
HAL Id: hal-04171056
https://hal.science/hal-04171056

Preprint submitted on 26 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A determinantal point process approach to scaling and
local limits of random Young tableaux

Jacopo Borga, Cédric Boutillier, Valentin Féray, Pierre-Loïc Méliot

To cite this version:
Jacopo Borga, Cédric Boutillier, Valentin Féray, Pierre-Loïc Méliot. A determinantal point process
approach to scaling and local limits of random Young tableaux. 2023. �hal-04171056�

https://hal.science/hal-04171056
https://hal.archives-ouvertes.fr


A DETERMINANTAL POINT PROCESS APPROACH TO SCALING
AND LOCAL LIMITS OF RANDOM YOUNG TABLEAUX

JACOPO BORGA, CÉDRIC BOUTILLIER, VALENTIN FÉRAY, AND PIERRE-LOÏC MÉLIOT

Abstract. We obtain scaling and local limit results for large random Young tableaux of fixed
shape λ0 via the asymptotic analysis of a determinantal point process due to Gorin and Rahman
(2019). More precisely, we prove:

• an explicit description of the limiting surface of a uniform random Young tableau of shape
λ0, based on solving a complex-valued polynomial equation;

• a simple criteria to determine if the limiting surface is continuous in the whole domain;
• and a local limit result in the bulk of a random Poissonized Young tableau of shape λ0.
Our results have several consequences, for instance: they lead to explicit formulas for the

limiting surface of L-shaped tableaux, generalizing the results of Pittel and Romik (2007) for
rectangular shapes; they imply that the limiting surface for L-shaped tableaux is discontinuous
for almost-every L-shape; and they give a new one-parameter family of infinite random Young
tableaux, constructed from the so-called random infinite bead process.
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1. Introduction

1.1. Overview. Random Young diagrams form a classical theme in probability theory, starting
with the work of Logan–Shepp and Vershik–Kerov on the Plancherel measure [LS77, VK77],
motivated by Ulam’s problem on the typical length of the longest increasing subsequence in a
uniform random permutation. The topic also has connections with random matrix theory and
particle systems, and has known an increase of interest after the discovery of an underlying
determinantal point process for a Poissonized version of the Plancherel measure [BOO00]. It
would be vain to do a complete review of the related literature, we only refer to [Rom15, Hor16]
for books on the topic. We also refer the reader to Section 1.2 for precise definitions of the objects
mentioned in this section.

In comparison, the random Young tableaux, which are in essence dynamic versions of random
diagrams, have a shorter history. Motivations to study random Young tableaux range from
asymptotic representation theory to connections with other models of combinatorial probability,
such as random permutations with short monotone subsequences [Rom06] or most notably random
sorting networks; see [AHRV07] and many later papers.

As in most of the literature, we are interested in the simple model where we fix a shape λ0

(or rather a sequence of growing shapes) and consider a uniform random tableau T of shape
λ0. In [PR07], Pittel and Romik derived a limiting surface result for uniform random Young
tableaux of rectangular shapes, based on the hook formula [FRT54] and counting arguments. An
earlier result of Biane in asymptotic representation theory [Bia03] implies in fact, the existence
of such limiting surfaces for any underlying shape. However, unlike in the Pittel–Romik paper,
explicit computations are usually intractable: they involve the Markov–Krein correspondence and
the free compression of probability measures, the latter being rarely an explicit computation.
More recently, entropy optimization methods have been applied to prove the existence of limiting
surfaces, extending the result to skew shapes [Sun18]. These techniques lead to some natural
gradient variational problems in R2 whose solutions are explicitly parameterized by κ-harmonic
functions, as show in [KP22].

Recently, in [GR19], a determinantal point process structure was discovered for a Poissonized
version of random Young tableaux. This determinantal structure was used for a specific problem
motivated by the aforementioned sorting networks, namely describing the local limit of uniform
tableaux of staircase shape around their outer diagonal [GR19, GX22].

The goal of the current paper is to exploit this determinantal point process structure in order
to get limiting results for a large family of shapes. Namely, we consider shapes obtained as
dilatations of any given Young diagram λ0. Here is an informal description of our results.

• We obtain a new description of the limiting surface corresponding to the shape λ0, based
on solving a complex-valued polynomial equation (Theorem 4 and Eqs. (13) and (14)).
This new description is more explicit compared to the one obtained through the existence
approaches.

• These results led us to discover a surprising discontinuity phenomenon for the limiting
surface corresponding to λ0. More precisely, we establish a simple criterion – expressed in
terms of some equations involving the so-called interlacing coordinates of λ0 – to determine
if the limiting surface is continuous (Theorem 7). This shows that such limiting surfaces
are typically discontinuous.

• We obtain a local limit result in the bulk of a random Young tableau (Theorem 15). The
limit is a new model of infinite random tableaux (Definition 16), constructed from the
so-called random infinite bead process (Definition 13) introduced by the second author in
[Bou09]. Interestingly (but somehow expectedly by analogy with results on lozenge tilings
[Pet14, Agg19]), this local limit depends on the underlying shape λ and on the chosen
position in λ only through a single parameter β ∈ (−1, 1).

1.2. Young tableaux, Poissonized Young tableaux and bead configurations. Let us start
by fixing terminology and notation. An integer partition of n, or partition of n for short, is a



DPP AND RANDOM YOUNG TABLEAUX 3

(0, 1)

(1, 2)

(2, 3)

(3, 4)

(−1, 2)

(0, 3)

(1, 4)

(2, 5)

(−2, 3)

(−1, 4)(−3, 4)

a0 a1 a2 a3b1 b2 b3

1

2

3

4

5

6 7

8

9

1011

12

13

14

15

16

17

18

19

20

21

22

2324

25

26

27

28

29

3031 32

3334

35

36

−8 −5 −3−2 1 3 6−3

T (4, 5) = 15

ωλ(x)

Figure 1. Left: The Young diagram of the partition (4, 4, 3, 2) drawn in Russian convention,
with the coordinates of each box inside it. Right: A Young tableau T : λ → [n] of shape λ
corresponding to the partition (6, 6, 6, 4, 4, 4, 3, 3) drawn with Russian convention; all the boxes are
squares with area 2. We indicate the interlacing coordinates a0 < b1 < a1 < b2 < · · · < bm < am
below the x-axis.

non-increasing list λ = (λ1, λ2, . . . , λl) of positive integers with n =
∑l

i=1 λi. We write |λ| = n
for the size of the partition and `(λ) = l for the length of the partition, and use the convention
λi = 0 when i > `(λ). We will represent partitions graphically with the Russian convention, i.e.
for each i ≤ `(λ) and j ≤ λi we have a square box whose sides are parallel to the diagonals x = y
and x = −y and whose center has coordinates (j − i, i + j − 1); see the left-hand side of Fig. 1.
We call this graphical representation the Young diagram of shape λ.

When looking at a Young diagram λ, its upper boundary is the graph of a 1-Lipschitz function,
denoted by ωλ : R → R, and the diagram λ can be encoded using the local minima and maxima
of the function ωλ. Following Kerov [Ker00], we denote them by

a0 < b1 < a1 < b2 < · · · < bm < am, ai, bi ∈ Z, (1)
and we call them interlacing coordinates. See the right-hand side of Fig. 1 for an example. Note
that a0 = −`(λ) and am = λ1. Furthermore, interlacing coordinates satisfy

m∑
i=0

ai =
m∑
i=1

bi, (2)

see, e.g., [IO02, Proposition 2.4].
A Young tableau of shape λ is a filling of the boxes of λ with the numbers 1, 2, . . . , n such

that the numbers along every row and column are increasing. We encode a Young tableau as
a function T : λ → [n] = {1, 2, . . . , n}, where the Young diagram λ is identified with the set
{(j − i, i + j − 1), i ≤ `(λ), j ≤ λi}; see again the right-hand side of Fig. 1 for an example. The
function T : λ → [n] can be thought of as the graph of a (non-continuous) surface above that set.

Note that, given a Young diagram λ, there are finitely many Young tableaux of shape λ, so
it makes sense to consider a uniform random Young tableau of shape λ. In this paper, following
[GR19], we also consider Poissonized Young tableaux of shape λ, which are functions T : λ → [0, 1]
with distinct real values that are increasing along rows and columns. See the left-hand side of
Fig. 2 for an example. Note that for any fixed λ, the admissible functions T : λ → [0, 1] form a
subset of [0, 1]λ of positive (and finite) Lebesgue measure, so it makes sense to consider a uniform
random Poissonized Young tableau of shape λ.

A bead configuration is a collection of points (called beads) positioned on parallel vertical threads
which is locally finite and satisfy an interlacing relation on the vertical positions of the beads: for
every pair of consecutive beads on a thread, on each of its neighboring threads there is exactly
one bead whose vertical position is between them. See the right-hand side of Fig. 2 for an
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example. In the present paper, we will consider both finite and infinite bead configurations, i.e.
configurations containing finitely or infinitely many beads. In the finite case, a bead configuration
is a finite subset of A× [0, 1] where A is a finite sub-interval of Z, while in the infinite case a bead
configuration is a locally finite subset of Z× R.

Given a Poissonized Young tableau T : λ → [0, 1] of shape λ, we associate a finite bead
configuration Mλ,T in ([−`(λ), λ1] ∩ Z)× [0, 1] = ([a0, am] ∩ Z)× [0, 1] defined by

Mλ,T = { (i, T (i, j)) | (i, j) ∈ λ } . (3)
An example is given in Fig. 2. Note that the monotonicity condition of Poissonized Young tableaux
implies that points on neighboring vertical lines are interlacing, i.e. satisfy the bead configuration
constraints. We also introduce the height function Hλ,T : ([a0, am]∩Z)× [0, 1] → Z≥0, defined by

Hλ,T (x, t) = # (Mλ,T ∩ ({x} × [0, t])) , for all (x, t) ∈ ([a0, am] ∩ Z)× [0, 1], (4)
i.e. Hλ,T (x, t) is the number of beads on the thread x below height t. We note that Hλ,T is
non-decreasing in t and has the following boundary values:{

Hλ,T (a0, t) = Hλ,T (x, 0) = Hλ,T (am, t) = 0, for all t ∈ [0, 1],

Hλ,T (x, 1) =
1
2
(ωλ(x)− |x|), for all x ∈ [a0, am] ∩ Z.

(5)

Clearly, the bead configuration Mλ,T is entirely determined by the height function Hλ,T . Moreover,
we have that

T (x, y) < t if and only if H(x, t) > 1
2
(y − |x|). (6)

Fixing a Young diagram λ and taking a uniform random (Poissonized) Young tableau T of shape λ
gives a random bead configuration Mλ,T and a random height function Hλ,T , often simply denoted
by Mλ and Hλ.

t = 0

t = 1

0 1 2 3 4 5−1−2−3−40−ℓ(λ) = a0 = −4 λ1 = am = 5

(λ, T ) Mλ,T

.15
.2

.4
.55

.95
.85

.5
.25

.7
.9

t = .6

Hλ,T (0, .6) = 2 Hλ,T (1, .6) = 1

x = 1

ωλ(1) = 5

ωλ(x)

Figure 2. Left: A Poissonized Young tableau T of shape λ = (5, 3, 1, 1). Right: The corre-
sponding bead configuration Mλ,T . To illustrate the definition of the height function, we have
indicated the values Hλ,T (0, .6) and Hλ,T (1, .6) and circled the corresponding beads.

Remark 1. We note that the notion of Poissonized Young tableaux had appeared in disguise in
earlier work than that of Gorin and Rahman. Indeed, given a finite partially ordered set (or
poset) P , it is standard to consider its order polytope, i.e. the subset of [0, 1]P satisfying order
constraints given by the poset (i ≤P j ⇒ xi ≤ xj). Then the volume of this order polytope is
known to be proportional to the number of linear extensions [Sta86].

Now, a Young diagram λ can be seen as a partially ordered set, where the elements are the cells
and the order is given by coordinate-wise comparison. Then the linear extensions are standard
Young tableaux, and Poissonized Young tableaux are points of the order polytopes. This has been
used for counting (skew) Young tableaux in [Elk03, BR10] and for the analysis of random tableaux
in [Mar16, BMW20], where the name “continuous Young diagram” is used.
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1.3. The limiting height function and the limiting surface. We fix a Young diagram λ0

which will determine the shape of our growing sequence of diagrams. For an integer n > 0,
we define N = N(n, λ0) = n2|λ0| and consider the (n × n)-dilated diagram λN obtained by
replacing each box of λ0 by a square of n× n boxes. Note that λN has size N and has the same
(dilated) shape as λ0. We set η = 1/

√
|λ0| and consider the interval [−η `(λ0), η λ0

1]
(1)
= [η a0, η am].

Informally, the interval [η a0, η am] is the projection on the x-axis of the Russian representation
of λ0, scaled in both directions by a factor η in order to have total area 2. In particular, given
a Young tableau of shape λN , the corresponding bead configuration MλN

is supported on the set
([n a0, n am] ∩ Z)× [0, 1].

The following convergence result for the height function of MλN
is proved in [Sun18, Theorem

7.15] in the case of uniform random Poissonized Young tableaux. It also follows indirectly from
concentration results on random Young diagrams by Biane [Bia01], as made explicit recently by
Śniady and Maślanka [MŚ22, Proposition 10.1] (the latter considers standard tableaux and not
Poissonized tableaux, but it is simple to see that this has no influence on the next statement).

Theorem 2 ([Sun18, Theorem 7.15] and [MŚ22, Proposition 10.1]). Let λ0 be a fixed Young
diagram and let TN be a uniform random (Poissonized) Young tableau of shape λN . With the
above notation, there exists a deterministic height function H∞ : [η a0, η am]× [0, 1] → R such that
the following convergence in probability holds:

1√
N

HλN ,TN
(bx

√
Nc, t) −−−−→

N→+∞
H∞(x, t), (7)

uniformly for all (x, t) in [η a0, η am]× [0, 1].

In [Sun18], the limiting function H∞ is implicitly found as the unique maximizer of a certain
entropy functional subject to some boundary conditions depending on the diagram λ0. Using
the approach of [Bia01, MŚ22], for each t ∈ [0, 1], the section H∞(·, t) is described via the free
cumulants of an associated measure. Both descriptions are hard to manipulate. Our first result
gives an alternative and more explicit description of H∞ via the solution of a polynomial equation,
called the critical equation.

1.3.1. Critical equations, liquid regions and limiting height functions for bead processes. Let a0 <
b1 < a1 < b2 < · · · < am be the interlacing coordinates of λ0, introduced in (1). For (x, t)
in [η a0, η am] × [0, 1], we consider the following polynomial equation, referred to throughout the
paper as the critical equation:1

U

m∏
i=1

(x− η bi + U) = (1− t)
m∏
i=0

(x− η ai + U). (8)

This is a polynomial equation in the complex variable U of degree m+1. Using the fact that the
ai’s and bi’s are alternating, one can easily prove that (8) has at least m − 1 real solutions; see
Lemma 24 below. Hence it has either 0 or 2 non-real solutions.

Definition 3 (Liquid region). We let L be the set of pairs (x, t) in [η a0, η am] × [0, 1] such that
(8) has two non-real solutions and we call it liquid region. The complement of the liquid region
in [η a0, η am]× [0, 1] will be referred to as the frozen region.2

Several equivalent descriptions of the liquid region are given in Proposition 27. For instance,
we will show that L is an open subset of [η a0, η am]× [0, 1] and give an explicit parametrization
of its boundary, i.e. the so-called frozen boundary curve.

1This terminology is justified by the results at the beginning of Section 3.3.
2The terminology liquid and frozen region is standard in the dimer literature. See for instance Theorem 15 for

a justification.
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For (x, t) ∈ L, we denote by Uc = Uc(x, t) the unique solution with a positive imaginary part
of the critical equation (8) and we define

α(x, t) :=
IUc

(1− t)
and β(x, t) :=

RUc

|Uc|
, (9)

where I and R denote the imaginary and real part of a complex number. For (x, t) /∈ L, we set
α(x, t) := 0, and we leave β(x, t) undefined. In particular, note that this defines a function α(x, t)
for all (x, t) ∈ [η a0, η am] × [0, 1]. It turns out that the limiting height function H∞ is directly
related to the function α via the following simple formula.

Theorem 4. With the above notation, the limiting height function H∞ from Theorem 2 takes the
form

H∞(x, t) =
1

π

∫ t

0

α(x, s) ds , for all (x, t) ∈ [η a0, η am]× [0, 1].

Informally, the asymptotic density of beads at position (bx
√
Nc, t) in MλN

is
√
N α(x, t). In

particular, the liquid region coincides with the region where there is a macroscopic quantity of
beads.

1.3.2. Limiting surfaces for Young tableaux and discontinuity phenomena. It is natural to try to
translate the limiting result for the bead process to a limit result for the tableau itself, seen as a
discrete surface. Namely, we set

Dλ0 :=
{
(x, y) ∈ R2 : |x| < y < ωηλ0(x)

}
, (10)

which is the shape (seen as an open domain of the plane) of the diagram λ0 in Russian notation,
normalized to have area 2. For (x, y) in Dλ0 , letting TN be a uniform Poissonized tableau of shape
λN , we consider

T̃N(x, y) := TN(bx
√
Nc, by

√
Nc+ δ), (11)

where δ ∈ {0, 1} is chosen so that the arguments of TN have distinct parities. We want to find
a scaling limit for the function T̃N(x, y). (Again, it is simple to see that considering uniform
Poissonized or (classical) uniform Young tableaux of shape λ is irrelevant here.) To this end, we
set for all (x, y) ∈ Dλ0 ,

T∞
+ = T∞

+ (x, y) := sup
{
t ∈ [0, 1] : H∞(x, t) ≤ 1

2
(y − |x|)

}
, (12)

T∞
− = T∞

− (x, y) := inf
{
t ∈ [0, 1] : H∞(x, t) ≥ 1

2
(y − |x|)

}
.

Proposition 5. For all ε > 0, the following limit holds uniformly for all (x, y) ∈ Dλ0:

lim
N→+∞

P
(
T̃N(x, y) < T∞

− − ε
)
= lim

N→+∞
P
(
T̃N(x, y) > T∞

+ + ε
)
= 0.

Proof. Recalling the relation (6) and the rescaling (11), we note that

T̃N(x, y) < T∞
− − ε if and only if HλN

(
bx

√
Nc, T∞

− − ε
)
>

1

2
(by

√
Nc+ δ − |bx

√
Nc|).

We claim that the latter event happens with probability tending to 0. Indeed, Theorem 2 guar-
antees the following convergence in probability uniformly for all (x, y) ∈ Dλ0 :

lim
N→+∞

1√
N
HλN

(
bx

√
Nc, T∞

− − ε
)
= H∞(x, T∞

− − ε) < 1
2
(y − |x|),

where the last inequality follows by definition of T∞
− . The statement for T∞

+ is proved similarly. �

We let Dreg
λ0 be the set of coordinates (x, y) ∈ Dλ0 such that T∞

− (x, y) = T∞
+ (x, y). For such

points, we simply write T∞(x, y) for this common value. By definition, on Dreg
λ0 , one has

H∞(x, T∞(x, y)) = 1
2
(y − |x|). (13)
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Moreover, Proposition 5 implies the following convergence in probability for (x, y) ∈ Dreg
λ0 :

lim
N→+∞

T̃N(x, y) = T∞(x, y), (14)

Note that this convergence holds uniformly on compact subsets of Dreg
λ0 .

Remark 6. For any x fixed, since t 7→ H∞(x, t) is non-decreasing, the points (x, y) are in Dreg
λ0

for all but countably many y. As a consequence, Dλ0 \Dreg
λ0 has zero (two-dimensional) Lebesgue

measure. Moreover, if (x, y) ∈ Dλ0\Dreg
λ0 and x−ε, x+ε ∈ Dreg

λ0 , then T∞(x−ε, y) and T∞(x+ε, y)
converge respectively to T∞

− (x, y) and T∞
+ (x, y) as ε tends to 0 with ε > 0. Therefore the limiting

surface T∞ is discontinuous at such points (x, y) and we do not know whether T̃N(x, y) converges or
not. This discontinuity phenomenon was overlooked in [Sun18, Theorem 9.1], where it is claimed
that the convergence holds for all (x, y) in Dλ0.

A natural question is whether such discontinuity points (x, y) exist at all in Dλ0 . The follow-
ing result shows that such points indeed exist unless λ0 is a rectangle, or unless its interlacing
coordinates satisfy some specific equations.

