
HAL Id: hal-04170992
https://hal.science/hal-04170992v2

Preprint submitted on 22 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Learning Optimal Admission Control in Partially
Observable Queueing Networks

Jonatha Anselmi, Bruno Gaujal, Louis-Sébastien Rebuffi

To cite this version:
Jonatha Anselmi, Bruno Gaujal, Louis-Sébastien Rebuffi. Learning Optimal Admission Control in
Partially Observable Queueing Networks. 2023. �hal-04170992v2�

https://hal.science/hal-04170992v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Learning Optimal Admission Control in Partially
Observable Queueing Networks

Jonatha Anselmi1†, Bruno Gaujal1†, Louis-Sébastien Rebuffi1*

1*Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, Grenoble,
38000, France.

*Corresponding author(s). E-mail(s):
louis-sebastien.rebuffi@univ-grenoble-alpes.fr;

Contributing authors: jonatha.anselmi@inria.fr; bruno.gaujal@inria.fr;
†These authors contributed equally to this work.

Abstract
We develop an efficient reinforcement learning algorithm that learns the optimal
admission control policy in a partially observable queueing network. Specifically,
only the arrival and departure times from the network are observable, optimality
refers to the average holding/rejection cost in infinite horizon, and efficiency is
with respect to regret performance.
While reinforcement learning in partially-observable Markov Decision Processes
(MDP) is prohibitively expensive in general, we show that the regret at time T
induced by our algorithm is Õ(

√
T log(1/ρ)) where ρ ∈ (0, 1) is connected to

the mixing time of the underlying MDP. In contrast with existing regret bounds,
ours does not depend on the diameter (D) of the underlying MDP, which in most
queueing systems is at least exponential in S, i.e., the maximal number of jobs in
the network. Instead, the role of the diameter is played by the log(1/ρ) term,
which may depend on S but we find that such dependence is “minimal”. In the
case of acyclic or hyperstable queueing networks, we prove that log(1/ρ) = O(S),
which overall provides a regret bound of the order of Õ(

√
TS). In the general

case, numerical simulations support the claim that the term log(1/ρ) remains
extremely small compared to the diameter.
The novelty of our approach is to leverage Norton’s theorem for queueing networks
and an efficient reinforcement learning algorithm for MDPs with the structure of
birth-and-death processes.

Keywords: Product-form queueing networks, Norton’s theorem, admission control,
reinforcement learning, regret

1

1 Introduction
Research on reinforcement learning in Markov Decision Processes (MDP) has been
flourishing since Walkins’ work on Q-learning [1], the celebrated model-free learning
algorithm. Since then, several extensions of Q-learning [2], Bayesian [3, 4] or model-
based [5] approaches have been proposed to improve learning efficiency [6, 7] up to
the point where the regret of the most recent algorithms is “asymptotically optimal”
in the sense that it matches a universal lower bound. The regret of the best learning
algorithm with respect to an optimal policy is Õ(

√
DSAT)1, where S is the number of

states, A the number of actions, T the time horizon and D the diameter of the MDP;
we point the reader to [8] for a recent overview of this quest for optimal regret.

Since this problem has reached a satisfactory solution, the following natural question
arises: Can one learn efficiently the optimal policy of an MDP not only when the
rewards and the transition kernel are unknown but also when the state is partially
observable? Recently, this question has been investigated under certain assumptions
on the structure of model parameters [9–11]. In this paper, we address this question
in the context of queueing networks assuming that the learner only has access to the
total number of jobs in the network. This places our problem in the family of Partially
Observable MDPs (POMDPs).

