( K inf -Ktrue Ktrue , lower is better). The datasets are designed to investigate the effect varying r when clustering can take place on different scales. 

Real-world data

In Table 1, we report the results for the 20Newsgroup (20-NG) real-world dataset, which is a collection of 18 000 users posts published on Usenet, organized in 20 Newsgroup (which are our target thematic clusters).

As a model, we consider a modified version of LDA [START_REF] Blei | Latent dirichlet allocation[END_REF] that uses a PDP prior instead of DP in the words sampling step. Note that because the number of clusters must be provided to LDA, we do not compute K inf -Ktrue

Ktrue

. We also run additional experiments on well known real-world datasets from sklearn: Iris (4 attributes, 3 classes), Wines (13 attributes, 3 classes), and Cancer (30 attributes, 2 classes). We see PDP allows for improved performances on every dataset.

We now illustrate the interest of using an alternate form of prior for the IGMM on real-world data. We consider a dataset of 4.300 roman sepulchral inscriptions comprising the substring "Antoni" that have been dated between 150AC and 200AC and assigned with map coordinates. The dates correspond to the reign of Antoninus Pius over the Roman empire. The dataset is available on Clauss-Slaby repository2 . It was common to give children or slaves the name of the emperor; the dataset gives a global idea of the main areas of the roman empire at that time [START_REF] Hanson | Urbanism and the division of labour in the roman empire[END_REF]. The task is to discover spatial clusters of individuals named after the emperor. We present the results in Fig. 4. (right) and r = 0.9 (middle). We see that the model using a PDP prior for r = 0.9 and r = 0.8 describes the data better than the same model using a DP prior (r = 1).

We see that when r = 1, the classical DP prior is not fit for describing this dataset, as it misses most of the clusters. The problem could be solved by fine-tuning the α parameter, but such model would not be hold if we added new observations. On the other hand, when r = 0.9, the infinite Gaussian mixture model retrieves relevant clusters. It also finds some clusters that were not expected, such as the north Italian cluster or the long cluster going through Spain and France that corresponds to roman roads layout (via Augusta and via Agrippa; it was common to bury the dead on roads edges). Finally, when r = 0.8, some of the main clusters are broken into smaller ones (Italy breaks into Rome, North Italy, and South Italy; Britain becomes an independent cluster, etc.). In this case, tuning r controls the level of details of the clustering.

Conclusion

We discussed the need for controlling the "rich-get-richer" property that arises from the usual Dirichlet Process. We then derived the Powered Dirichlet Process to allow for its control. This formulation allows reducing the expected number of clusters, which is not possible with existing processes, while generalizing two of them. We derived elementary results on convergence and expected number of clusters of the PDP. Finally, we showed that it yields better results on both synthetic and real-world data. For future works, it might be interesting to investigate cases where r takes non-positive values (which might lead to a "poor-get-richer" kind of process), and to develop a procedure to infer this parameter based on data (by minimizing a dispersion criterion, for instance).

The regular Dirichlet Process has been used for decades as a powerful prior in many real-world applications. However, alternate forms for this prior have been little explored. It would be very interesting to study the changes brought to state-of-the-art models based on Dirichlet priors by varying the importance of the "rich-get-richer" assumption as proposed in this paper.

Fig. 1 .

 1 Fig. 1. Illustration of the effect of r on the Powered Dirichlet Process prior probability. Populations have been randomly sampled from a uniform distribution.

4. 1 ConvergenceProposition 1

 11 For N → ∞, the Powered Dirichlet Process converges to a stationary distribution. When r < 1, it converges to a uniform distribution, and when r > 1, it converges to a Dirac distribution.

Fig. 2 .

 2 Fig. 2. Numerical validation of Propositions 1 (left), 2 (middle), 3 (right). In the first plot, K is the number of non-empty clusters. In the second and third plots, the theoretical results are the solid lines and the associated numerical results are the transparent lines of same color. Except for small N , the difference between theory and experiments is almost indistinguishable.

Fig. 3 .

 3 Fig. 3. Application on synthetic data. (Top) Original datasets used for the experiments (Density, Diamond and Grid). (Bottom) Results for various values of r; the x and y axes all the same. The dashed line indicates the regular DP prior as r = 1. The error correspond to the standard error of the mean over all runs.

Fig. 4 .

 4 Fig.4. Application to spatial clustering on geolocated data for r = 0.8 (left), r = 1 (right) and r = 0.9 (middle). We see that the model using a PDP prior for r = 0.9 and r = 0.8 describes the data better than the same model using a DP prior (r = 1).
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  Codes and datasets available at https://github.com/GaelPouxMedard/PDP

Table 1 .

 1 Numerical results of the various priors coupled to a standard IGMM. PDP allows to outperform the baselines consistently. The standard error on the last digit(s) over 100 runs is given in shorthand notation (0.123(12) ⇔ 0.123 ± 0.012).

	Density Diamond Grid	PDP (r=0.60) DP (r=1.00) UP (r=0.00) PDP (r=0.50) DP (r=1.00) UP (r=0.00) PDP (r=0.85) DP (r=1.00) UP (r=0.00)	Adj.MI (↑) 0.992(1) 0.951(4) 0.939(2) 0.982(2) 0.909(7) 0.927(2) 0.997(1) 0.995(1) 0.811(1)	Adj.RI (↑) Norm.VI (↓) 0.980(2) 0.006(1) 0.797(17) 0.037(3) 0.854(4) 0.050(1) 0.956(5) 0.011(1) 0.731(19) 0.053(4) 0.844(6) 0.051(2) 0.990(2) 0.003(1) 0.977(4) 0.004(1) 0.517(3) 0.154(1)	K inf -K true K true 0.045(5) (↓) 0.128(10) 0.548(1) 0.063(7) 0.202(12) 0.544(2) 0.014(2) 0.018(3) 2.120(1)
	Iris	PDP (r=0.90) DP (r=1.00)	0.868(4) 0.843(6)	0.866(7) 0.820(12)	0.057(2) 0.065(2)	0.000(0) 0.030(10)
		UP (r=0.00)	0.544(2)	0.295(3)	0.303(2)	2.777(32)
	Wines	PDP (r=0.10) DP (r=1.00) UP (r=0.00)	0.712(15) 0.589(19) 0.713(17)	0.637(20) 0.461(16) 0.657(21)	0.102(5) 0.128(4) 0.103(5)	0.157(17) 0.327(13) 0.147(17)
	Cancer	PDP (r=0.10) DP (r=1.00) UP (r=0.00)	0.254(17) 0.085(16) 0.271(17)	0.278(21) 0.094(19) 0.300(21)	0.118(1) 0.108(2) 0.118(1)	0.000(0) 0.000(0) 0.000(0)
	20-NG	PDP (r=0.80) DP (r=1.00) UP (r=0.00)	0.421(4) 0.404(4) 0.000(4)	0.119(3) 0.105(4) 0.000(0)	0.477(3) 0.491(3) 0.830(3)	---

http://www.manfredclauss.de/fr/index.html