Theorem 7. For a Young diagram λ0, the following assertions are equivalent:

(1) The limiting surface T∞ is continuous in the whole domain Dλ0;

(2) The interlacing coordinates defined in (1) satisfy the system of equations:
m∑
i=0
i 6=i0

1

ai0 − ai
=

m∑
i=1

1

ai0 − bi
, for all i0 = 1, . . . ,m− 1. (15)

Note that when m = 1, i.e. when λ0 has a rectangular shape, there are no equations in the
second item. Indeed, the limiting surface T∞ is always continuous in this case.

1.4. Applications for simple limit shapes. In this section, we illustrate our results in the
cases m = 1 (rectangular shapes) and m = 2 (L-shapes). Before starting, let us note that
our model and all results are invariant when multiplying all interlacing coordinates of λ0 by the
same positive integers. We will therefore allow ourselves to work with diagrams λ0 with rational
(non-necessarily integer) interlacing coordinates. The statements of this section are proved in
Section 7.

1.4.1. An explicit formula for the rectangular case. In this section, we consider a rectangular
diagram λ0. Without loss of generality, we assume a0 = −1 and write r = a1. Necessarily,
b1 = r − 1. Solving explicitly the second degree critical equation (8) yields:

Proposition 8. The limiting height function corresponding to a 1 × r rectangular shape λ0 is
given by

H∞
r (x, t) =

1

π

∫ t

0

√
s(4r − (1 + r)2s) + 2(r − 1)

√
rsx− rx2

2
√
r(1− s)s

ds (16)

with the convention that
√
x = 0 if x ≤ 0. Moreover, the limiting surface T∞

r is continuous on
Dλ0 and is therefore implicitly determined by the equation

H∞
r (x, T∞

r (x, y)) = 1
2
(y − |x|). (17)

Remark 9. In the case r = 1 (square Young tableaux), we get

H∞
1 (x, t) =

1

π

∫ t

0

√
4s− 4s2 − x2

2s− 2s2
ds .
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The graph of the function
√
4s−4s2−x2

2s−2s2
is plotted on the left-hand side of Fig. 3, while the correspond-

ing limiting surface T∞
1 is on the right. The above integral can be explicitly computed, recovering

the formula found by Pittel and Romik from [PR07]. Pittel and Romik also give formulas for the
general rectangular case, which should coincide with (16), though we could not verify it.

Using precisely the same proof of Proposition 8, one can also obtain explicit formulas for L-
shaped diagrams; since the latter expressions are pretty involved, we decided not to display them.

Figure 3. Left: The graphs of the function
√
4s−4s2−x2

2s−2s2
from Remark 9. Right: The corre-

sponding limiting surface T∞
1 for squared diagrams. Note that we are using two different axes’

orientations to improve the visualization’s quality.

1.4.2. Two concrete examples of L-shape diagrams. We now consider two specific diagrams λ0

and λ̃0 which are both L-shaped (i.e. m = 2). Because of the shape of the corresponding liquid
regions (see pictures in Figs. 4 and 5), the first one is called the heart example and the second
one the pipe example.

In the heart example (c.f. Fig. 4), the Young diagram λ0 has interlacing coordinates
a0 = −5 < b1 = −4 < a1 = −1 < b2 = 3 < a2 = 5. (18)

In this case we have |λ0| = 13, so that η = 1/
√
|λ0| = 1/

√
13 and [η a0, η am] = [−5/

√
13, 5/

√
13] ≈

[−1.39, 1.39].
In the pipe example (c.f. Fig. 5), the Young diagram λ̃0 has interlacing coordinates

ã0 = −200 < b̃1 = −197 < ã1 = −90 < b̃2 = 10 < ã2 = 103. (19)

In this case, we have |λ̃0| = 9900, so that η̃ = 1
30

√
11

and [η̃ ã0, η̃ ãm] = [− 200
30

√
11
, 103
30

√
11
] ≈

[−2.01, 1.04].
Various pictures of these two examples, discussed in the sequel, are presented in Figs. 4 and 5.

For both examples, we have computed (using the parametrization from Proposition 27 below)
the boundary of the liquid region defined in Definition 3. Independently, we have also generated
uniform random tableaux of shape λN for large N (using the Greene–Nijenhuis–Wilf hook walk
algorithm [GNW82]). The bead processes corresponding to these uniform random tableaux are
also plotted, and we see that, in both cases, the position of the beads coincides with the liquid
region, as predicted by Theorem 4. Finally, we plotted the height functions associated with the
bead processes.

An essential difference between the two examples is that the heart example, the interlacing co-
ordinates satisfy Condition (15), while this is not the case in the heart example. From Theorem 7,
we, therefore, expect to see a continuous limiting surface in the heart example and not in the pipe
example. This is indeed the case, as we now explain.

In the heart example, the intersection of the liquid region with any vertical line is connected; in
other terms, for every x ∈ [η a0, η am], the function t 7→ H∞(x, t) is first constant equal to 0, then
strictly increasing, and then constant equal to its maximal value. Therefore, with the notation of
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a0 = −5

b1 = −4

a1 = −1

b2 = 3

a2 = 5

(m = 2)

-1.0 -0.5 0.0 0.5 1.0 1.39-1.39
0.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.5 0.0 0.5 1.0 1.39-1.39
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4. Figures for the heart example. Top-left: The Young diagram λ0 considered in the
heart example, see (18). Top-right: The frozen boundary curve of the corresponding liquid
region. Bottom (from left to right): a uniform random tableau of shape λN with N = 130000
boxes (n = 100) displayed as a discrete surface in a 3D space (brown is used for small values of
the surface and blue for large ones); the corresponding bead processes MλN

; the corresponding
height function HλN

.

ã0 = −200 b̃1 = −197

ã1 = −90 b̃2 = 10 ã2 = 103

(m = 2)

-1.0 -0.5 0.0 0.5 1.0-1.5
0.0

0.2

0.4

0.6

0.8

1.0

-2.0

-1.0 -0.5 0.0 0.5 1.0-1.5
0.0

0.2

0.4

0.6

0.8

1.0

-2.0

Figure 5. Figures for the pipe example. Top-left: The Young diagram λ̃0 considered in the
pipe example, see (19). Top-right: The frozen boundary curve of the corresponding liquid region.
Bottom (from left to right): a uniform random tableau of shape λN with N = 59400 boxes
(n = 6) displayed as a discrete surface in a 3D space (brown is used for small values of the surface
and blue for large ones); the corresponding bead process MλN

; the corresponding height function
HλN

. The red circle in the picture in the left-hand side highlights the discontinuous location of
the limiting surface.
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(12), we have T∞
− (x, y) = T∞

+ (x, y) for all (x, y) in Dλ0 and the limiting surface T∞ is defined and
continuous on the whole set Dλ0 . Looking at the random tableau drawn as a discrete surface, it
is indeed plausible that it converges to a continuous surface.

In the pipe example, however, we can find some x0 (on the right of η a1 = − 3√
11

≈ −0.9) so that
the liquid region intersects the line x0× [0, 1] in two disjoint intervals. The function t 7→ H∞(x, t)
is then constant between these two intervals, and the limiting surface T∞ is discontinuous. This
discontinuity can be observed on the simulation of a uniform random tableau (see the zoom inside
the red circle on the left-hand side).

1.4.3. Characterizing continuity for L-shapes. In numerical simulations, we need to consider ex-
tremely unbalanced diagrams λ0 (as the one in the pipe example above) to observe a discontinuity
in the limit shape. We will see, however, in this section that such discontinuity occurs for generic
L-shape diagrams λ0.

To this end, let us parametrize L-shape Young diagrams as follows. For (p, q, r) ∈ � :=
{(p, q, r) ∈ Q3 | r > 0, p ∈ (−1, r), |p| < q ≤ min{p+ 2, 2r − p}}, we let λ0

p,q,r have interlacing co-
ordinates

a0 = −1 < b1 =
p+ q − 2

2
< a1 = p < b2 =

p− q + 2r

2
< a2 = r. (20)

Then the inner corner of λ0
p,q,r has coordinates (p, q) and η = 2√

p2−2p(−1+r)+q(2−q+2r)
; see Fig. 6 for

an illustration.

a0 = −1 a2 = r0

2

(p, q)

b2 =
p−q+2r

2b1 =
p+q−2

2

a1 = p

1

1

Figure 6. The Young diagram λ0
p,q,r. In yellow, the region �.

Given the diagram λ0
p,q,r, we denote by Dp,q,r = Dλ0

p,q,r
and T∞

p,q,r the corresponding domain
and limiting surface, as defined in Section 1.3.2. The following results characterizes the triplets
(p, q, r), for which T∞

p,q,r is defined and continuous on the whole domain Dp,q,r.

Proposition 10. The following results hold:
• If r = 1 then the surface T∞

p,q,1 is defined and continuous on Dp,q,1 if and only if

p = 0 or q = 2−
√

2− p2 =: Q(p).

• If r 6= 1, then the surface T∞
p,q,r is defined and continuous on Dp,q,r if and only if

p ≤ 0 and q = Q+
r (p) or p ≥ r − 1 and q = Q−

r (p),
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where

Q±
r (p) = 1 + r ±

√
(1 + p− r)(1 + 2p− r)(pr + (1 + r)2 − p− 2p2)

1 + 2p− r
.

Remark 11. In the case r = 1, we note that there is a dense set (dense in the continuous curve
{ (x, y) ∈ R2 | y = Q(x), x ∈ (0, 1) }) of rational solutions (p, q) to the equation q = Q(p). They
are parametrized by{

(p, q) ∈ Q2
∣∣ q = Q(p)

}
=

{(
s(2r + s)− r2

s2 + r2
, 1 +

2s(s− r)

s2 + r2

) ∣∣∣∣ (s, r) ∈ Q2, sr 6= 0

}
.

These results can be obtained in the same way as one obtains the parametrization for the rational
points of the unit circle, noting that x2 + y2 = 1 if and only if (x− y)2 + (x+ y)2 = 2. A similar
remark holds also in the case r > 1.

0

2

2−
√
2− p2

-1 1

1

0

2

1

1-1 3/2

Q+
r (p)

Q−
r (p)

Figure 7. Left: Here we fixed the parameter r = 1. The yellow region is the region
{(p, q) ∈ R2 | p ∈ (−1, 1), |p| < q ≤ 2− |p|}. Proposition 10 states that the limiting surface T∞

p,q,1 is
continuous if and only if (p, q) lies on one of the two red curves. Right (case r > 1): Here r = 3/2.
The yellow region is the region {(p, q) ∈ R2 | p ∈ (−1, 3/2), |p| < q ≤ min{p+ 2, 2r − p}}. Propo-
sition 10 states that the limiting surface T∞

p,q,r is continuous if and only if (p, q) lies on one of the
two red curves.

1.5. Local limit results. We now present our local limit results. We first introduce the random
infinite bead process mentioned before.

1.5.1. The random infinite bead process. The second author [Bou09] constructed a two-parameter
family of ergodic Gibbs measures on the set of infinite bead configurations (recall the terminology
introduced in Section 1.2). These measures are constructed as limits of some dimer model measures
on some bipartite graphs when certain weights degenerate. These Gibbs measures are shown to be
determinantal point processes; we refer the reader to [HKPV09] for background on determinantal
point processes. In particular, the following result is a slight reformulation of [Bou09, Theorem
2], see Remark 14 below.

Theorem 12 ([Bou09]). Let (α, β) be in R+× (−1, 1). There exists a determinantal point process
Mα,β on Z× R with correlation kernel

Jα,β
(
(x1, t1), (x2, t2)

)
=


α
2π

∫
[−1,1]

ei(t1−t2)αu
(
β + iu

√
1− β2

)x2−x1

du if x2 ≥ x1;

− α
2π

∫
R\[−1,1]

ei(t1−t2)αu
(
β + iu

√
1− β2

)x2−x1

du if x2 < x1.
(21)
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Definition 13 (Random infinite bead process). The point process Mα,β is called the random
infinite bead process of intensity α and skewness β.

These bead processes have nice properties. First, they are translation invariant in both direc-
tions and induce the uniform measure on bead configurations on every finite domain (see [Bou09]
for a precise statement). Moreover, they appear as limits of dimer tilings [Bou09, FFN12] and
of the eigenvalues of imbricated GUE matrices (called GUE corners process), see [ANvM14]. We
also note that:

• the expected number of beads in a portion of a thread of length 1 is α
π
;

• the expected ratio between the vertical distance of a bead b from its neighbor on the left
and below3 it, and the distance between b and the successive bead on the same thread, is
arccos(β)

π
; see [Bou09, Eq. (29)].

Remark 14. We note that Theorem 12 is a simple reformulation of [Bou09, Theorem 2]. Indeed,
for α = 1, the above kernel J1,β correspond to Jγ in [Bou09] for γ = β.4 For general α, the bead
process Mα,β is simply obtained by applying a dilatation with scaling factor 1

α
to M1,β. Then the

kernel of Mα,β is given by Jα,β
(
(x1, t1), (x2, t2)

)
= αJ1,β

(
(x1, αt1), (x2, αt2)

)
, which is consistent

with the statement above.

1.5.2. Local limit result for the bead process. Given a Young diagram λ0, we now fix (x0, t0) in
[η a0, η am]× [0, 1]. In the rest of the paper, we assume that x0

√
|λ0| is an integer5 so that x0

√
N is

always an integer. We look at the random bead process MλN
in a window of size O(1)×O(1/

√
N)

around (x0

√
N, t0). To this end, we define

M̃
(x0,t0)
λN

=
{
(x, t) ∈ Z× R

∣∣∣ (x0

√
N + x, t0 +

t√
N

)
∈ MλN

}
. (22)

In the next result, we consider the standard topology for point processes (see Section 2.2 for
further details). Recall also the definition of the liquid region from Definition 3, and the subsequent
definitions of α(x0, t0) and β(x0, t0).

Theorem 15 (Local limit of the bead process associated with a Poissonized Young tableau). Fix
a Young diagram λ0 and consider a sequence TN : λN → [0, 1] of uniform random Poissonized
Young tableaux of shape λN . We choose x0 ∈ [η a0, η am] and t0 ∈ [0, 1], and we let n go to infinity
(so N goes to infinity).

• If (x0, t0) is in the liquid region, then the random bead process M̃
(x0,t0)
λN

in (22) converges in
distribution to the random infinite bead process of intensity α(x0, t0) and skewness β(x0, t0).

• If (x0, t0) is in the complement of the liquid region, then the random bead process M̃
(x0,t0)
λN

converges in probability to the empty set.

Note that the second case contains the case where (x0, t0) lies on the boundary of the liquid
region (recall from Proposition 27 that the liquid region is an open set). See Section 1.8 for a
discussion on this case.

1.5.3. Local limit result for the tableau. Our next result describes the local limit of uniform random
Poissonized Young tableaux. We need some preliminary definitions.

3The interpretation of the parameter β in the text of [Bou09], where above is used instead of below, is wrong
because of a missing minus sign inside the arccos in Eq. (29) there.

4In the present paper, we use β instead of γ to avoid conflicts of notation with integration paths.
5This is not as restrictive as it might seem. Indeed, since we are going to look at the limit when n → ∞, as

soon as x0

√
|λ0| is a rational number, it is possible to replace λ0 with a rescaled version of λ0 so that x0

√
|λ0| is

an integer.
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A marked standard Young tableau is a triplet (λ, T, (x, y)) where (λ, T ) is a standard Young
tableau of shape λ and (x, y) are the coordinates of a distinguished box in λ. A marked Poissonized
Young tableau is defined analogously.

We introduce a one-parameter family of random infinite standard Young tableaux directly
constructed from the random infinite bead process. These will be our candidate local limits for
random uniform Poissonized Young tableaux. Let Mβ be the infinite bead process of intensity 1
and skewness β ∈ (−1, 1). There is a natural bijection between the set of beads in Mβ and the
set { (x, y) ∈ Z2 | x+ y is odd }: we label by (0, 1) the first bead in the zero-thread with positive
height, and then we label all the other beads as shown in the left-hand side of Fig. 8.

1
2
3

26
35

?

5
6
10
15
29

8
11
12
20
31

16
17
19
23

18
21
22
25

24
28
30

34

4
7

14
13

(0, 1)

(1, 2)

(2, 3)

(3, 4)

(4,5)

(5, 6)

(-1,2)

(0,3)
(1,4)

(2, 5)

(3,6)

(4,7)

(-2,3)
(-1,4)

(0,5)

(1,6)

(2,7)
(0,7)

(-1,6)(-2,5)

(-3,4)

(-4,5)

(-3,6)
(-2,7)

(-1,8)(-5,6)

(-4,7)

(-6,7)

(-3,8)

(0,9)

(1,8)

(2,9)
(1,10)

(3,8)

(6,7)

1
2

3

5

6

7

9

11

12

14

15

19

23

27

31

35

9

3227
?

? ?
?
? ? ?

?
? ?

0

Zero-level line

Figure 8. Left: A section of a sampling of the infinite bead process Mβ. We only show the
labels of the beads with a label (x, y) ∈ �∞. These beads are highlighted in black. The ranking
of some black beads is shown on the left-hand side of the diagram. Right: The corresponding
random infinite standard Young tableau (�∞, Rβ). On both sides of the picture, we colored some
elements in correspondence to help the reader to compare the two pictures.

Given a bead (x, y) in Mβ, we denote by Hβ(x, y) the height of the bead (x, y). The collec-
tion of heights {Hβ(x, y)} with (x, y) ∈ { (x, y) ∈ Z2 | x+ y is odd and y > |x| } can be ranked
increasingly, starting from the smallest one to which we assign rank 1 (see the left-hand side of
the bead diagram in Fig. 8; we prove in Proposition 44 below that the heights {Hβ(x, y)} are all
distinct and have no accumulation points a.s.). Given a bead (x, y), we denote its ranking by
Rβ(x, y).

Definition 16 (Random infinite standard Young tableau). The random infinite standard Young
tableau of skewness β ∈ (−1, 1) is the random infinite standard Young tableau (�∞, Rβ), where
�∞ is the infinite Young diagram formed by all the boxes at positions (x, y) ∈ Z2 such that x+ y
is odd and y > |x|.

See the right-hand side of Fig. 8 for an example of random infinite standard Young tableau
(�∞, Rβ).

Remark 17. It is, of course, possible to do the same construction starting from a bead process
of general intensity α instead of 1. However, a bead process of intensity α is obtained from one
of intensity 1 by rescaling the vertical axis. Since the construction of the tableau only involves
comparing the heights of various beads and not their actual heights, such a rescaling does not
modify the law of the resulting tableau. Hence the skewness β is indeed the only relevant parameter.

In the following result, we endow the space of marked standard Young tableaux with the
topology induced by the local convergence, formally introduced in Definition 43. Roughly speaking,



14 JACOPO BORGA, CÉDRIC BOUTILLIER, VALENTIN FÉRAY, AND PIERRE-LOÏC MÉLIOT

this topology says that a (deterministic) sequence of marked Young tableaux (λn, Tn, (xn, yn))
converges to an infinite Young tableau (�∞, R), if the values of the boxes in (λn, Tn) contained
in any finite neighborhood above the marked box at (xn, yn) are eventually in the same relative
order as the values of the boxes of (�∞, R) contained in the same finite neighborhood above the
box at (0, 0).

Corollary 18 (Local limit for the uniform Poissonized Young tableau; corollary of Theorem 15).
Fix a Young diagram λ0 and (x0, t0) in the corresponding liquid region L. Consider a sequence TN

of uniform random Poissonized Young tableaux of shape λN . We denote @N the box corresponding
to the first bead of MλN ,TN

above t0 in the x0

√
N-th thread.

Then, as N → ∞, the sequence of marked standard Young tableaux (λN , TN ,@N)N locally
converges in distribution to the random infinite standard Young tableau (�∞, Rβ) of skewness
β = β(x0, t0).

1.6. The complex Burger’s equation and a PDE for the limiting height function. A
standard fact when describing limit shapes and local limits via determinantal point processes
is that the solution Uc(x, t) of the critical equation (8), sometimes called complex slope, satisfy
some partial differential equation (PDE). This PDE is normally related to the so-called complex
Burger’s equation, see [KO07, Pet14]. In our model, we get the following PDE .