1.1 Reinforcement learning in POMDPs
It is well-known that POMDPs are prohibitively expensive to solve. If the parameters
are known, the problem of computing an optimal policy is PSPACE-complete even in
finite horizon [12]. Furthermore, it is NP-hard to compute the optimal memoryless policy
[13]. In reinforcement learning, where (some of) the model parameters are unknown,
the lower bound on the average-case complexity developed in [9, Propositions 1 and 2]
confirms with no surprise that reinforcement learning in POMDPs remains intractable.
Matter of fact, the design of effective exploration–exploitation strategies in POMDPs is
still relatively unexplored; see [10, Section 1] for a detailed discussion. In the attempt
to reduce this computational burden, researchers focused on reinforcement learning in
subclasses of POMDPs [9], and we will also follow this approach. The algorithm in [14]
assumes POMDPs without resets and has sample complexity scaling exponentially with
a certain horizon time. The Bayesian algorithms proposed in [15, 16] learn POMDPs
but bounds on the mean regret remain unknown for these approaches. A sample-
efficient algorithm for episodic finite POMDPs is given in [9]. Here, it is assumed that
the number of observations is larger than the number of latent states.

The works above have focused on reinforcement learning over a finite or discounted
horizon. In contrast, we will be interested in the (undiscounted) infinite horizon case,
which is technically more challenging. In infinite horizon, a POMDP algorithm based
on spectral methods is proposed in [10]. For this algorithm, the authors find an order-
optimal regret bound with respect to the optimal memoryless policy. However, it exhibits
a linear dependence on the diameter D of the underlying MDP. This dependence makes
this type of bounds not interesting in the context of queueing systems as the diameter is
usually exponential in the number of states [17]. Although the additional assumptions

1The Õ notation is a variant of big-O that ignores logarithmic factors.

2

on the structure of the model mitigate, to some extent, the intrinsic complexity of
POMDPs, learning algorithms with regret Õ(

√
DSAT) have remained elusive for all

but trivial cases to the best of our knowledge.

1.2 Contribution and methodology
In this paper, we propose a learning algorithm for the optimal job-admission policy in
a partially observable queueing network with regret Õ(

√
T log(1/ρ)), where ρ ∈ (0, 1)

is a parameter that is connected to the mixing time of the underlying MDP; see
Section 5.2. Thus, our main contribution is a learning algorithm with a regret bound
that does not depend on the diameter D; we recall that D grows exponentially in the
size of the state space, denoted by S, even in the simple case of an M/M/1 queue with
a finite buffer [17]. In general, ρ depends on S but we claim that such dependence is
minimal. In the case of acyclic or hyperstable networks, we show that log(1/ρ) = O(S),
which overall provides a regret bound of the order of Õ(

√
TS), while in the general

case, this is corroborated by numerical simulations.
Optimal admission control is one of the most classical control problems in queues.

It has been investigated in several works; see, e.g., [18, 19] and the references therein.
However, these works consider the case where the model parameters are known, i.e.,
no learning mechanism is employed. The novelty of our approach is to leverage i)
Norton’s theorem for closed product-form queueing networks [20] and ii) the efficiency
of reinforcement learning in MDPs with the structure of birth-and-death processes [17].
More specifically, our result uses Norton’s theorem to replace the whole network by
a single load-dependent queue in its stationary regime and relies on the mixing time
τmix of the network to apply this equivalence every τmix time-steps. We notice that
Norton’s theorem is only used for the performance analysis of the algorithm. The key
observation is that Norton’s theorem helps us to somewhat cast the original partially-
observable MDP to a standard (fully-observable) MDP. In other words, the resulting
asymptotically equivalent POMDP becomes an MDP with the structure of a birth and
death process. This structure is then exploited to construct tight bounds on the regret
of our algorithm by controlling the bias of the current policy as well as its stationary
measure.

1.3 Organization
The remainder of the paper is organized as follows. The model of the queueing network,
its practical motivation and Norton’s equivalent queue are presented in Section 2.
Section 3 presents the problem addressed in the paper in detail and Section 4 presents
how reinforcement learning works in the considered context. Section 5 is dedicated to
the presentation of our learning algorithm (UCRL-M) and Section 6 to the analysis
of its regret. In the latter, we state our main result in Theorem 6.1. Then, Section 7
discusses some technical aspects of our regret bound. Section 8 showcases the behavior
of our algorithm on a multi-tier queueing network, and, finally, Section 9 draws the
conclusions of our work.