Proposition 19. In the sequel, the indices _x and _t denote partial derivatives with respect to
the variables x and t. The solution Uc = Uc(x, t) of the critical equation (8) satisfies the following
PDE in the liquid region:

(Uc)t + Uc
(Uc)x + 1

1− t
= 0. (23)

The proposition is proved in Section 3.3.1. This PDE yields a PDE for the complex-valued
function H∞(x, t) := 1

π

∫ t

0
Uc(x,s)
1−s

ds. Namely,

H∞
tt + πH∞

t H∞
xt = 0. (24)

We recall from Theorem 4 that the limiting height function H∞(x, t) is simply obtained as
H∞(x, t) = IH∞(x, t). Taking the imaginary part in Eq. (24), we get

H∞
tt + π H̃∞

t H∞
xt + πH∞

t H̃∞
xt = 0, (25)

where H̃∞(x, t) = RH∞(x, t). To get a PDE involving only the height function H∞(x, t), we
need an extra ingredient. At least on an informal level, this extra ingredient is provided by a
combination of the local convergence to the infinite bead process in Theorem 15 and the scaling
limit result in Theorem 4, as we explain now.

Recall from Section 1.5.1 that for the infinite bead process Mα,β, the expected ratio between the
vertical distance of a bead b from its neighbor on the left and below it, and the distance between b

and the successive bead on the same thread, is arccos(β)
π

. But successive beads on the same thread
are at expected distance π/α so that the expected vertical distance between a bead b and its
neighbor on the left and below it is arccos(β)/α. Using this fact for Mα,β, and approximating
the bead process M̃

(x,t)
λN

with the infinite bead process Mα,β with parameters α = α(x, t) and
β = β(x, t) (Theorem 15), we get that for large N the height function HλN

around (x, t) with
x > 0 satisfies

HλN
(x
√
N, t) ≈ HλN

(
x
√
N − 1, t−arccos(β)

α
√
N

)
, (26)

where we used the fact that when x > 0, the first bead on the (x
√
N)-thread is above the first

bead on the (x
√
N − 1)-thread. Iterating this argument ε

√
N times, and multiplying both sides
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by 1/
√
N , we get

1√
N

HλN

(
x
√
N, t

)
≈ 1√

N
HλN

(
(x− ε)

√
N, t− ε

arccos(β)

α

)
.

Finally, using Theorem 2 and sending N to infinity, we deduce that

H∞(x, t) = H∞
(
x− ε, t− ε

arccos(β)

α

)
.

This implies H∞
x + arccos(β)

α
H∞

t = 0 for x > 0. When x ≤ 0, we need to use the fact that the
first bead on the (x

√
N)-thread is now below the first bead on the (x

√
N − 1)-thread. As a

consequence, (26) is replaced by

HλN
(x
√
N, t) ≈ HλN

(
x
√
N − 1, t+

π − arccos(β)

α
√
N

)
,

where we also used the fact that the expected vertical distance between a bead b and its neighbor
on the left and above it is (π − arccos(β))/α. Hence, for x ≤ 0 one gets H∞

x − π−arccos(β)
α

H∞
t = 0.

The equations obtained for the cases x > 0 and x ≤ 0 can be grouped in a single formula as
follows:

H∞
x +

(
arccos(β)

α
− πδx≤0

α

)
H∞

t = 0.

Since H∞
t = α/π by Theorem 4, the previous equation simplifies to β = cos(πδx≤0 − πH∞

x ).
Recalling from (9) that β = RUc

|Uc| , we deduce that Arg(Uc) = πδx≤0 − πH∞
x . Recalling also from

(9) that α = IUc

1−t
, we conclude that

H̃∞
t =

RUc

π(1− t)
=

α

π tan(Arg(Uc))
=

H∞
t

tan(πδx≤0 − πH∞
x )

= − H∞
t

tan(πH∞
x )

,

and
H̃∞

xt = − H∞
xt

tan(πH∞
x )

+ πH∞
t H∞

xx

(
1 +

1

tan2(πH∞
x )

)
.

Combining the latter two equations with (25), we get the desired PDE for the height function:

H∞
tt − 2π

H∞
t H∞

xt

tan(πH∞
x )

+ π2(H∞
t )2H∞

xx

(
1 +

1

tan2(πH∞
x )

)
= 0. (27)

Such a PDE for the limiting surface was obtained by Sun as a consequence of its variational
principle [Sun18, Eq. (28)]. Note that our equation is slightly different from [Sun18, Eq. (28)]
since we do not use the same convention for the height function H∞.

We do not know if this heuristic argument can be transformed into an actual proof of (27); we
did not pursue in this direction because of the earlier appearance of the equation in the work of
Sun.

1.7. Methods. As mentioned in the background section, our starting point is the determinantal
structure of the bead process associated to a uniform Poissonized tableau of given shape [GR19].
The local limit theorem for bead processes around (x0

√
N, t0) (Theorem 15) is then obtained by

an asymptotic analysis of the kernel in the appropriate regime. Since the determinantal kernel is
expressed in terms of a double contour integral, such asymptotic analysis is performed via saddle
point analysis, following the method used, e.g., in the papers [OR03, BK08, Pet14].

The saddle points are precisely the two non-real roots of the critical equation (8) if they exist
(liquid region), or some of its real roots when all roots are real (frozen region). In the case of
the frozen region, the construction of the contours depend on the relative position of (x0, t0) with
respect to the liquid region. The case where we have an alternation of liquid and frozen phases
along a line {x0}× [0, 1] (leading to a discontinuity of the surface) is particularly interesting since
one has to split one of the integration contours into two new distinguished integration contours
(Section 5.3). Such alternation of liquid and frozen phases has appeared in certain models of
random tilings, such as plane partitions with 2-periodic weights [Mkr14, Figure 3] or pyramid
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partitions [LV21, Figure 1.1], and in a different context (asymptotic representation theory of the
unitary group) in [BK08, Theorem 4.6].

From the local limit theorem, we know that the parameter α(x0, t0) controls the local density of
beads around (x0, t0). It is, therefore, not surprising that the limiting height function is obtained
as an integral of this local density. Formally, we use a special case of the convergence of the
determinantal kernel established for the local limit theorem to prove our formula for the limiting
height function. The relation between local limit results via determinantal point processes, and
limit shape results were remarked in other contexts, see e.g. [BOO00, Remark 1.7] or [OR03,
Section 3.1.10], but not formally used as we do in the present paper.

1.8. Future work. Here are a few directions that could be interesting to investigate.

(1) We have limited ourselves here to a sequence of diagrams λN , obtained as the dilatation
of a base diagram λ0. It would be also interesting to consider more general sequences of
diagrams with a continuous limit shape ω(x) in the sense of [Bia98, IO02]. In this case,
the critical equation is not polynomial anymore, but it should rewrite as

1− t = U Gµω(U + x),

where Gµω(z) =
∫
R

1
z−s

µ(ds) is the Cauchy transform of the transition measure of the
limit shape (see [Bia03]).

(2) We believe that the discontinuities observed in this paper are created by the non-smoothness
of the limit shape ω(x). We conjecture that if ω is smooth (probably C1 is enough), then
the limiting surface is continuous. An interesting question is also to find a general cri-
terium for the limiting surface to be continuous, extending Theorem 7. The latter suggests
that there should be some identity to check at each singular point of the limit shape ω;
but at the moment we do not know what such criterium should be.

(3) In Corollary 18, we consider the local limit of a Young diagram around a box �N , whose
coordinates are random (they depend on the tableau TN). Considering the limit around a
fixed box in the Young diagram would be more satisfactory. This corresponds, however, to
a random position in the bead process. One potential strategy to attack this problem would
be to refine our analysis of the kernel in Section 3 replacing the fixed point ((x1, t1), (x2, t2))
with a point which might depend on N . We also believe that one can extend the results in
Corollary 18 to uniform Young tableaux (instead of uniform Poissonized Young tableaux).

(4) On the boundary of the liquid region, Theorem 15 states that there are with high prob-
ability no beads in a window of size O(1) × O(1/

√
N). We expect, however, that with

a different rescaling in t, the bead process will converge either to the Airy process (for
typical points of the boundary) or to the Cusp-Airy/Pearcey process (for cusps points of
the boundary). For instance, this type of behavior for typical points of the boundary was
proved for lozenge tilings in [Pet14]; while the aforementioned behavior for cusps points
of the boundary was for instance investigated in [OR06, OR07, DJM16] in the setting
of random tiling models. The appearance of the Airy process could be used to establish
Tracy-Widom fluctuations of a generic entry in the first row of random Young tableaux.
Such a result was proved with a different and specific method for uniform random tableaux
of square shape by Marchal [Mar16].

(5) We believe that the family of infinite tableaux (�∞, Rβ) constructed in this paper deserves
more attention. Unlike Plancherel infinite tableaux [KV86], the tableaux (�∞, Rβ) do
not come from a Markovian growth process. But, as local limit of finite random Young
tableaux, they should have an interesting invariant re-rooting property.

1.9. Outline of the paper. The rest of the paper is organized as follows. In Section 2, we first
recall the determinantal structure of the bead process associated to a uniform Poissonized tableau
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of given shape [GR19], and then we rewrite the corresponding kernel in a more suitable way for
our analysis. Moreover, in Section 2.2, we recall some basic topological facts for determinantal
point processes. Section 3.1 is devoted to the analysis of the kernel of the random bead process
M̃

(x0,t0)
λN

in (22). The main goal of this section will be to identify the critical points of the action
(Section 3.3). The next two sections are devoted to the proof of the local limit of the bead
process stated in Theorem 15, which is the building block for all the other results in the paper:
in Section 4 we look at the asymptotics of the kernel inside the liquid region, while in Section 5
we look at the asymptotics of the kernel in the frozen region. Finally, in the last three sections
of this paper, we deduce Theorems 4 and 7 (Section 6), we give the proofs of our applications
discussed in Section 1.4 (Section 7) and we conclude with the proof of the local limit for Young
tableaux stated in Corollary 18 (Section 8).

2. Preliminaries

2.1. Gorin–Rahman’s determinantal formula.

2.1.1. Young diagrams and associated meromorphic functions. Recall the interlacing coordinates
introduced in Eq. (1). With a Young diagram λ, we associate a function of a complex variable u.
Throughout the paper, Γ stands for the usual Γ function. We set

Fλ(u) := Γ(u+ 1)
∞∏
i=1

u+ i

u− λi + i
=

∏m
i=0 Γ(u− ai + 1)∏m
i=1 Γ(u− bi + 1)

, (28)

where the equivalence between the two formulas is proved in6 [IO02, Eq. (2.7)]. This meromorphic
function Fλ has an infinite countable set of simple poles, namely { λi − i | i ≥ 1 }.

From now on, (ai)0≤i≤m and (bi)1≤i≤m are the interlacing coordinates of our fixed base diagram
λ0. The interlacing coordinates of the dilatation λN are simply (n a0, n b1, . . . , n bm, n am), where
n is the dilatation factor (each box in λ0 corresponds to an n × n square in λN). Recalling the
relation N = n2|λ0| = n2η−2, we have

FλN
(u) =

∏m
i=0 Γ(u− η ai

√
N + 1)∏m

i=1 Γ(u− η bi
√
N + 1)

. (29)

2.1.2. The Gorin–Rahman’s correlation kernel. From [GR19, Theorem 1.5], for any fixed diagram
λ, taking a uniform random Poissonized Young tableau T of shape λ, the bead process Mλ = Mλ,T

introduced in (3) is a determinantal point process on Z× [0, 1] with correlation kernel

Kλ((x1, t1), (x2, t2)) = 1x1>x2, t1<t2

(t1 − t2)
x1−x2−1

(x1 − x2 − 1)!
(30)

+
1

(2iπ)2

∮
γ̃z

∮
γ̃w

Fλ(x2 + z)

Fλ(x1 − 1− w)

Γ(−w)

Γ(z + 1)

(1− t2)
z (1− t1)

w

z + w + x2 − x1 + 1
dw dz ,

where the double contour integral runs over counterclockwise paths γ̃w and γ̃z such that
• γ̃w is inside γ̃z ;
• γ̃w and γ̃z contain all the integers in [0, `(λ)− 1 + x1] and in [0, λ1 − 1− x2] respectively;
• the ratio 1

z+w+x2−x1+1
remains uniformly bounded.

Recalling the expression for Fλ in (28), we get that

• the simple poles of Fλ(x2+z)
Γ(z+1)

are { λi − i− x2 | i ≥ 1 } ∩ Z≥0;

• the simple poles of Γ(−w)
Fλ(x1−1−w)

are Z≥0 \ { x1 − 1− λi + i | i ≥ 1 }.

6The quantity Φ(z;λ) in [IO02] is defined right before Proposition 1.2. It is related to Fλ by the equation
Fλ(u) = Γ(u+ 1)Φ(u+ 1

2 ;λ). Beware that notations for interlacing coordinates are different here and in [IO02].
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a0 a1 a2 a3b1 b2 b3

x1 = 2x2 = −1

λ1

−ℓ(λ)

γzγw

Figure 9. We consider here the Young diagram λ = (6, 6, 6, 4, 4, 4, 3, 3) drawn with Russian
convention. Left: We indicate the poles of Fλ in red (and in brown the corresponding points on
the boundary of the diagram). Right: We show the poles of the integrand, the w-poles in green,
and the z-poles in purple in the case when x1 = 2 and x2 = −1 (recall that there is an additional
simple pole for z = w). The integration contours in Eq. (31) are also represented.

For later convenience, we perform the following change of variables:{
z′ = x2 + z,

w′ = x1 − 1− w.

If γ̃z was sufficiently large, after this change of variable, the new z-contour still encloses the new
w-contour. Therefore, we obtain the following expression for the correlation kernel:

Kλ((x1, t1), (x2, t2)) = 1x1>x2, t1<t2

(t1 − t2)
x1−x2−1

(x1 − x2 − 1)!
(31)

− 1

(2iπ)2

∮
γz

∮
γw

Fλ(z)

Fλ(w)

Γ(w − x1 + 1)

Γ(z − x2 + 1)

(1− t2)
z−x2 (1− t1)

−w+x1−1

z − w
dw dz ,

where the double contour integral runs over counterclockwise paths γw and γz such that
• γw is inside γz;
• γw and γz contain all the integers in [−`(λ), x1 − 1] and in [x2, λ1 − 1] respectively;
• the ratio 1

z−w
remains uniformly bounded.

We note that in the new integrand in (31),
• the set of w-poles (which are all simple) is Z≤x1−1 \ { λi − i | i ≥ 1 }, which is included in
[−`(λ), x1 − 1];

• the set of z-poles (which are all simple) is { λi − i | i ≥ 1 } ∩ Z≥x2 , which is included in
[x2, λ1 − 1];

• there is an additional simple pole for z = w.
Hence the second property of γw and γz given above ensures that the integration contours contain
all poles. We refer to Fig. 9 for a visual representation of these poles and integration contours.

2.1.3. Removing the indicator function from the correlation kernel. Let γ′
z and γ′

w be the two
contours satisfying the same conditions as γz and γw, except that γ′

z lies inside γ′
w. A simple

residue computation, done below, yields the following result.
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Lemma 20. For all (x1, t1), (x2, t2) ∈ Z× [0, 1], it holds that

1x1>x2

(t1 − t2)
x1−x2−1

(x1 − x2 − 1)!
− 1

(2iπ)2

∮
γz

∮
γw

Fλ(z)

Fλ(w)

Γ(w − x1 + 1)

Γ(z − x2 + 1)

(1− t2)
z−x2 (1− t1)

−w+x1−1

z − w
dw dz

= − 1

(2iπ)2

∮
γ′
z

∮
γ′
w

Fλ(z)

Fλ(w)

Γ(w − x1 + 1)

Γ(z − x2 + 1)

(1− t2)
z−x2 (1− t1)

−w+x1−1

z − w
dw dz . (32)

Proof. To simplify, we can assume that γ′
w = γw. Fixing some w ∈ γw, we can deform γz into γ′

z,
crossing uniquely the pole z = w. Hence, for w ∈ γw, by residue theorem we have that

1

(2iπ)2

∮
γz

Fλ(z)

Fλ(w)

Γ(w − x1 + 1)

Γ(z − x2 + 1)

(1− t2)
z−x2 (1− t1)

−w+x1−1

z − w
dw dz

− 1

(2iπ)2

∮
γ′
z

Fλ(z)

Fλ(w)

Γ(w − x1 + 1)

Γ(z − x2 + 1)

(1− t2)
z−x2 (1− t1)

−w+x1−1

z − w
dw dz

=
1

2iπ

Γ(w − x1 + 1)

Γ(w − x2 + 1)
(1− t2)

w−x2 (1− t1)
−w+x1−1 (33)

We now integrate the right-hand side over the close contour γw. In the case x1 ≤ x2, we have
Γ(w − x1 + 1)

Γ(w − x2 + 1)
= (w − x1)(w − x1 − 1) · · · (w − x2 + 1),

and the right-hand side of (33) is an entire function. Hence integrating over γw gives 0. On the
contrary when x1 > x2, we have

Γ(w − x1 + 1)

Γ(w − x2 + 1)
=

1

(w − x2)(w − x2 − 1) · · · (w − x1 + 1)
.

In this case, the RHS of (33) is a meromorphic function of w with simple poles in x1 − 1− i, for
i ∈ {0, 1, . . . , x1 − x2 − 1}. Bringing both cases together, we have

1

2iπ

∮
γw

Γ(w − x1 + 1)

Γ(w − x2 + 1)
(1− t2)

w−x2 (1− t1)
−w+x1−1 dw

= 1x1>x2

x1−x2−1∑
i=0

(1− t2)
(x1−1−i)−x2 (1− t1)

−(x1−1−i)+x1−1

((x1 − 1− i)− x2) · · · 1 · (−1) · · · (−i)

=
1x1>x2

(x1 − x2 − 1)!

x1−x2−1∑
i=0

(
x1 − x2 − 1

i

)
(1− t2)

x1−x2−1−i(t1 − 1)i

= 1x1>x2

(t1 − t2)
x1−x2−1

(x1 − x2 − 1)!
. �

We, therefore, have the following simplified (and final) representation of the correlation kernel:

Kλ((x1, t1), (x2, t2)) = − 1

(2iπ)2

∮
γz

∮
γw

Fλ(z)

Fλ(w)

Γ(w − x1 + 1)

Γ(z − x2 + 1)

(1− t2)
z−x2 (1− t1)

−w+x1−1

z − w
dw dz ,

(34)
where the double contour integral runs over counterclockwise paths γw and γz such that

• γw is inside (resp. outside) γz if t1 ≥ t2 (resp. t1 < t2);
• γw and γz contain all the integers in [−`(λ), x1 − 1] = [a0, x1 − 1] and in [x2, λ1 − 1] =
[x2, am − 1] respectively;

• the ratio 1
z−w

remains uniformly bounded.
Moreover, the integrand has simple poles for w at Z≤x1−1 \ { λi − i | i ≥ 1 } ⊆ [−`(λ), x1 − 1],
simple poles for z at { λi − i | i ≥ 1 } ∩ Z≥x2 ⊆ [x2, λ1 − 1], and a simple pole for z = w.
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2.2. A topology for bead processes. We discuss in this section a (standard) notion of conver-
gence for bead processes, or more generally for determinantal point processes. The expert reader
may consider skipping this section.

A bead process can be naturally interpreted as a random locally finite counting measure on
the complete and separable metric space X := Z × R, i.e. as a random variable in the space of
locally finite counting measures on X , denoted by M#

X . We endow M#
X with the σ-algebra FX

generated by the cylinder sets

Cn
B =

{
µ ∈ M#

X

∣∣∣ µ(B) = n
}
, (35)

defined for all n ∈ N and all Borel subsets B of X .
The elements of this σ-algebra are the Borel subsets for the weak topology on the space

(M#
X ,FX ) of locally finite counting measures on X . The convergent sequences for the weak

topology are defined as follows: if (µn)n is a sequence in M#
X and µ ∈ M#

X , then

µn
w−→ µ if

∫
X
f(x) dµn (x) →

∫
X
f(x) dµ (x),

for all bounded continuous functions f on X with bounded support. This topology makes M#
X a

Polish space, which eases the manipulation of sequences of random measures in M#
X . In particular,

by [DVJ08, Theorem 11.1.VII], if (νn)n is a sequence of random measures in M#
X and ν is another

random measure in M#
X , then νn

d−→ ν w.r.t. the weak topology if for all k ≥ 1,

(νn(Bi))1≤i≤k
d−→ (ν(Bi))1≤i≤k, (36)

for all collections (Bi)1≤i≤k of bounded Borel ν-continuity subsets7 of X . Since both νn and ν are
random counting measures, the condition in (36) is equivalent to requiring that for all k ≥ 1,

P(νn(Bi) = mi,∀1 ≤ i ≤ k) → P(ν(Bi) = mi, ∀1 ≤ i ≤ k), (37)
for all collections (Bi)1≤i≤k of bounded Borel ν-continuity subsets of X and all integer-valued
vectors (mi)1≤i≤k ∈ (Z≥0)

k. In particular, we highlight for later scopes the following result.