3

2 Admission control in a queueing network
We consider an (open) Jackson network with N queues (or stations) having service
rates µo

1, . . . , µ
o
N , routing probability matrix L = [Li,j : 0 ≤ i, j ≤ N] and exogenous

arrivals occurring with rate λ. Here, L0,j (resp. Li,0) represents the probability that a
job joins queue j from outside (resp. leaves the network after service at queue i). We
assume that I +L+L2 + · · · is convergent, which implies that all jobs eventually leave
the network. Let also λo

i be the arrival rate at queue i, which is given by the unique
solution of the traffic equations λo

i = λL0,i +
∑

j λ
o
jLj,i, for all i. For all i, we assume

that λo
i < µo

i , which ensures stability (positive recurrence). We further assume that
the total number of jobs in the network cannot exceed S.

Before joining the network, jobs go through an admission controller. The purpose
of the admission controller is to either admit or reject jobs in order to minimize some
cost function. For each job, the immediate cost ct is decomposed into a per-rejection
cost γreject and a per-time-unit holding cost γhold. This cost function is the long-run
average cost per time unit: limT→∞

1
T

∑T
t=0 ct.

When the controller can observe the state of the network and knows the parameters
of the system (λ, µo, L), this classical problem has been solved in [19]. In the degenerate
case where the network is a single M/M/1 queue, there exists an explicit formula
(involving the Lambert W function) for the optimal admission policy [18].

2.1 Problem formulation
In this paper, we consider an admission controller that can only observe arrivals to and
departures from the network. More precisely, the network topology, internal service
rates and routing probabilities are not known, and the movements of the jobs inside the
network are not observable. Our objective is to design a learning algorithm that learns
the optimal admission policy with a small regret in the sense that its dependence on
the network complexity is minimal.

For the cost to be minimized, we assume that:
• the controller may choose to reject jobs arriving in the network, at the price of a

fixed γreject for each rejected job;
• for every time unit in the system, each job induces a holding cost γhold (this is

the classical cost function for admission control, see [18]);
• the controller makes decisions only relying on its set of observations up to time t.

2.2 Motivating applications
Our main motivation is the control of computer and software systems. These systems are
composed of multiple interconnected containers, where a container can be a cluster of
servers or a modular software system, and admission control mechanisms are commonly
employed to optimize performance. In the literature, containers are usually modeled
via product-form queueing networks (for tractability) or layered queueing networks
[21, 22], which justifies our modeling approach. In serverless computing, for instance,
users of the serverless platform can control the overall number of simultaneous requests
that can be processed in a cluster of servers (each with its own queue) at any given
time. In Knative, a Kubernetes-based platform to deploy and manage modern serverless

4

workloads that is used among others by Google Cloud Run, admission thresholds are
set via the container-concurrency-target-default global key [23] and the upper
limit on the number of jobs that can be active running at the same time, i.e., S, can be
controlled via the max-scale-limit global key. In Kubernetes, an open-source system
for the management of containerized applications, admission controllers are configured
via the –enable-admission-plugins and –admission-control-config-file flags
and can be leveraged in case the pod (or application) is requesting too many resources.

Because of the complex relationships among containers, which can also be nested
in multiple layers, i) a detailed knowledge of the current state is expensive to obtain at
any point in time and ii) the internal container structure is also subject to estimation
errors and may vary over time [24]. This leads us to our learning model, which is
meant to capture both of these aspects: we do not know the network topology, routing
probabilities and service rates as well as the current “state”.

3 Markov Decision Process Formulation
In this section, we construct an MDP model for the system under investigation (referred
to as “original MDP”) as well as an artificial MDP (referred to as “aggregate MDP”)
that will be equivalent to the original MDP under its stationary regime. Note however
that the learning algorithm constructed in the following only interacts with the original
system. The aggregate system is only used for the performance analysis of the algorithm.

Before introducing the original MDP, we notice that under the constraint that at
most S jobs can circulate in the network, the open Jackson network above is equivalent
to a closed network with S jobs. This closed network, illustrated in Figure 1, is identical
to the open one except for an auxiliary queue, say queue 0, that represents the outside
world and has service rate λ. The departures of queue 0 correspond to the arrivals of

Control

λ

admit

reject

S − s jobs outside

Figure 1: Admission control: rejected jobs immediately return to the outside queue.