Proposition 21. Let (νn)n be a sequence of random measures in M#
X and ν is another random

measure in M#
X . If νn

d−→ ν w.r.t. the weak topology, then
P(νn ∈ A) → P(ν ∈ A)

for all sets A ∈ FX which can be written as a countable union/intersection/complementation of
cylinder sets Cn

B such that B is a bounded Borel ν-continuity subset of X .

Recalling that a bead process is a determinantal point process on X = Z× R, we now look at
the specific case where ν and νn are determinantal point process on X .

Let J = J
(
(x1, t1), (x2, t2)

)
and Jn = Jn

(
(x1, t1), (x2, t2)

)
be the kernels of ν and νn respectively.

We also introduce the following generating function for the determinantal point process ν (and
analogously for the determinantal point processes νn): for z = (z1, . . . , zk) and B = (B1, . . . , Bk),
we set

Qν
B(z) :=

∑
`∈Nk

(−z)`

`!

∫
B`

det
([

J
(
(xi, ti), (xj, tj)

)]
1≤i,j≤|`|

)
dλ⊗|`| ((x1, t1), . . . , (x|`|, t|`|)

)
,

where λ denotes the product measure of the counting measure on Z and the Lebesgue measure
on R, and where we also used the following multi-index notation

|`| =
k∑

i=1

`i, `! =
k∏

i=1

`i!, B` = B`1
1 × · · · ×B`k

k , z` = z`11 · · · z`kk .

7Recall that a bounded Borel subset of X is a continuity subset for a random measure ν in M#
X if ν(∂B) = 0

almost surely.
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With some simple manipulations (see for instance [Bou05, Equation 3.4]), one can show that for
m = (m1, . . . ,mk) ∈ (Z≥0)

k, it holds that

P
(
ν(Bi) = mi, ∀1 ≤ i ≤ k

)
=

(−1)|m|

m!

∂m

∂zm
Qν

B(z)

∣∣∣∣
z=(1,...,1)

,

where ∂m

∂zm
stands for the differential operator ∂m1

(∂z1)m1
· · · ∂mk

(∂zk)
|mk| and |m| =

∑k
i=1mi. Therefore,

thanks to the latter expression, the condition in (37) is equivalent to require that for all k ≥ 1,

∂m

∂zm
Qνn

B (z)

∣∣∣∣
z=(1,...,1)

n→∞−−−→ ∂m

∂zm
Qν

B(z)

∣∣∣∣
z=(1,...,1)

(38)

for all collections (Bi)1≤i≤k of bounded Borel ν-continuity subsets of X and all integer-valued
vectors (mi)1≤i≤k ∈ (Z≥0)

k. We have the following useful result.

Proposition 22. If the kernel J = J
(
(x1, t1), (x2, t2)

)
is locally bounded and Jn converges locally

uniformly to J , then νn
d−→ ν w.r.t. the weak topology.

Proof. Thanks to our previous discussions it is enough to show that the condition in (38) holds.
Fix a collection B = (Bi)1≤i≤k of bounded Borel ν-continuity subsets of X , and ` ∈ Nk. Since B`

is relatively compact, by using the Hadamard inequality and the locally uniform convergence of
Jn towards the locally bounded kernel J , we see that for all (xi, ti)1≤i≤|`| ∈ B`,

∣∣∣det([Jn((xi, ti), (xj, tj)
)]

1≤i,j≤|`|

)∣∣∣ ≤ |`|∏
j=1

 |`|∑
i=1

Jn
(
(xi, ti), (xj, tj)

)21
2

≤
(
C
√
|`|
)|`|

for some positive constant C. Since Jn converges pointwise to J , for every fixed (xi, ti)1≤i≤|`| ∈ B`,

det
([

Jn
(
(xi, ti), (xj, tj)

)]
1≤i,j≤|`|

)
→ det

([
J
(
(xi, ti), (xj, tj)

)]
1≤i,j≤|`|

)
,

and by dominated convergence, we get∫
B`

det
([

Jn
(
(xi, ti), (xj, tj)

)]
1≤i,j≤|`|

)
dλ⊗|`| ((x1, t1), . . . , (x|`|, t|`|)

)
→
∫
B`

det
([

J
(
(xi, ti), (xj, tj)

)]
1≤i,j≤|`|

)
dλ⊗|`| ((x1, t1), . . . , (x|`|, t|`|)

)
. (39)

It remains to prove that (39) implies the condition in (38). Thanks to the estimate given above,
the term with label ` in the series Qνn

B (z) or Qν
B(z) is bounded from above by

|z|` |λ(B)|`

`!
(C
√

|`|)|`| ≤

(
‖z‖∞ ‖λ(B)‖∞ C ke√

|`|

)|`|

.

Here we used the fact that for any k-tuple ` = (`1, . . . , `k), `! ≥ (Γ( |`|
k
+ 1))k ≥ ( |`|

ke
)|`|; see also

the discussion below [Bou05, Lemma 3.1]. Therefore, Qνn
B (z) and Qν

B(z) are entire functions of
z, and by dominated convergence of the terms of the series, Qνn

B (z) converges locally uniformly
on Ck towards Qν

B(z). By Cauchy’s differentiation formula, this implies the (locally uniform)
convergence of all the partial derivatives, whence the general condition (38). �

We finish this section by recalling a standard observation in the theory of determinantal point
processes. Assume that K1 and K2 are two kernels on a set X differing by a conjugation factor,
i.e. such that there exists a function g on X satisfying

K1(x, y) =
g(x)

g(y)
K2(x, y), for all x, y ∈ X.
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Then, for all x1, . . . , xk in X, we have

det (K1(xi, xj))1≤i,j≤k =

∏k
i=1 g(xi)∏k
j=1 g(xj)

det (K2(xi, xj))1≤i,j≤k = det (K2(xi, xj))1≤i,j≤k .

Therefore the two kernels induce the same correlation functions (of any order) and therefore the
associated point processes are equal in distribution.

3. Identifying the critical points of the action

3.1. The kernel of the renormalized bead process. We start our analysis by looking at
the random bead process MλN

introduced in (3) in a window of size O(1)× O(1/
√
N) around a

fixed point (x0

√
N, t0) with (x0, t0) ∈ [η a0, η am]× [0, 1]. In particular, in (22) we introduced the

renormalized bead process

M̃
(x0,t0)
λN

=
{
(x, t) ∈ Z× R

∣∣∣ (x0

√
N + x, t0 +

t√
N

)
∈ MλN

}
.

Using simple properties of determinantal point processes, we know that M̃ (x0,t0)
λN

is a determinantal
point process with correlation kernel

K̃
(x0,t0)
λN

((x1, t1), (x2, t2)) :=
1√
N

KλN

((
x0

√
N + x1, t0 +

t1√
N

)
,

(
x0

√
N + x2, t0 +

t2√
N

))
.

(40)
We will use the double integral expression for KλN

given in (34). The integration contour are
different in the case t1 ≥ t2 and t1 < t2. Unless stated otherwise, expressions below are valid for
t1 ≥ t2, and we indicate only when necessary the needed modification for t1 < t2.

Performing the change of variables (w, z) = (
√
N(W + x0),

√
N(Z + x0)), we have

K̃
(x0,t0)
λN

((x1, t1), (x2, t2)) = − 1

(2iπ)2

∮
γZ

∮
γW

FλN
(
√
N(Z + x0))

FλN
(
√
N(W + x0))

Γ(
√
NW − x1 + 1)

Γ(
√
NZ − x2 + 1)

· (1− t̃2)
√
NZ−x2 (1− t̃1)

−
√
NW+x1−1

(Z −W )
dW dZ , (41)

where t̃1 = t0 +
t1√
N

and t̃2 = t0 +
t2√
N

. With the new variables W and Z, recalling the comments
below (34), we get that the poles of the integrand in (41) occur

• for W = Z;
• for some values of W in an interval of the form IW := [na0√

N
− x0,

x1−1√
N
] = [η a0 − x0, o(1)]

(referred to as W -poles below);
• for some values of Z in an interval IZ := [ x2√

N
, nam√

N
− x0] = [o(1), η am − x0] (referred to as

Z-poles below).
The integration contours γW and γZ above should be such that γW is inside γZ and contain IW
and IZ respectively. Setting L = ηmax(|a0|, am) and recalling that x0 is in [η a0, η am], we have

(η a0 − x0), (η am − x0) ∈ [−2L, 2L], (42)

so that, for N large enough, we can take (for instance) γW = ∂D(0, 3L) and γZ = ∂D(0, 4L)
(both followed in counterclockwise order). For convenience, we will often write IntN(W,Z) for
the integrand in (41).

3.2. Asymptotic analysis of the integrand. Our next goal is to write the double integral
in (41) under an exponential form using asymptotic approximations. In the following, for two
sequence A = (AN) and B = (BN), we write A ' B when A = B(1 + O(N−1/2)). Moreover,
unless stated otherwise, when A and B depends on Z and W , the estimates are uniform for Z
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and W lying in the integration contours γW = ∂D(0, 3L) and γZ = ∂D(0, 4L) (we recall that x0,
x1, x2, and t0, t1, t2 are fixed). First, since t̃1 = t0 +

t1√
N

and t̃2 = t0 +
t2√
N

, we have that

(1− t̃2)
√
NZ−x2 = (1− t0)

√
NZ−x2

(
1− t2

(1− t0)
√
N

)√
NZ−x2

' (1− t0)
−x2e

√
NZ log(1−t0)e

− Zt2
1−t0 ;

(1− t̃1)
−
√
NW+x1−1 ' (1− t0)

x1−1e−
√
NW log(1−t0) e

Wt1
1−t0 . (43)

We now estimate the quotients involving FλN
and Γ in (41). In what follows we use the principal

determination of the logarithm, defined and continuous on C \ R−. We also use the convention
that, for negative real x, we have log(x) = log(−x) + iπ. In particular R log(x) is continuous on
C \ {0}.

The following function S1 : C → C will play a crucial role in our analysis (see Lemma 23 and
Eq. (46) below):

S1(U) := −g(U) +
m∑
i=0

g(U + x0 − η ai)−
m∑
i=1

g(U + x0 − η bi), where g(U) = U log(U). (44)

Let also introduce a specific subset DS of the complex plane. An interval of the form [η ai−1 −
x0, ηbi − x0] or [η bi − x0, ηai − x0] for some 1 ≤ i ≤ m will be called negative (resp. positive) if
it is included in (−∞, 0] (resp. [0,+∞)). Then we define DS as the complex plane C from which
we remove the following closed real intervals:

• the negative intervals of the form [η ai−1 − x0, ηbi − x0];
• the positive intervals of the form [η bi − x0, ηai − x0];
• either [η ai0−1 − x0, 0] if η ai0−1 − x0 < 0 ≤ η bi0 − x0 for some i0, or [0, η ai0 − x0] if
η bi0 − x0 ≤ 0 < η ai0 − x0 for some i0.

Finally, following e.g. [Bia03], we introduce the Cauchy transform of the transition measure of
the renormalized diagram ηλ0:

G(U) :=

∏m
i=1(U − η bi)∏m
i=0(U − η ai)

.

Lemma 23. Fix an integer x ∈ Z. As N → +∞, the following approximation holds, uniformly
for U in compact subsets of DS:

FλN
(
√
N(U + x0))

Γ(
√
NU − x+ 1)

' ex0(g(
√
N)−

√
N) eS1(U)

√
N
(
U
√
N
)x (

U ·G(U + x0)
)− 1

2 , (45)

Moreover, writing LHS(U) and RHS(U) for the left-hand and right-hand sides of the previous
estimates, for any ε > 0, we have the uniform bound |LHS(U)|

|RHS(U)| = O
(
exp
(
επ

√
N
))

for U in
compact subsets of

{V : R(V ) < 0 and |I(V )| ≤ ε} \ {η a0 − x0, η b0 − x0, . . . , η bm − x0, η am − x0}.

Similarly, for any ε > 0, we have the uniform bound |RHS(U)|
|LHS(U)| = O

(
exp
(
επ

√
N
))

for U in
compact subsets of

{V : R(V ) > 0 and |I(V )| ≤ ε} \ {η a0 − x0, η b0 − x0, . . . , η bm − x0, η am − x0}.

Before proving the lemma, let us discuss some implication. Recall that we write IntN(W,Z)
for the integrand in (41). Bringing together the estimates in Eqs. (43) and (45), we get that
uniformly for Z and W in compact subsets of DS,

IntN(W,Z) ' (
√
N)x2−x1e

√
N(S(W )−S(Z)) h

(x1,t1)
(x2,t2)

(W,Z), (46)
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where
S(U) := −S1(U)− U log(1− t0)

(44)
= g(U)− U log(1− t0)−

m∑
i=0

g(x0 − η ai + U) +
m∑
i=1

g(x0 − η bi + U);

h
(x1,t1)
(x2,t2)

(W,Z) :=
e

Wt1−Zt2
1−t0 (1− t0)

x1−x2−1

W x1Z−x2(Z −W )

(
W G(x0 +W )

Z G(x0 + Z)

) 1
2

. (47)

We note for future reference, that as |U | tends to infinity, we have that
S(U) = | log(1− t0)|U +O(log(|U |)). (48)

Indeed, the terms of order Θ(U logU) cancel out.

Proof of Lemma 23. From (29) we have that

FλN

(√
N(U + x0)

)
=

∏m
i=0 Γ

(
(U + x0 − η ai)

√
N + 1

)∏m
i=1 Γ

(
(U + x0 − η bi)

√
N + 1

) .
We use Stirling’s approximation for the Γ function:

Γ(U + 1) = eU logU−U
√
2πU (1 +O(U−1)); (49)

this approximation is uniform for Arg(U) in a compact sub-interval of (−π, π). Then a straightfor-
ward computation shows that (45) holds uniformly for U in compact subsets of C\(−∞, η am−x0].

We need to extend this estimate to compact subsets of DS. For this we will prove that (45)
holds on compact subsets of I + iR, where I is one interval among: the interval (−∞, η a0 − x0);
the negative intervals (η bi − x0, ηai − x0); the positive intervals (η ai−1 − x0, ηbi − x0); and either
(0, η bi0−x0) or (η bi0−x0, 0). We will treat the case where I is a negative interval (η bi−x0, ηai−x0),
the other cases being similar.

The idea is to use Euler’s reflection formula Γ(U) Γ(1 − U) = π
sin(πU)

to get rid of Γ functions
applied to negative real number. For U ∈ I + iR, we have

FλN
(
√
N(U + x0))

Γ(
√
NU − x+ 1)

= (−1)(+x0+η(bi+1+···+bm−ai−···−am))
√
N+x Γ

(
x−

√
NU

)
∏i−1

j=0 Γ
(
(U + x0 − η aj)

√
N + 1

)∏i
j=1 Γ

(
(U + x0 − η bj)

√
N + 1

) ∏m
j=i+1 Γ

(
−(U + x0 − η bj)

√
N
)

∏m
j=i Γ

(
−(U + x0 − η aj)

√
N
) ;

the sign comes from the quotient of the sin(πU) factors in Euler’s reflection factor, noting that we
have applied the reflection formulas as many times in the numerator as in the denominator, and
that the argument of the various Γ functions differ by integer values. For U ∈ I+iR, all arguments
of Γ functions in the above formula have positive real part. Thus we can apply Stirling’s formula
(49) and we find that, uniformly on compact subsets of I + iR,

FλN
(
√
N(U + x0))

Γ(
√
NU − x+ 1)

' (−1)(+x0+η(bi+1+···+bm−ai−···−am))
√
N+x

ex0(g(
√
N)−

√
N) eS2(U)

√
N
(
−U

√
N
)x

(UG(U + x0))
− 1

2 , (50)

where

S2(U) = g(−U) +
i−1∑
j=0

g(U + x0 − η aj)−
i∑

j=1

g(U + x0 − η bi)

−
m∑
j=i

g(−U − x0 + η aj) +
m∑

j=i+1

g(−U − x0 + η bj).
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For R(U) < 0, we have g(−U) = −g(U)+iπU if I(U) ≥ 0 and g(−U) = −g(U)−iπU if I(U) < 0.
Hence, comparing the latter displayed equation with (44), we have for U ∈ I + iR that (recall
that I is a negative interval):

S2(U) =

{
S1(U) + iπ(−x0 + η(ai+ . . .+am−bi+1− . . .−bm)) if I(U) ≥ 0,

S1(U)− iπ(−x0 + η(ai+ . . .+am−bi+1− . . .−bm)) if I(U) < 0.

In particular, recalling that x0

√
N and η

√
N are integers, we obtain

eS2(U)
√
N = (−1)(−x0+η(ai+...+am−bi+1−...−bm))

√
N eS1(U)

√
N .

Consequently, signs cancel out in (50) and we get that (45) is also valid uniformly on compact
subsets of I + iR. Doing similar reasoning for the other intervals I listed above, we conclude that
(45) is valid uniformly on compact subsets of DS.

We now prove the bound |LHS(U)|
|RHS(U)| = O

(
exp
(
επ

√
N
))

on compact subsets of

{V : R(V ) < 0 and |I(V )| < ε} \ {η a0 − x0, ηb0 − x0, . . . , ηbm − x0, ηam − x0}.

Thanks to the first part of the lemma, it only remains to prove that this quantity is bounded on
compact subsets of I + i[−ε, ε], for any negative interval I of the form (η ai−1 − x0, ηbi − x0). Let
us take U in I + i[−ε, ε]. Using Euler’s reflection formula (once more in the denominator than in
the numerator), we have

|LHS(U)| = |FλN
(
√
N(U + x0))|

|Γ(
√
NU − x+ 1)|

=

∣∣∣sin(−π
√
N(U + x0 − ηbi)

)∣∣∣
π

∣∣Γ(x−
√
NU

)∣∣
·
∏i−1

j=0

∣∣Γ((U + x0 − η aj)
√
N + 1

)∣∣∏i−1
j=1

∣∣Γ((U + x0 − η bj)
√
N + 1

)∣∣
∏m

j=i

∣∣Γ(−(U + x0 − η bj)
√
N
)∣∣∏m

j=i

∣∣Γ(−(U + x0 − η aj)
√
N
)∣∣ .

Using the trivial bound | sin(z)| ≤ exp(|I(z)|), we get that
∣∣∣sin(−π

√
N(U + x0 − ηbi)

)∣∣∣ ≤

exp
(
επ

√
N
)

for any U with |I(U)| ≤ ε. Moreover, the gamma factors can be controlled as
above using Stirling formula (all their arguments have positive real parts for U in I + i[−ε, ε]).
This proves the second statement in the lemma.

For the third statement, we need to work on rectangles I+i[−ε, ε], where I is a positive interval
of the form I = (ηbi−x0, ηai−x0). Using again the reflection formula to get rid of the Γ functions
applied to arguments with negative real parts yields:

|LHS(U)| = |FλN
(
√
N(U + x0))|

|Γ(
√
NU − x+ 1)|

=
π∣∣∣sin(−π

√
N(U + x0 − ηai)

)∣∣∣ 1

|Γ(
√
NU − x+ 1)|

·
∏i−1

j=0

∣∣Γ((U + x0 − η aj)
√
N + 1

)∣∣∏i
j=1

∣∣Γ((U + x0 − η bj)
√
N + 1

)∣∣
∏m

j=i+1

∣∣Γ(−(U + x0 − η bj)
√
N
)∣∣∏m

j=i

∣∣Γ(−(U + x0 − η aj)
√
N
)∣∣ .

Note that, this time, we applied the reflection formula once more in the numerator than in the de-
nominator, yielding an extra sine term at the denominator. The bound |RHS(U)|

|LHS(U)| = O
(
exp
(
επ

√
N
))

is then obtained bounding once again the sine term via the inequality | sin(z)| ≤ exp(|I(z)|), and
using Stirling formula for the Γ factors. �
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3.3. The critical points of the action and the shape of the liquid region. The function
S in the estimate in (46) is called the action of the model. In order to perform a saddle point
analysis of the double integral, we look for the critical points of the action, i.e., complex solutions
of the critical equation ∂S

∂U
(U) = 0.

Here is an analogue of [Pet14, Proposition 7.6] in our setting. Recall that x0 ∈ [η a0, η am] and
t0 ∈ [0, 1]. In the next analysis we exclude the cases x0 = η ai for i ∈ {0, 1, . . . ,m}; these cases
will be treated later in Remark 26.

Lemma 24. Let i0 ≥ 1 be such that x0 ∈ (η ai0−1, η ai0). Then for each i in {1, . . . , i0 − 1}, the
critical equation ∂S

∂U
(U) = 0 has at least one real root in the interval [η bi − x0, η ai − x0), while,

for each i in {i0 + 1, . . . ,m}, it has at least one real root in (η ai−1 − x0, η bi − x0].

Proof. The critical equation writes as

logU − log(1− t0)−
m∑
i=0

log(x0 − η ai + U) +
m∑
i=1

log(x0 − η bi + U) = 0, (51)

and taking the exponential, we recover the critical equation (8) from the introduction, that is

U
m∏
i=1

(x0 − η bi + U) = (1− t0)
m∏
i=0

(x0 − η ai + U). (52)

If t0 = 1 then the lemma statement immediately follows, hence we assume that t0 ∈ [0, 1) (so that
the factor (1− t0) is non-zero). The lemma is then easily obtained by looking at the signs of the
left and right-hand sides

L(U) := U
m∏
i=1

(x0 − η bi + U) and R(U) := (1− t0)
m∏
i=0

(x0 − η ai + U) (53)

at the boundary points of the intervals introduced above. For instance, if 1 ≤ i ≤ i0 − 1, then
• L(η bi − x0) = 0 and R(η bi − x0) is non-zero and has sign (−1)m−i+1;
• L(η ai−x0) is non-zero and has sign (−1)m−i+1 (because 0 ∈ (η ai0−1−x0, η ai0 −x0)) and
R(η ai − x0) = 0;

so the difference L(U)−R(U) has to vanish between these two boundary points. �

The lemma locates m− 1 solutions out of the m+ 1 solutions of the polynomial critical equa-
tion (8) (see (52) for a closer reference). The two extra solutions are either both real or non-real
complex conjugate. Note that if t0 = 0 then the polynomial equation (8) is of degree m and so
all the m solutions are real, while if t0 = 1 then the polynomial equation (8) has clearly only real
solutions; we exclude these trivial cases from the next discussion. We recall from Definition 3
that the liquid region L is the set of pairs (x0, t0) ∈ [η a0, η am]× [0, 1] such that the critical equa-
tion (8) has exactly two non-real solutions. The following proposition gives us some information
about the shape of the liquid region, and the localization of the critical points (in addition to
those identified in Lemma 24).

Proposition 25. Fix x0 ∈ [η a0, η am]. As above, let i0 ≥ 1 be such that x0 ∈ (η ai0−1, η ai0) (note
that we do not know how η bi0 compares with x0). Then the following assertions hold:

• There exists t− = t−(x0) ≥ 0 such that the critical equation (8) has two real solutions
(counted with multiplicities) outside the interval (η a0 − x0, η am − x0) if and only if t0 ≤
t−. Moreover, t−(x0) = 0 if and only if x0 = 0. For x0 < 0, these solutions are in
(−∞, η a0 − x0), while for x0 > 0, they lie in (η am − x0,+∞).

• There exists t+ = t+(x0) ≤ 1 such that the critical equation (8) has two real solutions
(counted with multiplicities) inside the interval (η ai0−1−x0, η ai0−x0) if and only if t0 ≥ t+.
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If this is the case, these solutions are inside the sub-interval (0∧(η bi0−x0), 0∨(η bi0−x0)).
Moreover, t+(x0) = 1 if and only if x0 = η bi0.

• Finally, if t0 ∈ (t−(x0), t+(x0)) and the critical equation (8) has only real solutions, then
the two extra real solutions8 (counted with multiplicities) are either both inside a negative
interval (η bj0 − x0, η aj0 − x0) for some j0 < i0, or both inside a positive interval (η aj0 −
x0, η bj0+1 − x0) for some j0 ≥ i0.

We call the regions {0 ≤ t0 ≤ t−(x0)}, {t+(x0) ≤ t0 ≤ 1} and {t−(x0) < t0 < t+(x0)} the
small t, large t, and intermediate t regions, respectively. By Definition 3, the liquid region is
included in the intermediate t region, but the converse is not true; i.e. it might happen that t0 is
in the intermediate t region, but not in the liquid region, which corresponds to the discontinuity
phenomenon discussed in the introduction in Section 1.3.2.

An illustrative examples of the various results obtained in this section is given in Fig. 10.

a0 = −2 b1 = −1 a1 = 0 b2 = 2 a2 = 3

(m = 2)

-π

-π /2

0

π /2

π

0

2.6

∞

Figure 10. Top-left: A Young diagram λ0 with interlacing coordinates a0 = −2 < b1 = −1 <
a1 = 0 < b2 = 2 < a2 = 3. In particular, according to our notation m = 2 and η = 1/

√
|λ0| = 1/2,

so that [η a0, η am] = (−1, 3/2). Top-right: In black the boundary of the region [η a0, η am]×[0, 1]
for the points (x0, t0). In red the frozen boundary of the liquid region L corresponding to the
diagram λ0 (the liquid region L is in the interior of the red curve). Bottom: The landscapes of
the function ∂S

∂U
(U) associated with λ0 from (51). In particular, we fixed x0 = −0.9 and we plotted

the landscape of ∂S
∂U

(U) for three different points t0 ∈ {0.3, 0.6, 0.9}. The plots are obtained using
a cyclic color function over Arg

(
∂S
∂U

(U)
)

as explained in the colored column in the legend on the
right-hand side. Moreover, the shading of colors is based on | ∂S

∂U
(U)| as explained in the gray

column in the legend on the right-hand side. In particular, black points correspond to roots of
the function ∂S

∂U
(U).

Lemma 24 predicts the existence of a real root of the critical equation in the interval (η a1 −
x0, η b2 − x0) = (0.4, 1.9) independently of the value of t0, and we can indeed find such a root
in all three cases. For small t0, Proposition 25 asserts that there are two additional roots in
(−∞, η a0 − x0) = (−∞,−0.1), which seems to be the case for t0 = 0.3. For large t0, again from
Proposition 25, these two additional roots are in (0, η b1 − x0) = (0, 0.4), which seems to be the
case for t0 = 0.9. For t0 = 0.6, the point (x0, t0) is in the liquid region and numerically, we indeed
see two complex conjugate roots of the critical equation.

8in addition to the ones determined by Lemma 24.
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Proof of Proposition 25. Recall that we can restrict ourselves to the case t0 ∈ (0, 1). We subdivide
the proof into four main steps.
Step 1: We fix x0 > 0 and show that there exists t1−(x0) > 0 such that the critical equation (8)
has two real solutions (counted with multiplicities) in the interval (η am − x0,+∞) if and only if
t0 ≤ t1−(x0), and no real solutions in this interval otherwise.

First note that, as a consequence of Lemma 24, the critical equation (8) cannot have more
than two real solutions on this interval. Now, recall from (53) the functions L(U) = L(U, x0) and
R(U) = R(U, t0) characterizing the left and right-hand sides of the critical equation (8), i.e.

L(U) = U
m∏
i=1

(x0 − η bi + U) and R(U) = (1− t0)
m∏
i=0

(x0 − η ai + U).

For U tending to η am − x0 from the right, L(U) stays positive while R(U) tends to 0, so that
L(U) − R(U) is positive. For U tending to +∞, the difference L(U) − R(U) is asymptotically
equivalent to t0U

m+1, and hence is also positive (since t0 > 0). Thus L(U)−R(U) has two zeroes
(counted with multiplicities) in the interval (η am − x0,+∞) if and only if

θ(t0) := inf
U≥η am−x0

{L(U)−R(U, t0)} , t0 ∈ [0, 1],

is non-positive; and L(U) − R(U, t0) has no zeroes in this interval otherwise. Since θ(t0) is
continuous and non-decreasing in t0, if we show that θ(t0) is non-positive for t0 small enough, this
would complete the proof of Step 1. Note that, as U tends to +∞, we have that

L(U) = Um+1 +

(
mx0 − η

m∑
i=1

bi

)
Um +O(Um−1),

R(U, 0) = Um+1 +

(
(m+ 1)x0 − η

m∑
i=0

ai

)
Um +O(Um−1).

Using the identity
∑m

i=0 ai =
∑m

i=1 bi in (2), this implies that when x0 > 0, L(U)−R(U, 0) tends
to −∞ as U goes to +∞. This implies that θ(t0) < 0 for t0 small enough, and conclude the proof
of Step 1.
Step 2: We complete the proof of the first item in the proposition statement.

By symmetry, if x0 < 0 there exists t2−(x0) > 0 such that the critical equation has two zeroes
(counted with multiplicities) in the interval (−∞, η a0−x0) if and only if t0 ≤ t2−(x0), and no real
solutions in this interval otherwise.

From Lemma 24, the critical equation (8) cannot have at the same time two solutions in the
intervals (−∞, η a0 − x0) and (η am − x0,+∞). Therefore t1−(x0) = 0 for x0 < 0 and t2−(x0) = 0
for x0 > 0. Setting t−(x0) = t1−(x0) for x0 > 0 and t−(x0) = t2−(x0) for x0 < 0, we have proven
the first item in the Proposition statement for x0 6= 0. The case x0 = 0 follows from continuity
arguments.
Step 3: We complete the proof of the second item in the proposition statement.

To fix ideas and notation, let us suppose that
η ai0−1 − x0 < 0 ≤ η bi0 − x0 < η ai0 − x0;

the other case η bi0−x0 < 0 being symmetric; while the case η ai0−x0 = 0 needs minor adjustments
discussed below. The left-hand side L(U) vanishes only at the edges of the interval [0, η bi0 − x0],
while the right-hand side R(U) has sign (−1)m−i0+1. Thus the difference L(U) − R(U) has two
zeroes on [0, η bi0 − x0] if and only if

θ(t0) := sup
0≤U≤η bi0−x0

{
(−1)m−i0+1(L(U)−R(U, t0))

}
is non-negative, and no zeroes otherwise (it cannot have more than two zeroes, as a consequence of
Lemma 24). The quantity θ(t0) is increasing with t0 and θ(1) = sup0≤U≤η bi0−x0

(−1)m−i0+1L(U) ≥
0, which implies the existence of t+(x0) ≤ 1 as in the proposition statement.
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If x0 = η bi0 , then, for all t0 < 1, one has

θ(t0) = (−1)m−i0+1(L(0)−R(0)) = −(1− t0)|R(0)| < 0,

proving t+(x0) = 1. On the other hand, if x0 6= η bi0 one has θ(t0) > 0 as soon as

1− t0 <
sup0≤U≤η bi0−x0

|L(U)|
sup0≤U≤η bi0−x0

|R(U)|
,

proving that t+(x0) < 1.
Step 4: We complete the proof of the third item in the proposition statement.

Note that since t0 ∈ (t−(x0), t+(x0)), as a consequence of the first two items in the proposition
statement, there are no real solutions outside the interval (η a0 − x0, η am − x0) and inside the
interval (η ai0−1−x0, η ai0 −x0). Combining this observation with the results from Lemma 24, we
conclude the proof of this last item. �

Remark 26. As already mentioned, the case where x0 = η ai0 is not considered in the above
results, because it needs some adjustment. In this case, the factor U in L(U) cancels out with the
factor (x0 − η ai0 + U) in R(U) and the critical equation (8) (see (52) for a closer reference) has
degree only m. An analogue of Lemma 24 states that the critical equation (8) has at least one root
in each interval (η bi−x0, η ai−x0) for i ∈ {1, . . . , i0−1} and in each interval (η ai−1−x0, η bi−x0)
for i ∈ {i0 + 2, . . . ,m}.

If i0 /∈ {0,m}, this locates m−2 roots out of the m roots of the equation. As in the generic case,
the location of the two last roots is partially described by an analogue of Proposition 25. The first
item of Proposition 25 holds true in the case x0 = η ai0 without any modification. For the second
item, it holds that the critical equation (8) has two real solutions (counted with multiplicities)
inside the interval (η bi0 − x0, η bi0+1 − x0) if and only if t0 is at least equal to some t+(x0). The
proof is a simple adaptation of that of Proposition 25.

Finally, if x0 = η a0 (resp. x0 = η am), the critical equation (8) has degree m, and has at least
one root in each interval (η ai−1−x0, η bi−x0) for i ≥ 2 (resp. (η bi−x0, η ai−x0) for i ≤ m−1).
In both case, it has at least m − 1 real roots, and hence cannot have complex roots. The vertical
lines {η a0}×[0, 1] and {η am}×[0, 1] thus entirely lie in the frozen region, as well as the horizontal
lines [η a0, η am]× {0} and [η a0, η am]× {1} (recall the discussion above Proposition 25).

3.3.1. The shape of the liquid region. We conclude this section proving Proposition 19 from the
introduction, and giving an alternative description of the liquid region (see Proposition 27 below).
These results have all rather standard proofs, which we include for the sake of completeness.

Proof of Proposition 19. Recall that Uc(x, t) is the unique solution with positive imaginary part
of the critical equation ∂S

∂U
(U) = 0, where S(U) is as in (47). Setting9 Ũc(x, t) := Uc(x, t) + x, we

get that Ũc(x, t) solves the equation

log
(
Ũc − x

)
− log(1− t)−

m∑
i=0

log
(
Ũc − η ai

)
+

m∑
i=1

log
(
Ũc − η bi

)
= 0. (54)

Differentiating in x and t the above equation, we obtain that{
−1

Ũc−x
= (Ũc)x ·

(
Σ(Ũc)− 1

Ũc−x

)
,

1
1−t

= (Ũc)t ·
(
Σ(Ũc)− 1

Ũc−x

)
.

where Σ(s) =
∑m

i=0
1

s−η ai
−
∑m

i=1
1

s−η bi
. The quantity Σ(Ũc)− 1

Ũc−x
corresponds to ∂2S

∂U2 , and is thus
nonzero in the liquid region; otherwise Uc would be a double root of the critical equation, which is

9This substitution is not strictly needed here but makes the computations nicer and also useful for the proof of
Proposition 27.
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impossible since the latter has at most 2 non-real conjugate solutions, counted with multiplicities
(Lemma 24). Consequently, Ũc(x, t) solves the equation

− (Ũc)t

Ũc − x
=

(Ũc)x
1− t

.

Substituting Uc(x, t) = Ũc(x, t)− x in the equation above, we get (23). �

Proposition 27. We have the following equivalent description of the liquid region L:
L = {(x, t) ∈ [η a0, η am]× [0, 1] | DiscU(Px,t) < 0} ,

where DiscU(Px,t) denotes the discriminant10 of the polynomial Px,t(U) appearing in the critical
equation (8). As a consequence, L is an open subset of [η a0, η am]× [0, 1] and the boundary of L,
called frozen boundary curve, is given by

∂L = {(x, t) ∈ [η a0, η am]× [0, 1] | DiscU(Px,t) = 0} . (55)
Moreover, the frozen boundary curve ∂L can be parametrized by −∞ < s < ∞, as follows:{

x(s) = s− 1
Σ(s)

,

t(s) = 1− G(s)
Σ(s)

,

where Σ(s) :=
∑m

i=0
1

s−η ai
−
∑m

i=1
1

s−η bi
and G(s) :=

∏m
i=1(s−η bi)∏m
i=0(s−η ai)

. The tangent vector (ẋ(s), ṫ(s))

to the frozen boundary curve is parametrized by:ẋ(s) = 1 + Σ̇(s)
Σ(s)2

,

ṫ(s) = G(s)
(
1 + Σ̇(s)

Σ(s)2

)
.

In particular, it has slope ṫ(s)
ẋ(s)

= G(s).

Proof of Proposition 27. Recall that for a polynomial with real coefficients, its discriminant is
positive (resp. zero) if and only if the number of non-real roots is a multiple of 4 (resp. the
polynomial has a multiple root). Since Lemma 24 shows that at least m− 1 roots of the critical
equation (8) are simple and real, we conclude that the existence of two non-real solutions for the
critical equation (8) is equivalent to DiscU(Px,t) < 0, where we recall that DiscU(Px,t) denotes the
discriminant of the polynomial Px,t(U) appearing in the critical equation (8). DiscU(Px,t) is itself
a polynomial in (x, t), which implies that the liquid region L is an open subset of [η a0, η am]×[0, 1]
and its boundary is described by (55).

We now turn to the proof of the claimed parametrization for the frozen boundary curve. Note
that, if a point (x, t) ∈ [η a0, η am]× [0, 1] approaches the frozen boundary curve ∂L, the solution
Uc(x, t) of the critical equation becomes real and merges with Uc(x, t). Equivalently, the frozen
boundary can be characterized as the set of points (x, t) ∈ [η a0, η am] × [0, 1] such that the
action S in (47) has a double critical point. For computational reasons, it is convenient to take
Ũc(x, t) = Uc(x, t) + x as parameter to describe ∂L, and express x and t in terms of Ũc(x, t).
Hence, we need to impose that Ũc(x, t) solves the equation ∂S̃

∂U
(U) = 0 (written in (54)) and the

equation ∂2S̃
∂U2 (U) = 0. We obtain: {

Ũc−x
1−t

= (G(Ũc))
−1,

1

Ũc−x
= Σ(Ũc).

Solving the above linear system for x and t, we get the parametrization claimed in the proposition
statement (with s = Ũc). The claims for the tangent vector follow from standard computations,
noting that Ġ(s) = −Σ(s) ·G(s). �

10Since L is defined in terms of the sign of the discriminant, let us recall the standard convention of normalisation
of the discriminant: DiscU (Px,t) = (−1)

m(m+1)
2 t−1 ResU (Px,t, P

′
x,t), where Res is the resultant.
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3.4. The imaginary and real part of the action on the real line. The imaginary and real
part of the action S (introduced in (47)) on the real line play a key-role in our analysis in the
next sections. Hence we analyze them here.

In what follows, we keep working with the principal determination of the logarithm, defined
on C \ {0} and continuous on C \ R−; with the convention that, for negative real x, we have
log(x) = log(−x) + iπ.

For u ∈ R, we have

IS(u) = −πu− +
m∑
i=0

π(u+ x0 − η ai)
− −

m∑
i=1

π(u+ x0 − η bi)
−, (56)

where x− = max(0,−x). In particular, IS(u) is piecewise affine, has value −πx0 for u < η a0−x0

(recall from (2) that
∑m

i=0 ai −
∑m

i=1 bi = 0), has slope alternatively +π and 0 for u < 0, then
alternatively 0 or −π for u > 0, and finally takes value 0 for u > η am − x0. See Fig. 11 for an
example.

On the other hand, for u ∈ R, we have

RS(u) = g̃(u)− u · ln(|1− t0|)−
m∑
i=0

g̃(x0 − η ai + u) +
m∑
i=1

g̃(x0 − η bi + u), (57)

where g̃(u) = u · ln(|u|) and we use the convention that g̃(0) = 0. See again Fig. 11 for an example.
In particular, the map u → RS(u) is well-defined and continuous on the real line. Moreover, since
g̃′(u) = ln(|u|)+1, the map u → RS(u) is differentiable as a function R → R except at the points
η ai − x0 (where it has a positive infinite slope) and at the points 0 and η bi − x0 (where it has a
negative infinite slope). Its derivative vanishes exactly when u satisfies

|u|
m∏
i=1

|u+ x0 − η bi| = (1− t0)
m∏
i=0

|u+ x0 − η ai|,

i.e. when u satisfies the critical equation (8) or the companion equation

u
m∏
i=1

(u+ x0 − η bi) = −(1− t0)
m∏
i=0

(u+ x0 − η ai). (58)

4. Asymptotics for the kernel in the liquid region

Within this section, we assume that (x0, t0) lies inside the liquid region, i.e. that the critical
equation (8) has two non-real solutions, denoted by Uc and Uc and with the convention that
IUc > 0.

4.1. Landscape of the action. As a preparation for the saddle point analysis, we also need
to understand to some extent the real part RS(U) of the action S introduced in Eq. (47). In
particular, we are interested in the shape of the region

{RS(U) > RS(Uc)} := { U ∈ C | RS(U) > RS(Uc) } .
We will use similar notation for various regions below. We invite the reader to compare the
following discussion with the pictures in Fig. 12.

Since S is analytic around Uc (and more generally on C \ (−∞, η am − x0)) and Uc is a simple
critical point of S, we have that, locally around Uc

S(U) = S(Uc) +
S′′(Uc)

2
(U − Uc)

2 +O((U − Uc)
3).

In particular,11 there are eight special curves leaving Uc (see for instance the left-hand side of
Fig. 12): four curves corresponding to the level sets {RS(U) = RS(Uc)} and four other curves
corresponding to the level sets {IS(U) = IS(Uc)}. We will refer to these curves as real or

11Most of the claims in this paragraph follows by analogy with the landscape of the complex function F (U) = U2

around 0. For instance, the four curves corresponding to the level sets {RS(U) = RS(Uc)} are the analogue of
the four curves corresponding to the level sets {RF (U) = RF (0)} = {U = x+ iy ∈ C : (x+ y)(x− y) = 0}.
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ηa0 − x0
ηb1 − x0 ηa2 − x0

ηa1 − x0 ηb2 − x0

ηa0 − x0

ηb1 − x0

ηa2 − x0

ηa1 − x0

ηb2 − x0

ηa0 − x0
ηb1 − x0 ηa2 − x0

ηa1 − x0 ηb2 − x0

ηa0 − x0

ηb1 − x0

ηa2 − x0ηa1 − x0

ηb2 − x0

Figure 11. Top: Two plots of the function IS(u) in (56) in the specific example of Fig. 10. On
the left we set x0 = −0.9, while on the right x0 = 1. Bottom: Two plots of the function RS(u)
in (57) in the same specific example of Fig. 10. Again, on the left we set x0 = −0.9 and t0 = 0.5,
while on the right x0 = 1 and t0 = 0.5.

imaginary level lines, respectively. The four real level lines split the neighborhood of Uc into four
regions, belonging alternatively to the set {RS(U) > RS(Uc)} or {RS(U) < RS(Uc)}, each of
this region containing one imaginary level line.

Since S is analytic with a non-zero derivative on {V | V 6= Uc, I(V ) > 0 }, locally around such
V with RS(V ) = RS(Uc) (resp. with IS(V ) = IS(Uc)), the level set {RS(U) = RS(Uc)}
(resp. the level set {IS(U) = IS(Uc)}) looks like a single simple curve. Therefore the real and
imaginary level lines leaving Uc go either to the real line, or to infinity. Moreover, these lines
cannot cross in the closed upper half-plane. Indeed, following a real level line, the analyticity of S
implies that U 7→ IS(U) is strictly monotone: a local extremum would violate the open mapping
theorem. Therefore starting from Uc and following a real level line in the set {RS(u) = RS(Uc)},
we never reach a point V with IS(V ) = IS(Uc).

Lemma 28. Exactly three of the real level lines leaving Uc go to the real line.

Proof. Since S(U) ∼ | log(1− t0)|U as |U | tends to infinity (as already remarked in (48)), we
have that RS(U) < RS(Uc) when RU goes to −∞ with a fixed imaginary part. Likewise,
RS(U) > RS(Uc) when RU goes to +∞ with a fixed imaginary part. Therefore, there is an odd
number of real level lines going to the real line.

Assume that there is only one. Then three real level lines are going to infinity. Because of
the asymptotics S(U) ∼ | log(1− t0)|U , real level lines going to infinity should be asymptotically
inside the region { y ≥ | x| } := { x+ iy | y ≥ |x| } (otherwise we would have lim|U |→+∞ RS(U) =
+∞ and this would be in contradiction with the definition of real level line). These three real lines
determine two unbounded regions, each of them containing an imaginary level line. In particular,
these two imaginary level lines go to infinity, inside the region { y ≥ | x| }. But inside this region,
we have that lim|U |→+∞ IS(U) = +∞ since S(U) ∼ | log(1− t0)|U . This is in contradiction with
the definition of imaginary level line. We, therefore, conclude that there are exactly three of the
real level lines leaving Uc and going to the real line. �
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We call A ≤ B ≤ C the intersection points of these three real level lines and the real axis.
Also, let D and E be the intersection points of the imaginary level lines in between these three
level lines and the real axis. Since real and imaginary level lines do not intersect, we have
A < D < B < E < C.

Lemma 29. With the above notation, D < 0 < E. Moreover there is no real x in (−∞, A) ∪
(C,+∞) such that IS(x) = IS(Uc).

Proof. Since D and E belong to an imaginary level line leaving Uc, and since IS(u) is continuous
on the closed upper half-plane, we have IS(D) = IS(E) = IS(Uc). Furthermore, IS(Uc) is
distinct from the values IS(A), IS(B), IS(C) since, as explained above, IS is strictly monotone
on the real level lines going from Uc to A, B or C. Looking at the graph of the function u 7→ IS(u)
on the real line (see the computations in Section 3.4), we see that a necessary condition to have
IS(D) = IS(E) 6= IS(B) is that D < 0 < E.

Moreover, looking again at the shape of IS(U) and recalling that
IS(A) 6= IS(D) = IS(Uc) = IS(E) 6= IS(C),

we see that there cannot be an x in either (−∞, A) or (C,+∞) such that IS(x) = IS(Uc). �

As said above, we are interested in describing the regions {RS(u) > RS(Uc)} or {RS(u) <
RS(Uc)}. From the asymptotics S(U) ∼ | log(1− t0)|U , we know that for R(U) negative (resp.
positive) and large in absolute value (in particular larger than K|I(U)| for come constant K > 0),
U belongs to the region {RS(U) < RS(Uc)} (resp. {RS(U) > RS(Uc)}). Thus, the real level
lines leaving Uc split the complex plane as shown on the left-hand side of Fig. 12.

Note that we do not exclude the existence of smaller islands inside the main regions as shown
on the right-hand side of Fig. 12. For the sake of simplicity, we will not draw such potential
islands in future figures.

4.2. Moving contours and asymptotic of the kernel. We recall from (41) that the renor-
malized kernel K̃(x0,t0)

λN
writes as a double contour integral over contours γZ and γW (where the

integrand is denoted by IntN(W,Z)).
Our strategy for the asymptotic analysis of K̃(x0,t0)

λN
goes as follows:

(1) Move the integration contours from γZ and γW to properly chosen contours γnew
Z and γnew

W

given in Lemma 30;

(2) Replace the integrand IntN(W,Z) by the asymptotically equivalent expression given in
(46):

(
√
N)x2−x1e

√
N(S(W )−S(Z)) h

(x1,t1)
(x2,t2)

(W,Z).

This second step is performed in Proposition 31.

The contours γnew
Z and γnew

W will be constructed in such a way that, for almost all (W,Z) ∈
γnew
W × γnew

Z , one has S(W ) < S(Z). In this way, after the second step, the integrand – and thus
the integral – will converge to 0. The asymptotic expansion of the kernel K̃(x0,t0)

λN
will then be

given by the potential residue term created by the change of contours.
Recalling the discussion below (41), the integrand has poles for W = Z, for some values of W in

the interval IW = [η a0−x0, o(1)] and for some values of Z in the interval IZ = [o(1), η am−x0−1].
We also recall from (42) that we chose the contours γW = ∂D(0, 3L) and γZ = ∂D(0, 4L) (both
followed in counterclockwise order), with L = ηmax(|a0|, am). (Recall that we restricted our
analysis to the case t1 ≥ t2, i.e. when γW is inside γZ .)

Lemma 30. There exist two integration contours γnew
W and γnew

Z (both followed in counterclockwise
direction) such that

• γnew
W and γnew

Z intersect each other only at Uc and Uc;
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0A B C

Uc

U c

D E 0A B C

Uc

U c

Figure 12. Two possible shapes for the landscape of RS. The black fat lines are the real level
lines {RS(U) = RS(Uc)}. The yellow regions correspond to {RS(U) < RS(Uc)}, while the
white regions correspond to {RS(U) > RS(Uc)}. On the left-hand side, we have also represented
the imaginary level lines {IS(U) = IS(Uc)} in dotted lines. The right-hand side shows another
possible landscape of RS with a more complicated configuration (to avoid overloading the picture,
we did not draw imaginary level lines here). For the definition of the points A,B,C,D,E, see the
discussion above Lemma 29.

0

Uc

U c

γW γZ

A B C 0

Uc

U c

γnew
W γnew

Z

CBA D E

Figure 13. Left: The picture from Fig. 12 together with the original integration contours γW
(in green) and γZ (in purple) appearing in the kernel K̃(x0,t0)

λN
. The green and purple dots are

respectively the W -poles and Z-poles of the integrand. We also recall that the yellow regions
correspond to {RS(U) < RS(Uc)}, while the white regions correspond to {RS(U) > RS(Uc)}.
Right: The same picture with the new contours γnew

Z and γnew
W from Lemma 30.

• γnew
W (resp. γnew

Z ) contains IW (resp. IZ) in its interior;
• γnew

W \ {Uc, Uc} (resp. γnew
Z \ {Uc, Uc}) lies inside the region {RS(U) < RS(Uc)} (resp.

{RS(U) > RS(Uc)}).

We refer the reader to Fig. 13 for an illustration of the original and new integration contours.

Proof. We first explain how to construct γnew
Z , as the concatenation of two paths going from Uc

to Uc (reversing the right-most one so that we have a counterclockwise contour).
Recall from the previous section (see also Fig. 12) that there is a portion of {RS(U) > RS(Uc)}

between the point Uc, Uc, A and B and that this region contains an imaginary level line of S that
intersects the real axis at D < 0 (Lemma 29). We choose this imaginary level line as the first
path to construct γnew

Z .
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Around Uc, we can find another connected area of the region {RS(U) > RS(Uc)}. This part
also contains an imaginary level line of S. This imaginary level line cannot go to the real axis,
otherwise the meeting point would be an x in (C,+∞) with IS(x) = IS(Uc), contradicting
Lemma 29. Because of the asymptotics S(U) ∼ | log(1− t0)|U , this imaginary line should go to
infinity inside the region {y ≤ |x|} and therefore meets the region {x ≥ M}, for any M > 0.
Moreover, we can choose M > 0 such that M ≥ max IZ and such that if |x| ≥ M and |y| ≤ x
then RS(x + iy) > RS(Uc). The second path used to construct γnew

Z is then defined as follows:
we first follow the imaginary level line from Uc until it meets the region {|x| ≥ M, y ≤ |x|}, and
then join the real axis inside this region. We complete the path by symmetry until it hits Uc.

By construction, γnew
Z goes through Uc and Uc and γnew

Z \ {Uc, Uc} lies in {RS(U) > RS(Uc)}.
Also, the intersection points of γnew

Z with the real axis are D < 0 on the one side and some number
larger than M > max IZ on the other side, so that γnew

Z encloses IZ as wanted. We construct γnew
W

in a symmetric way, completing the proof of the lemma. �

We are now ready to compute the asymptotics of the kernel K̃(x0,t0)
λN

in (41) when (x0, t0) lies
inside the liquid region. and hence compute the limit of the associated bead process M̃

(x0,t0)
λN

.

Proposition 31. Assume that (x0, t0) is in the liquid region. The bead process M̃
(x0,t0)
λN

converges
in distribution to a determinantal process with correlation kernel

K(x0,t0)
∞

(
(x1, t1), (x2, t2)

)
:=

1

2iπ

∫
γ

1

1− t0
e

W
1−t0

(t1−t2)

(
W

1− t0

)x2−x1

dW , (59)

where γ is a path going from Uc to Uc and passing on the left of 0 for t1 ≥ t2 and on the right of
0 for t1 < t2 (the point 0 is a pole of the integrand in the case x1 < x2).

Proof. We first treat the case t1 ≥ t2, so that the original contours in (41) are such that γW
is inside γZ . We move the latter contours to the new contours γnew

W and γnew
Z constructed in

Lemma 30. Since IW (resp. IZ) is inside both γW and γnew
W (resp. γZ and γnew

Z ), we do not cross
any of the W -poles (resp. Z-poles). However, since the relative positions of the contours is not
the same (γnew

W is not inside γnew
Z ), we have to take care of the pole at Z = W .

Fix Z ∈ γZ . Possibly enlarging the contour γZ , we can assume that the point Z is outside both
γW and γnew

W . Therefore, recalling that IntN(W,Z) denotes the integrand in (41), we have∮
γW

IntN(W,Z) dW =

∮
γnew
W

IntN(W,Z) dW,

which implies that

K̃
(x0,t0)
λN

((x1, t1), (x2, t2)) =
−1

(2iπ)2

∮
γZ

∮
γW

IntN(W,Z) dW dZ =
−1

(2iπ)2

∮
γZ

∮
γnew
W

IntN(W,Z) dW dZ .

Fix now W in γnew
W \ {Uc, Uc}. Note that γnew

W \ {Uc, Uc} = γnew,left
W t γnew,right

W , where γnew,left
W

and γnew,right
W denote respectively the left and right parts of the contour γnew

W ; c.f. Fig. 13. We then
move the Z-contour from γZ (left-hand side of Fig. 13) to γnew

Z (right-hand side of Fig. 13). If W
is in γnew,right

W , then deforming the Z-contour from γZ to γnew
Z can be done without crossing any

pole. On the other hand, if W is in γnew,left
W , when deforming the Z-contour from γZ to γnew

Z , we
cross the pole Z = W . By the residue theorem, for W fixed in γnew

W \ {Uc, Uc}, we have

1

2iπ

∮
γZ

IntN(W,Z) dZ =
1

2iπ

∮
γnew
Z

IntN(W,Z) dZ + δW∈γnew,left
W

Res
(
IntN(W,Z), Z = W

)
,
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where Res
(
IntN(W,Z), Z = W

)
denotes the residue of IntN(W,Z) corresponding to the pole

Z = W . Integrating over W in γnew
W gives

K̃
(x0,t0)
λN

((x1, t1), (x2, t2)) = − 1

(2iπ)2

∮
γnew
W

∮
γnew
Z

IntN(W,Z) dZ dW

− 1

2iπ

∮
γnew,left
W

Res
(
IntN(W,Z), Z = W

)
dW , (60)

where the set γnew,left
W is interpreted as a path going from Uc to Uc; note that it passes on the left

of 0. Note that because of the pole in Z = W of IntN(W,Z), the term
∮
γnew
Z

IntN(W,Z) dZ has a
logarithmic singularity when W tends to Uc or Uc; this singularity is integrable so that the double
integral above is well-defined.

Recalling that IntN(W,Z) =
FλN

(
√
N(Z+x0))

FλN
(
√
N(W+x0))

Γ(
√
NW−x1+1)

Γ(
√
NZ−x2+1)

· (1−t̃2)
√
NZ−x2 (1−t̃1)−

√
NW+x1−1

(Z−W )
, the right

term in the latter displayed equation can be computed as follows:

Res
(
IntN(W,Z), Z = W

)
=

Γ(
√
NW − x1 + 1)

Γ(
√
NW − x2 + 1)

(1− t̃2)
√
NW−x2 (1− t̃1)

−
√
NW+x1−1

' (
√
NW )x2−x1(1− t0)

x1−x2−1 exp

(
W

1− t0
(t1 − t2)

)
,

where we used Eq. (43) in the last estimation. The estimate is uniform for W in compact subsets
of C \ {0}, implying

− 1

2iπ

∮
γnew,left
W

Res
(
IntN(W,Z), Z = W

)
dW

' −(
√
N)x2−x1

2iπ

∮
γnew,left
W

1

1− t0
e

W
1−t0

(t1−t2)

(
1− t0
W

)x1−x2

dW .

We now consider the double integral term
∮
γnew
W

∮
γnew
Z

IntN(W,Z) dZ dW in (60). Call Z− and Z+

(resp. W− and W+) the intersections points of the contour γnew
Z (resp. γnew

W ) with the real axis,
with the convention Z− < 0 < Z+ (resp. W− < 0 < W+). By construction, W− and Z+ can
be chosen outside [ηa0 − x0, ηam − x0] and hence belong to the set DS (see its definition before
Lemma 23). Moreover, up to deforming slightly γnew

Z and γnew
W (still keeping the properties of

Lemma 30 true), we may assume that W+ and Z− are distinct from all η ai − x0 and η bi − x0.
Fixing ε > 0, we have that:

• Using the estimate in (46) (which holds uniformly for Z and W in compact subsets of DS),
for Z ∈ γnew

Z \D(Z−, ε) and W ∈ γnew
W \D(W+, ε), the integrand IntN(W,Z) is bounded by

the function 2h
(x1,t1)
(x2,t2)

(W,Z) in (47) for all N large enough, and tends to 0 pointwise when
N tends to +∞ because RS(Z) > RS(W ) by the third property in Lemma 30 for γnew

Z

and γnew
W . (This is true except when {Z,W} ⊆ {Uc, Uc}, where the bound by h

(x1,t1)
(x2,t2)

(W,Z)

still holds but the integrand IntN(W,Z) does not converge to zero; since this is a zero
measure subset, this will not be problematic.)

• Using the second and third parts of Lemma 23, the bound by h
(x1,t1)
(x2,t2)

(W,Z) and the con-
vergence of IntN(W,Z) to 0 also hold when Z ∈ D(Z−, ε) or W ∈ D(W+, ε) (or both),
for ε small enough. Indeed, the extra factor exp

(
επ

√
N
)

in this case is compensated by

the factor exp
(√

N(S(W )− S(Z))
)

as soon as S(W ) < S(Z) − πε, which happens for
W ∈ D(W+, ε) and Z ∈ γnew

Z or for W ∈ γnew
W and Z ∈ D(Z−, ε), if ε is small enough.

• The function h
(x1,t1)
(x2,t2)

(W,Z) is integrable for (W,Z) on the double contour (γnew
W , γnew

Z ).
Indeed, it has singularities for W = Z = Uc and W = Z = Uc but behaves as O((W−Z)−1)
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near these singularities, and a standard computation shows that (W − Z)−1 is integrable
on γnew

W × γnew
Z , since the paths cross non-tangentially.

Hence, using the dominated convergence theorem, we know that the double contour integral∮
γnew
W

∮
γnew
Z

IntN(W,Z) dZ dW goes to 0 as N tends to infinity.

Letting γ to be the reverse path of γnew,left
W , we get

lim
N→+∞

K̃
(x0,t0)
λN

((x1, t1), (x2, t2))

(
√
N)x2−x1

=
1

2iπ

∫
γ

1

1− t0
e

W
1−t0

(t1−t2)

(
1− t0
W

)x1−x2

dW . (61)

Note that γ is indeed a path form Uc to Uc passing on the left of 0, as required in the case t1 ≥ t2.
Let us now consider the case t1 < t2. We recall that in this case the initial contour γW and

γZ are swapped. An argument similar to the one above shows that (61) still holds, but with the
path γ = γnew,right

W passing on the right of 0.
Recall that, up to the factor (

√
N)x2−x1 , the left-hand side of (61) is the kernel of the bead pro-

cess M̃λN
. But the factor (

√
N)x2−x1 is a conjugation factor (see the last paragraph in Section 2.2):

adding or removing it does not change the associated bead process.
The expression on the right-hand side of (61) depends continuously on (x1, t1) and (x2, t2) and

is therefore locally bounded. Moreover, all estimates above and in particular the convergence (61)
are locally uniform in these variables. Therefore, from Proposition 22, the bead process M̃

(x0,t0)
λN

converges in distribution to a determinantal point process with kernel K(x0,t0)
∞ . �

4.3. Recovering the bead kernel. We now want to compare the limit kernel K
(x0,t0)
∞ from

Proposition 31 with that of the random infinite bead process Jα,β from Theorem 12. Recall from
(9) that, given the critical point Uc associated to (x0, t0) in the liquid region, α = IUc

1−t0
and

β = RUc

|Uc| .

Lemma 32. There exists a function g such that, for t1 6= t2

K(x0,t0)
∞

(
(x1, t1), (x2, t2)

)
=

g(x1, t1)

g(x2, t2)
Jα,β

(
(x1, t1), (x2, t2)

)
. (62)

Before proving the lemma, we discuss its consequences. We recall that a conjugation factor of
the form g(x1,t1)

g(x2,t2)
in a kernel does not affect the associated point process. Also changing the kernel

on a set of measure 0, e.g.
{(

(x1, t1), (x2, t2)
)
, t1 = t2

}
, does not change the point process either.

Thus, the above lemma implies that K∞ and Jα,β are the kernels of the same point process, i.e. the
random infinite bead process of intensity α and skewness β introduced in Definition 13. Together
with Proposition 31, this proves the first item of Theorem 15.
Proof of Lemma 32. First assume x2 ≥ x1 (but we do not assume any comparison between
t1 and t2, the forthcoming argument works in both cases). Then the integrand of the kernel
K

(x0,t0)
∞

(
(x1, t1), (x2, t2)

)
in (59) has no poles, and we can replace γ by any path from Uc to Uc.

We will take a vertical segment, which we parametrize as
γ(u) := R(cos θ + iu sin θ), u ∈ (−1, 1),

where R = |Uc| and θ = Arg(Uc). We get

K∞
(
(x1, t1), (x2, t2)

)
=

1

1− t0

g(x1, t1)

g(x2, t2)

∫ 1

−1

e
iu(t1−t2)

R sin θ
1−t0 (cos θ + iu sin θ)x2−x1

R sin θ du

2π
,

with g(y, ε) = exp
(

εR cos θ
1−t0

)
( R
1−t0

)x2−x1 . Comparing with (21) where we take α = R sin θ
1−t0

= IUc

1−t0
and

β = cos θ = RUc

|Uc| , we obtain (62) in the case x2 ≥ x1.
Assume now x2 < x1 and t1 > t2. In this case, in Proposition 31, we integrate over the following

path γ going from Uc to Uc (for A ≥ 1 large enough this path passes on the left of 0, as needed):
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(1) take a vertical path γ1 going down from Uc to RUc − iA;

(2) take a horizontal path γ2 going left from RUc − iA to RUc − (logA)2 − iA;

(3) take a vertical path γ3 going up from RUc − (logA)2 − iA to RUc − (logA)2 + iA;

(4) take a horizontal path γ4 going right from RUc − (logA)2 + iA to RUc + iA;

(5) and finally take a vertical path γ5 going down from RUc + iA to Uc.

Since t1 − t2 > 0 and x1 − x2 > 0, the integrals over the second and fourth paths are bounded by

(logA)2

2π(1− t0)
e

RUc
1−t0

(t1−t2)

(
1− t0
A

)x1−x2

.

This upper bound tends to 0 as A tends to infinity. Similarly , when t1 > t2 and x1 − x2 > 0, the
integral over the third path is bounded by

2A

2π(1− t0)
e

RUc−(logA)2

1−t0
(t1−t2)

(
1− t0
A

)x1−x2

,

which also tends to 0 as A tends to infinity. Consider the integral on the first path. Reversing its
direction (which yields a minus sign), it can be parametrized by

γ1(u) = R(cos θ + iu sin θ), u ∈ (−A/IUc,−1).

Thus, doing the same computation as in the case x2 ≥ x1 above, the integral over γ1 is equal to

− 1

1− t0

g(x1, t1)

g(x2, t2)

∫ −1

−A/IUc

e
iu(t1−t2)

R sin θ
1−t0 (cos θ + iu sin θ)x2−x1

R sin θ du

2π
,

As A tends to infinity, this quantity tends to

− 1

1− t0

g(x1, t1)

g(x2, t2)

∫ −1

−∞
e
iu(t1−t2)

R sin θ
1−t0 (cos θ + iu sin θ)x2−x1

R sin θ du

2π
.

Similarly the integral over γ5 tends to

− 1

1− t0

g(x1, t1)

g(x2, t2)

∫ ∞

1

e
iu(t1−t2)

R sin θ
1−t0 (cos θ + iu sin θ)x2−x1

R sin θ du

2π
.

Comparing with (21), we obtain (62) in the case x2 < x1 and t1 > t2. The case x2 < x1 and
t1 < t2 is similar, taking a path γ going through RUc − iA, RUc + (logA)2 ± iA and RUc + iA
(recall that for t1 < t2, the path γ in Proposition 31 should pass on the right of 0). �

5. Asymptotics for the kernel in the frozen region

5.1. The small t region. In this section, we fix x0 ∈ [η a0, η am] and we let t0 ≤ t−, where
t− = t−(x0) is given by Proposition 25. We first assume that x0 ∈ (η a0, 0); the necessary
modification for the cases x0 = η a0 and x0 ≥ 0 will be explained afterwards.

From Proposition 25 and Remark 26, we know that in this regime the critical equation (8)
has only real solutions and that the smallest two, which will be denoted by Uc ≤ U ′

c, are in
(−∞, η a0 − x0). In Lemmas 33 and 34, we assume Uc < U ′

c and discuss the case of a double
critical Uc = U ′

c only in the proof of the main result of the section, i.e. Proposition 35.

Lemma 33. The critical points Uc and U ′
c are respectively a local maximum and a local minimum

of the function u → RS(u) on the real line and it holds that RS(Uc) > RS(U ′
c).

Proof. Recall from Section 3.4 that the map u 7→ RS(u);
• is well-defined and continuous on the real line:



DPP AND RANDOM YOUNG TABLEAUX 39

γnew
Z

γnew
W

0

U ′
c

Uc

ℓ

ℓ′

0

U ′
cUc

γnew
Zγnew

W

ℓ′ℓ

γnew
W,1

0

U ′
c

Uc
ℓ

ℓ′

U ′′
c

ℓ′′

γnew
W,2 γnew

Z

Figure 14. From left to right: In green and purple, the new integration contours γnew
W and

γnew
Z constructed in Lemmas 34, 38 and 41. The three situations correspond to the small t

region {0 ≤ t0 ≤ t−(x0)}, the large t region {t+(x0) ≤ t0 ≤ 1}, and the intermediate t region
{t−(x0) < t0 < t+(x0)}, respectively. In orange, we highlight the level lines considered in the
proofs of the three lemmas.

• is differentiable as a function from R to R, except at the points η ai − x0 (where it has a
positive infinite slope) and at the points 0 and η bi − x0 (where it has a negative infinite
slope);

• has a vanishing derivative exactly when u satisfies the critical equation (8) or the com-
panion equation

u
m∏
i=1

(u+ x0 − η bi) = −(1− t0)
m∏
i=0

(u+ x0 − η ai). (63)

This companion equation always has exactly m+1 solutions, in the intervals [η ai−1−x0, η bi−x0]
for i ≤ i0 and [η bi − x0, η ai − x0] for i ≥ i0, where i0 is such that 0 ∈ (η ai0−1 − x0, η ai0 − x0].
In particular, it does not have solutions for u < η a0 − x0, and so Uc and U ′

c are the only local
extrema of RS(u) in (−∞, η a0 − x0). Observing that limu→−∞ RS(u) = −∞ and RS(u) has a
positive infinite slope at η a0 − x0, this ends the proof of the lemma. �

We now recall from Eqs. (41) and (46) that the renormalized kernel K̃(x0,t0)
λN

writes as

K̃
(x0,t0)
λN

((x1, t1), (x2, t2)) = − 1

(2iπ)2

∮
γZ

∮
γW

IntN(W,Z) dW dZ , (64)

where IntN(W,Z) can be approximated by (
√
N)x2−x1e

√
N(S(W )−S(Z)) h

(x1,t1)
(x2,t2)

(W,Z) uniformly on
compact subsets of DS (defined above Lemma 23). We recall also that the integrand IntN(W,Z)
has poles for W = Z, for some values of W in an interval IW = [η a0 − x0, o(1)] and for some
values of Z in an interval IZ = [o(1), η am − x0 − 1].

Lemma 34. There exist two integration contours γnew
W and γnew

Z (both followed in counterclockwise
order) such that,

• γnew
W lies in the interior of γnew

Z ;
• γnew

W (resp. γnew
Z ) contains IW (resp. IZ) in its interior;

• γnew
W (resp. γnew

Z ) lies inside the region {RS(U) ≤ RS(U ′
c)} (resp. {RS(U) ≥ RS(Uc)}).

These new contours are shown in the left-hand side of Fig. 14.
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Proof. We start by noting that the action S can be analytically continued in the upper half-plane
on a neighborhood of Uc ∈ R and behaves like

S(U) = S(Uc) +
S ′′(Uc)

2
(U − Uc)

2 +O((U − Uc)
3).

Since IS(u) is piecewise affine and RS(u), seen as a function of a real variable u, reaches a local
maximum at Uc (Lemma 33), the coefficient S ′′(Uc) must be real and negative. Since S ′′(Uc) is
real, by comparison with the map F (U) = U2, there is an imaginary level line of S leaving from Uc

orthogonally to the real axis and going in the upper half plane; call it `. Moreover, since S ′′(Uc) is
negative, the real part of S increases along ` (recall that along an imaginary level line, the function
RS(U) is strictly monotone by the open mapping theorem). In particular, ` is included in the
region {RS(U) ≥ RS(Uc)}. Since S does not have any critical point in the upper half-plane, `
cannot end inside the upper half-plane, hence it either reaches again the real axis or it goes to
infinity. If it goes to infinity, we claim that ` can only go to infinity in the positive real direction.
Indeed, the estimate S(U) ∼ | log(1− t0)|U for large |U | (recall (48)) forces IU to stay bounded
along ` and RU to stay bounded from below along ` (by definition IS(U) is bounded along ` and
RS(U) ≥ RS(Uc) along `).

Similarly one can consider the imaginary line `′ of S leaving from U ′
c and going in the upper half

plane. The real part of S is decreasing along `′ so that `′ stays in the region {RS(U) ≤ RS(U ′
c)}.

In particular ` and `′ cannot cross. Similarly as above, one can see that `′ either reaches again
the real axis at some point or go to infinity in the negative real direction.

To determine the behavior of ` and `′, it is useful to look at the imaginary part of the action
of the real line. We recall from (56) and the discussion below it, that IS(Uc) = IS(U ′

c) = −πx0,
and that −πx0 ∈ (0, IS(0)). Since I(S(u)) = 0 for large real positive values of u, there exists
x > 0 such that I(S(x)) = −πx0. Considering the shape of the real map u 7→ I(S(u)) (Fig. 11),
there are two possibilities:

• If x is an interval of the type (η bk − x0, η ak − x0), then u 7→ I(S(u)) is decreasing at x,
and x is uniquely determined by the conditions x > 0 and I(S(x)) = −πx0.

• If x is an interval of the type (η ak−1 − x0, η bk − x0), then u 7→ I(S(u)) is constant on
that interval, and any point of this interval can be chosen as x. We then choose x to be
the unique solution of the critical equation in that interval (the existence being ensured
by Lemma 24 and the uniqueness by our assumption that the critical equations has two
solutions in (−∞, η a0 − x0)).

Claim: The imaginary level lines ` and `′ can only come back to the real axis at x.
First note that ` and `′ can only come back to the real axis at a point u ∈ R \ {Uc, U

′
c} such

that IS(u) = IS(Uc) = IS(U ′
c). Moreover, let y be a non-critical point around which u 7→ IS(u)

is constant for real u. Since y is non-critical, the set {IS(z) = IS(y)} is a single curve around y
and thus coincide with the real axis. In particular ` (or `′) cannot reach the real axis at such y.

The case when y = ηai−x0 or y = bi−x0 is a bit more delicate. Locally around y, the function
S looks like ±(z − y) log(z − y), and thus the set {IS(z) = IS(y)} looks locally like a half-line.
Thus it is locally included in the real line (we know from Fig. 11 that at each point y = ηai − x0

or y = bi − x0 , there is a direction along the real line in which IS(u) is constant). Again, ` (or
`′) cannot reach the real axis at such y.

Finally, we observe that the interval (−∞, ηa0 − x0) contains no other critical point than Uc

and U ′
c, so, from the previous discussion, ` and `′ cannot come back to the real axis inside this

interval. Altogether, this proves the claim, i.e. that ` and `′ can only come back to the real axis
at x.

A first consequence is that at most one of ` and `′ can come back to the real axis. But they
cannot go both to infinity, otherwise they would cross. So one of ` or `′ should go to the real axis,
and the other to infinity. The non-crossing constraint and the fact that x > 0 forces that ` goes
to infinity, while `′ goes to x.
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The contours of the lemma are now obtained as follows. For γnew
W , we simply follow `′ and its

mirror image in the lower half plane. By construction, it lies in the region {RS(U) ≤ RS(U ′
c)}.

Also, since the return point x to the real axis satisfies x > 0, γnew
W encloses IW . For γnew

Z , we
follow ` until R(U) is sufficiently large, and then go to the real axis following any smooth curve.
We then go back to Uc with the mirror image of the first part of the contour. If we follow ` until
when R(U) is sufficiently large, we can ensure that this contour encloses IZ and lies in the region
{RS(U) ≥ RS(Uc)}. Finally note that γnew

W lies in the interior of γnew
Z by construction. �

Proposition 35. Let x0 < 0 and 0 ≤ t0 ≤ t−(x0). Then, locally uniformly for (x1, t1) ∈ Z × R,
we have that

lim
N→+∞

K̃
(x0,t0)
λN

((x1, t1), (x1, t1)) = 0. (65)

As a consequence, M̃ (x0,t0)
λN

tends in probability to the empty set.

Proof. We are interested in (64) for x1 = x2 and t1 = t2. In this case, the contours are such that
γW contains IW , γZ contains IZ and γW lies in the interior of γZ . Therefore, we can transform the
contours γW and γZ to the contours γnew

W and γnew
Z from Lemma 34 without crossing any poles.

Thus, by the residue theorem, we get

K̃
(x0,t0)
λN

((x1, t1), (x1, t1)) = − 1

(2iπ)2

∮
γnew
Z

∮
γnew
W

IntN(W,Z) dW dZ . (66)

We recall that IntN(W,Z) ' (
√
N)x2−x1e

√
N(S(W )−S(Z)) h

(x1,t1)
(x2,t2)

(W,Z) on DS and that RS(W ) ≤
RS(U ′

c) < RS(Uc) ≤ RS(Z) for (W,Z) ∈ γnew
W ×γnew

Z (see Lemmas 33 and 34). A difficulty comes
from the fact that the right-most intersection point W+ of γnew

W with the real axis might lie outside
DS (W+ coincides with the point x in the proof of Lemma 34). Nevertheless, the integrand can
be controlled around this point thanks to third part of Lemma 23. The same arguments as in the
proof of Proposition 31 shows that IntN(W,Z) converges pointwise to 0 and that the integrand is
bounded by the integrable function h

(x1,t1)
(x2,t2)

(W,Z). Dominated convergence applies, proving (65).
The convergence in distribution to the empty set then follows from the general identity for

determinantal point processes

E
[
M̃

(x0,t0)
λN

(A)
]
=

∫
A

K̃
(x0,t0)
λN

((x1, t1), (x1, t1)) dλ (x1, t1),

for any bounded subset A ⊂ Z×R, where we recall that M̃ (x0,t0)
λN

(A) denotes the number of beads
of M̃ (x0,t0)

λN
contained in the set A. By dominated convergence, these expected numbers of beads

go to 0, so (M̃
(x0,t0)
λN

(Bi))1≤i≤k converges in probability to (0, . . . , 0) for any collection of bounded
subsets (Bi)1≤i≤k. The discussion from Section 2.2 shows that this is equivalent to the convergence
in distribution towards the empty set.

We now discuss the case where the critical equation has a double root Uc = U ′
c in the interval

(−∞, η a0−x0). Then u 7→ RS(u) is increasing on (−∞, η a0−x0) (this is an immediate analogue
of Lemma 33), and the action writes locally as S(z) = S(Uc) +

S′′′(Uc)
6

(z − Uc)
3 + O ((z − Uc)

4),
with S ′′′(Uc) > 0. Fig. 15 shows the imaginary level lines of S, and the {RS(U) < RS(Uc)} and
{RS(U) > RS(Uc)} regions around Uc. In particular, we can find new integration contours as
in Lemma 34 except that they now meet at Uc = U ′

c. Note that, in this case, the integrand in
(66) has a singularity at Z = W = Uc, where it behaves as O((Z − W )−1). This is similar to
the setting of Proposition 31 and we can therefore apply dominated convergence using the same
arguments. We conclude that the renormalized correlation kernel tends also to 0, finishing the
proof of the proposition. �

The case x0 ∈ (0, η am) is essentially treated in the same way, with the following modifications.
By Proposition 25, the two relevant real critical points Uc and U ′

c live in (η am − x0,+∞). To
simplify the discussion we assume Uc 6= U ′

c. Using the convention Uc < U ′
c, Lemma 33 still holds.

An analog of Lemma 34 also holds, with the important change that in this case, γnew
Z lies in the
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Uc = U ′
c

γnew
Z

γnew
W

0Uc = U ′
c

ℓℓ′

Figure 15. Left: The landscape of the action S around a double critical point on the real line in
the case of the small t region {0 ≤ t0 ≤ t−(x0)}. Plain lines are imaginary level lines, dotted lines
are the real level lines. We also indicated the alternation of different regions: the yellow regions
correspond to {RS(U) < RS(Uc)}, while the white regions correspond to {RS(U) > RS(Uc)}.
Right: The new integration contour in the case of a double critical point (to be compared with
the left-hand side of Fig. 14).

interior of γnew
W (and not the opposite). Since the contours in (46) satisfy that γW is inside γZ (for

t1 = t2), moving them to γnew
Z and γnew

W yield a residue term related to the pole Z = W (as in
(60), except that the residue term appears for any W in γnew

W ). For x1 = x2, t1 = t2, recalling (41),
the residue of the integrand in (66) related to the pole Z = W is simply 1

1−t0− t1√
N

. Therefore,
Eq. (66) is replaced by:

K̃
(x0,t0)
λN

((x1, t1), (x1, t1)) = − 1

(2iπ)2

∮
γnew
Z

∮
γnew
W

IntN(W,Z) dW dZ − 1

2iπ

∮
γnew
W

1

1− t0 − t1√
N

dW .

But the second integral is obviously 0, so that (65) holds also in this case. We conclude as above
and obtain that also in this regime, the bead process M̃

(x0,t0)
λN

tends in distribution to the empty
set.

The same conclusion also holds for the following remaining three cases: when x0 = 0 (in this
case, by Proposition 25, the only admissible value for t0 is t0 = 0), when x0 = η a0, and when
x0 = η am. We leave to the reader the details of these three remaining cases, pointing out that
one needs some little modifications in the same spirit as Remark 26.

Combining all the results in this section, we obtain the following final result for the small t
region.

Proposition 36. Let x0 ∈ [η a0, η am] and 0 ≤ t0 ≤ t−(x0). Then the bead process M̃
(x0,t0)
λN

tends
in probability to the empty set.

5.2. The large t region. In this section, we fix x0 ∈ [η a0, η am] and we let t+ ≤ t0 ≤ 1, where
t+ = t+(x0) is given by Proposition 25. For the sake of brevity, we restrict ourselves to the case
when there exists i0 ≥ 1 such that x0 ∈ (η ai0−1, η bi0). The case x0 ∈ (η bi0 , η ai0) for some i0 ≥ 1
and the case x0 = η ai0 for some i0 ≥ 0 are similar (for the case x0 = η ai0 , we refer to the
discussion in Remark 26). Finally, for x0 = η bi0 , the only admissible value for t0 in the large
t region is t0 = 1 (since Proposition 25 states that t+(η bi0) = 1); also in this case we omit the
simple necessary modifications.

From Proposition 25, we know that the critical equation (8) has only real solutions, two of
which, say Uc ≤ U ′

c, are in the interval (0, η bi0 − x0). We will discuss here the case Uc < U ′
c, the

case of a double critical point Uc = U ′
c being obtained with simple modifications similar to those

discussed in the previous subsection.
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Lemma 37. The critical point Uc and U ′
c are respectively a local minimum and a local maximum

of the function u → RS(u) on the real line and we have RS(Uc) < RS(U ′
c).

Proof. The lemma follows from the fact that u → RS(u) has negative infinite slopes at the
points 0 and η bi0 − x0 and that there are no local extrema other than Uc and U ′

c in the interval
(0, η bi0 − x0). �

We now see how to move integration contours. To this end, let us first remark that when
x0 ∈ (η ai0−1, η bi0) the Z poles of IntN(W,Z) all lie in a strictly smaller sub-interval of the
interval IZ = [o(1), η am − x0 − 1] considered so far. Indeed, from (41), one can see that the only
Z-poles of IntN(W,Z) are a subset of the poles of FλN

(
√
N(Z + x0)). But, from (28) and Fig. 9,

we know that the latter function has no poles in the intervals of the form (η ai−1 − x0, η bi − x0)

and so, in particular, the Z poles of IntN(W,Z) all lie in ĨZ = [ηbi0 − x0, η am − x0 − 1] ⊂ IZ .

Lemma 38. There exist two integration contours γnew
W and γnew

Z (both followed in counterclockwise
order) such that

• γnew
W and γnew

Z have disjoint interiors;

• γnew
W (resp. γnew

Z ) contains IW (resp. ĨZ) in its interior;
• γnew

W (resp. γnew
Z ) lies inside the region {RS(U) ≤ RS(Uc)} (resp. {RS(U) ≥ RS(U ′

c)}).

These contours are shown in the middle picture of Fig. 14.

Proof. The proof is similar to that of Lemma 34. We consider the imaginary level lines ` and `′

leaving from Uc and U ′
c orthogonally to the real line and in the upper-half plane. The level line `

(resp. `′) lies inside the region {RS(U) ≤ RS(Uc)} (resp. {RS(U) ≥ RS(U ′
c)}). Moreover, they

cannot go back to the the real line. Indeed, the value IS(z) on the real line is maximal on the
interval (0, η bi0 − x0) (see Section 3.4 and Fig. 11) so that if ` or `′ goes back to the real line,
it has to be within this interval. But this would mean that S has a third critical point in this
interval, which is impossible by Lemma 24 and Proposition 25. We conclude that both ` and `′

go to infinity. Since S(U) ∼ | log(1− t0)|U for large |U | by (48), necessarily ` goes to infinity in
the negative real direction, while `′ goes to infinity in the positive real direction.

It is then possible to follow ` long enough, and then join the negative real axis while staying in
the region {RS(U) ≤ RS(Uc)}. Completing the path by symmetry gives the contour γnew

W . The
contour γnew

Z is constructed similarly from `′.
We finally note that the claim in the second item follows from the discussion above the lemma

statement. �

Proposition 39. Let x0 ∈ [η a0, η am] and t+(x0) ≤ t0 ≤ 1. Then, locally uniformly for (x1, t1) ∈
Z× R, we have that

lim
N→+∞

K̃
(x0,t0)
λN

((x1, t1), (x1, t1)) = 0.

As a consequence, M̃ (x0,t0)
λN

tends in probability to the empty set.

Proof. As already explained, we give details only in the case when there exists i0 ≥ 1 such that
x0 ∈ (η ai0−1, η bi0). Again, we are interested in (46) for x1 = x2 and t1 = t2. The original contours
are such that γW lies in the interior of γZ . As in the case x0 > 0 and 0 ≤ t0 ≤ t−(x0) in the
previous section, moving the contour to those of Lemma 38 yields the following:

K̃
(x0,t0)
λN

((x1, t1), (x1, t1)) = − 1

(2iπ)2

∮
γnew
Z

∮
γnew
W

IntN(W,Z) dW dZ − 1

2iπ

∮
γnew
W

1

1− t0 − t1√
N

dW .

The second integral is identically 0, while the first tends to 0 as N tends to +∞ using the same
argument as before. This ends the proof of the proposition. �



44 JACOPO BORGA, CÉDRIC BOUTILLIER, VALENTIN FÉRAY, AND PIERRE-LOÏC MÉLIOT

5.3. The intermediate t region. Fix x0 ∈ [η a0, η am]. As seen in Section 1.4.2, it might happen
that there is some t0 ∈ (t−(x0), t+(x0)) in the frozen region, i.e. such that the critical equation (8)
has only real roots. In this case, thanks to the third item of Proposition 25, there are three roots
– denoted by Uc ≤ U ′

c ≤ U ′′
c – that are either all inside a negative interval (η bj0 −x0, η aj0 −x0) for

some j0 < i0, or all inside a positive interval (η aj0 − x0, η bj0+1 − x0) for some j0 ≥ i0. These two
cases are treated similarly, we will therefore assume that the three roots are in (η bj0−x0, η aj0−x0)
for some j0 < i0. Also, we assume Uc < U ′

c < U ′′
c , and let the reader convince himself that multiple

critical points do not create additional difficulties. The following lemma is proven similarly as
before.

Lemma 40. The critical point Uc, U ′
c U

′′
c are respectively local minimum, maximum and minimum

of the function u → RS(u) on the real line and we have both RS(Uc) < RS(U ′
c) > RS(U ′′

c ).

This helps us to construct integration contours as follows. With an argument similar to the one
used above Lemma 38, we note that there are no W -poles in the interval (η bj0 −x0, η aj0 −x0). A
major difference is that now the W integration contour is split into two disjoint parts, the union
of their interiors containing all W poles.

Lemma 41. There exist integration contours γnew
W,1 , γnew

W,2 and γnew
Z (all followed in counterclockwise

order) such that
• γnew

W,1 and γnew
Z have disjoint interiors, and γnew

W,2 lies inside γnew
Z ;

• γnew
W,1 (resp. γnew

W,2 and γnew
Z ) contains (η a0 − x0, η bj0 − x0) (resp. (η aj0 − x0, 0) and IZ) in

its interior;
• γnew

W,1 (resp. γnew
W,2) lies inside the region {RS(U) ≤ RS(Uc)} (resp. {RS(U) ≤ RS(U ′′

c )});
• γnew

Z lies inside the region {RS(U) ≥ RS(U ′
c)}.

These contours are shown in the right-hand side of Fig. 14.

Proof. The strategy of proof is again the same. We consider the three imaginary lines `, `′ and `′′

leaving from Uc, U ′
c and U ′′

c . One can prove that `′′ goes back to the real axis at some point x > 0,
while ` and `′ go to infinity respectively in the negative and positive directions. Symmetrizing `′′

gives the contour γnew
W,2 . On the other hand, following ` and `′ for long enough and then joining

the real line (plus symmetrizing) gives γnew
W,1 and γnew

Z . �

Proposition 42. Let x0 ∈ [η a0, η am] and t0 ∈ (t−(x0), t+(x0)) such that the critical equation (8)
has only real roots. Then, locally uniformly for (x1, t1) ∈ Z× R, we have that

lim
N→+∞

K̃
(x0,t0)
λN

((x1, t1), (x1, t1)) = 0.

As a consequence, M̃ (x0,t0)
λN

tends in probability to the empty set.

Proof. Again, we consider (46) for x1 = x2 and t1 = t2. The original contours are such that γW
lies in the interior of γZ . Moving the contour to those of Lemma 41 (note that γnew

W,1 and γnew
W,2

together enclose the same W -poles as γW ) yields a residue term which is an integral over γnew
W,1 .

We get

K̃
(x0,t0)
λN

((x1, t1), (x1, t1)) = − 1

(2iπ)2

∮
γnew
Z

∮
γnew
W

IntN(W,Z) dW dZ − 1

2iπ

∮
γnew
W,1

1

1− t0 − t1√
N

dW .

Again, the second integral is identically 0, while the first tends to 0 as N tends to +∞. This ends
the proof of the proposition. �

Propositions 36, 39, and 42 completes the proof of the second item of Theorem 15.
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6. The limiting height function and the continuity of the limiting surface

In this section, we prove Theorems 4 and 7. Recall (from Theorem 2) that H∞ : [η a0, η am]×
[0, 1] → R is the deterministic limiting height function of the sequence of random height functions
1√
N
HλN

(bx
√
Nc, t) coming from the bead processes associated with a uniform random (Pois-

sonized) Young tableaux of fixed shape λ0. We want to show that

H∞(x, t) =
1

π

∫ t

0

α(x, s) ds , for all (x, t) ∈ [η a0, η am]× [0, 1].

Proof of Theorem 4. We fix (x, t) ∈ [η a0, η am]× [0, 1]. Recalling the boundary conditions in (5),
we note that

1√
N
HλN

(bx
√
Nc, t) ≤ 1

2
√
N

(
ωλN

(bx
√
Nc)− |bx

√
Nc|

)
=

1

2
(ωηλ0(x)− |x|), for all N > 0.

Therefore, by dominated convergence theorem, the convergence in Theorem 2 implies that for
every fixed (x, t) ∈ [η a0, η am]× [0, 1],

H∞(x, t) = lim
N→+∞

1√
N
E
[
HλN

(bx
√
Nc, t)

]
.

We will prove that the right-hand side converges to 1
π

∫ t

0
α(x, s)ds, implying Theorem 4 by unique-

ness of the limit. By definition, HλN
(bx

√
Nc, t) is the number of beads in the bead process MλN

which lie on the thread at position bx
√
Nc and with height in [0, t]. Since MλN

is a determinantal
point process with kernel KλN

, we have

E
[
HλN

(bx
√
Nc, t)

]
=

∫ t

0

KλN

(
(bx

√
Nc, s), (bx

√
Nc, s)

)
ds.

With the notation in (40), we get
1√
N
KλN

(
(bx

√
Nc, s), (bx

√
Nc, s)

)
= K̃

(x,s)
λN

((0, 0), (0, 0)).

Recall now that α(x, s) := IUc

1−s
1(x,s)∈L, where L denotes the liquid region. If (x, s) is in the liquid

region, Eqs. (59) and (61) implies that

lim
N→+∞

K̃
(x,s)
λN

((0, 0), (0, 0)) = K∞((0, 0), (0, 0)) =
1

2iπ

∫ Uc

Uc

dW

1− s
=

1

π

IUc

1− s
=

α(x, s)

π
,

where, for the third last equality, we used a vertical path from Uc to Uc, as in the beginning of
the proof of Lemma 32. On the other hand, if (x, s) is outside the liquid region, we have, by
Propositions 36, 39 and 42,

lim
N→+∞

K̃
(x,s)
λN

((0, 0), (0, 0)) = 0 =
α(x, s)

π
.

Hence, we get that limN→+∞ K̃
(x,s)
λN

((0, 0), (0, 0)) = α(x,s)
π

, for all (x, s) ∈ [η a0, η am]× [0, 1]. More-
over, since integration contours, integrands and critical points are continuous function of (x, s),
and since all asymptotic estimates given are uniform on compact sets, the kernel convergence is
also uniform on compact sets. We conclude that

lim
N→+∞

1√
N

E
[
HλN

(bx
√
Nc, t)

]
= lim

N→+∞

∫ t

0

K̃
(x,s)
λN

((0, 0), (0, 0))ds =
1

π

∫ t

0

α(x, s)ds,

proving Theorem 4. �

We now turn to the proof of the continuity criterion for the limiting surface T∞ stated in
Theorem 7.
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Proof of Theorem 7. Recall the definition of the quantities T∞
− (x, y) and T∞

+ (x, y) from (12)
and recall also the definition of t−(x) and t+(x) from Proposition 25, noting that t−(x) =
inf {∂L ∩ ({x} × [0, 1])} and t+(x) = sup {∂L ∩ ({x} × [0, 1])}.

From Remark 6, we know that the limiting surface T∞ is continuous in its domain Dλ0 if and
only if T∞

− (x, y) = T∞
+ (x, y) for all (x, y) ∈ Dλ0 . The latter condition is equivalent to the following

property of the liquid region L: for all x ∈ [η a0, η am],
[t−(x), t+(x)] \ {L ∩ ({x} × [0, 1])} does not contain any non-empty open interval. (67)

Indeed, if this is not true, i.e. for some x ∈ [η a0, η am] there exists an non-empty open interval I
contained in [t−(x), t+(x)] \ {L ∩ ({x} × [0, 1])}, then there exists some constant c > 0 such that
H∞(x, t) = c for all t ∈ I and so T∞

− (x, 2c− |x|) < T∞
+ (x, 2c− |x|).

Now recall the parametrization of the frozen boundary curve ∂L given in Proposition 27. We
observe that a necessary and sufficient condition such that (67) holds for all x ∈ [η a0, η am] is
that the tangent vector (ẋ(s), ṫ(s)) at the cusp points12 of ∂L is vertical. Requesting that the
tangent vector (ẋ(s), ṫ(s)) is vertical at a certain point (x(s), t(s)) of the curve ∂L is equivalent to
impose that its (absolute) slope is zero, that is |G(s)| = +∞. The solutions to the latter equation
are s = η ai for i = 0, . . . ,m. Moreover, the cusp points of ∂L are given by the solutions to the
equations: ẋ(s) = 1 + Σ̇(s)

Σ(s)2
= 0,

ṫ(s) = G(s)
(
1 + Σ̇(s)

Σ(s)2

)
= 0,

where the directional derivative, in the direction of the tangent, changes sign. One can check
that (x(s), t(s)), for s = η a0 and s = η am, are not cusp points. Indeed, these two points are
the two points where the frozen boundary curve ∂L is tangent to the two vertical boundaries of
[η a0, η am]× [0, 1]. Hence, it is enough to impose that for all i = 1, . . . ,m− 1,{

ẋ(η ai) = 0,

ṫ(η ai) = 0.

With some standard computation, one can note that ẋ(η ai) = lims→η ai 1 + Σ̇(s)
Σ(s)2

= 0 for all
i = 1, . . . ,m − 1. Therefore, the only non-trivial condition is to impose that ṫ(η ai) = 0 for all
i = 1, . . . ,m− 1. Again, with some standard computations, one can check that

ṫ(η ai) = lim
s→η ai

G(s)

(
1 +

Σ̇(s)

Σ(s)2

)
=

2
(∑m

j=0,j 6=i
1

η ai−η aj
−
∑m

j=1
1

η ai−η bj

)∏m
j=1(η ai − η bj)∏m

j=0,j 6=i(η ai − η aj)
,

concluding that the necessary and sufficient conditions for the continuity of T∞ are the ones in
(15). �

7. Applications

In this section we prove the applications discussed in Section 1.4.
Proof of Proposition 8. We first prove the formula for H∞

r (x, t). From Theorem 4, we have

H∞
r (x, t) =

1

π

∫ t

0

αr(x, s) ds ,

where αr(x, s) =
IUc

1−s
1(x,s)∈L. In this case the critical equation becomes

U
(
x−

√
r + 1√

r
+ U

)
= (1− t)

(
x+ 1√

r
+ U

)(
x−

√
r + U

)
.

Solving this quadratic equation and integrating the imaginary part of the solution gives the
formula (16) for H∞

r .
12We recall that for a plane curve defined by analytic parametric equations x(t) = f(t) and y(t) = g(t), a cusp

is a point where both derivatives of f and g are zero, and the directional derivative, in the direction of the tangent,
changes sign.
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The fact that the limiting surface T∞
r (x, y) is continuous for all r > 0 is a consequence of

Theorem 7. �

Proof of Proposition 10. From Theorem 7 we know that the surface T∞
p,q,r is continuous in its

domain if and only if
1

a1 − a0
+

1

a1 − a2
=

1

a1 − b1
+

1

a1 − b2
,

with the coefficients a0, a1, a2, b1, b2 as in Eq. (20). That is,
1

1 + p
− 2

2 + p− q
− 2

p+ q − 2r
+

1

p− r
= 0.

Solving the above equation, one gets the solutions claimed in the proposition statement. �

8. Local limits for random Young tableaux

The goal of this section is to complete the proof of Corollary 18.

8.1. Local topology for standard Young tableaux. We start with some definitions. We recall
that a marked standard Young tableau is a triple (λ, T, (x, y)) where (λ, T ) is a standard Young
tableau of shape λ and (x, y) are the coordinates of a distinguished box in λ (see the left-hand
side of Fig. 16 for an example). A marked Poissonized Young tableau is defined analogously.

We introduce a family of restriction functions for marked standard Young tableaux/Poissonized
Young tableaux. Fix h ∈ N. Given a marked standard Young tableau/Poissonized Young tableau
(λ, T, (x, y)), we denote by rh (λ, T, (x, y)) the standard Young tableau (�h, R), where �h is a
square Young diagram of size h2 and R is a filling of the boxes of �h obtained as follows:13

(1) first, we define R̃(x′, y′) = T (x+ x′, y + y′) for all (x′, y′) ∈ �h, where we set R(x′, y′) = ∗
if T (x+ x′, y + y′) is not well-defined (see the middle picture of Fig. 16);

(2) second, we rescale the values of the map R̃ obtaining a new map R so that (�h, R) is a
standard Young tableau and the values of R have the same relative order as the values of
R̃, and the boxes filled by ∗ are kept as they are (see the right-hand side of Fig. 16).
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Figure 16. Left: A marked standard Young tableau (λ, T, (x, y)) with the marked box high-
lighted in red at position (x, y) = (4, 5). Middle: The pair (�4, R̃) obtained from the first step in
the definition of the restriction function r4 (λ, T, (x, y)). Right: The pair (�4, R) obtained from
the second step in the definition of the restriction function r4 (λ, T, (x, y)).

13We highlight the fact that by definition the restriction functions rh give always back a standard Young tableau
(even in the case of Poissonized Young tableaux). Note that the rescaling procedure in step (2) is well-defined also
when (λ, T, (x, y)) is a marked Poissonized Young tableau since we restrict to the case where the mapping T has
distinguished values.
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An infinite standard Young tableau is a pair (�∞, T ) where �∞ is the infinite Young diagram
formed by all the boxes at positions (x, y) ∈ Z2 such that x + y is odd and y > |x| (recall we
are using the Russian notation; see the left-hand side of Fig. 1, p. 3) and T : �∞ → Z≥1 is a
bijection that is increasing along rows and columns. An infinite standard Young tableau is always
(implicitly) marked at the box (0, 1). An example of an infinite standard Young tableau is given
in Fig. 17.
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Figure 17. An example of an infinite standard Young tableau.

Definition 43. Given a sequence of marked standard Young tableaux/Poissonized Young tableaux
(λn, Tn, (xn, yn))n and an infinite standard Young tableau (�∞, T ), we say that (λn, Tn, (xn, yn))n
locally converges to (�∞, T ) if for every h ∈ N,

rh(λn, Tn, (xn, yn)) −−−→
n→∞

rh (�∞, T ) .

The space of marked standard Young tableaux/Poissonized Young tableaux and infinite stan-
dard Young tableaux with the topology induced by the local convergence defined in Definition 43
is a metrizable Polish space, so one can consider convergence in distribution with respect to this
local topology.

8.2. Local convergence for Poissonized Young tableaux. We first prove that the random
infinite standard Young tableau from Definition 16 is well-defined. Recall the definitions of the
functions Hβ and Rβ of the infinite bead process Mβ from the discussion above Definition 16.

Proposition 44. Fix a parameter β ∈ (−1, 1). Then the heights

{Hβ(x, y), (x, y) ∈ �∞}

are a.s. all distinct and they have a.s. no accumulation points.

Proof. The infinite bead process Mβ is a determinantal point process. Hence the distribution of
the heights has a joint density with respect to the Lebesgue measure and so, it puts zero measure
on vectors with two equal coordinates. Therefore the heights {Hβ(x, y), (x, y) ∈ �∞} are a.s. all
distinct.

We now prove that there are a.s. no accumulation points. It is enough to prove that Hβ(k, k+1)
tends to +∞ a.s., as k tends to infinity. Indeed, assume this is true. By symmetry Hβ(−k, k+1)
also tends to +∞. But the interlacing condition implies that there are at most k2 pairs (x, y) in �∞
with Hβ(x, y) ≤ min(Hβ(k, k+1), Hβ(−k, k+1)). Therefore, if min(Hβ(k, k+1), Hβ(−k, k+1))
tends to +∞, then the set {Hβ(x, y), (x, y) ∈ �∞} cannot have accumulation points.

To prove that Hβ(k, k + 1) tends to +∞ a.s., we write

Hβ(k, k + 1)−Hβ(0, 1) =
k∑

j=1

Hβ(j, j + 1)−Hβ(j − 1, j).
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Since bead models are translation invariant, we can use Birkhoff ergodic theorem and conclude
that, a.s.,

lim
k→∞

Hβ(k, k + 1)−Hβ(0, 1)

k
= E

[
Hβ(1, 2)−Hβ(0, 1)

]
> 0. �

We now complete the proof of of Corollary 18.

Proof of Corollary 18. Fix h ∈ N. In order to prove the result it is enough to show that
rh (λN , TN ,�N) converges in distribution to rh (�∞, Rβ). Recall from Section 1.5.3 that (�∞, Rβ)
is constructed starting from an infinite bead process Mβ of skewness β (and intensity α = 1). Let
Xh be the height of the h-th bead above 0 in the thread of index 0 in Mβ. We note that the
restriction rh(�∞, Rβ) is completely determined by the relative positions of beads in the window
{−h+ 1, . . . ,−1, 0, 1, . . . , h− 1} × [0, Xh].

Using Skorohod representation theorem, let us assume that the convergence in Theorem 15
holds almost surely. Then, for any fixed A > 0, the positions of the beads of M̃ (x0,t0)

λN
in {−h +

1, . . . ,−1, 0, 1, . . . , h− 1} × (0, A) converge to the positions of the same beads of Mβ. If Xh < A,
the relative positions of these latter beads a.s. determine (thanks to Proposition 44), for N large
enough (but random), both tableaux

rh(λN , TN ,�N) and rh(�∞, Rβ),

where we recall that @N is the box corresponding to the first bead of MλN
above height t0 in the

x0

√
N -th thread, i.e. the first bead of M̃ (x0,t0)

λN
above height zero in the zero thread.

Therefore, conditionally on Xh < A, for N large enough (but random), we a.s. have
rh(λN , TN ,�N) = rh(�∞, Rβ).

Since this holds for all A > 0 and since Xh is a.s. finite, we have the almost sure convergence
of rh(λN , TN ,�N) to rh(�∞, Rβ) in the probability space constructed by Skorohod representa-
tion theorem. Almost sure convergence implies convergence in distribution of rh(λN , TN ,�N) to
rh(�∞, Rβ), which concludes the proof. �
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