5

the initial open network (see Figure 1). In this setting, if a job is rejected, it can be
represented in the closed network as the job being returned to the external queue.

We are now in a position to define both the original and aggregate MDPs for the
closed queueing network.

3.1 Original MDP
Let us model the problem as an MDP, Mo = (X o,Ao, P o, ro), where the superscript
o stands for “original” throughout the paper. We first use uniformization to see the
process in discrete time. The uniformization constant U (defined later, see Eq. (9))
is lower bounded by the sum of the rates: U ≥ λ +

∑N
i=1 µ

o
i . Thus, the time steps,

which will be indexed by t, follow a Poisson process with rate U , and events (arrivals,
services, routings and control actions) can only occur at these times. In the following
1/U will be seen as one time unit.

• The state space X o is the set of all tuples (x1, . . . , xN) given by the number of
jobs xi in each queue i.

• The action space is Ao := {0, 1} where 0 stands for rejection and 1 for admission.
• The transition matrix P o is simply constructed by using the routing matrix L,

the arrival rate λ and the service rates (µo
i)i.

• The mean rewards ro are constructed from the cost function. The immediate cost
for each state-action pair (x, a), is Bernoulli distributed. It is decomposed into:
- a deterministic part, 1

U (γhold
∑N

i=1 xi) (each present job incurs a cost γhold per
time unit),
- and a stochastic part, γreject(1 − a)1job-arrival (if a job arrives and the action is
reject).

To be consistent with the learning literature, where rewards are used instead of
costs, we first define rmax :=

λγreject+γholdS
U and for each state-action pair (x, a),

the reward are Bernoulli distributed with expected value

ro(x, a) := rmax −
λγreject(1− a) + γholds

U
=

λγrejecta+ γhold(S − s)

U
, (1)

where s :=
∑N

i=1 xi.
Let Πo := {π : X o → Ao} denote the set of stationary and deterministic policies. A

stationary policy π is a deterministic function from X o to Ao.
Then, the MDP evolves under π in the standard Markovian way. At each time-step

t, the system is in state xt, the controller chooses the action at = π(xt) and receives a
random reward whose expected value is ro(xt, at), and the system moves to state x′ at
time t+ 1 with probability P o(x′ | xt, at). The objective function is to minimize the
long run average cost.

The average reward induced by policy π is:

go(Mo, π) := lim
T→∞

1

T

T∑
t=1

E[ro(xt, π(xt))]. (2)

6

An optimal policy π∗ for the original MDP achieves the best average reward
go(Mo, π∗) = supπ∈Πo go(Mo, π).

3.2 Aggregate model
Let us define an aggregate MDP M = (S,A, P, r) where the network is replaced by a
single queue.

3.2.1 Norton equivalent queue

In this subsection, let us consider the system defined in Section 2 without control (all
jobs are admitted).

The stationary measure of the network can be connected to the stationary measure
of a birth-and-death process via Norton’s theorem of queueing networks [20], also
known in the literature as Flow Equivalent Server (FES) method [25]. When containing
S jobs, the vector of the number of jobs in each queue forms a continuous-time Markov
chain with stationary measure [25]

νo(x) =
1

G(S)

N∏
i=0

(
λo
i

µi

)xi

, (3)

for all x ∈ {x ∈ NN : |x| ≤ S}, where G(S) is a normalization constant, | · | denotes
the L1 norm and λo

i was defined in Section 2.
The construction of our equivalent queue works as follows:

1. Given the closed Jackson network above, consider the (closed) network where
queue 0 is short circuited (this means set µo

0 = ∞) and let µ(s) denote the
throughput2 of the network with s jobs in total (see Figure 2 for an illustration).

2. Consider the original network where all queues except 0 are all replaced by a
single queue that operates with rate µ(s) if it contains s jobs.

3. Then, ∑
x:|x|=s

νo(x) = ν(S − s, s), ∀s = 0, . . . , S (4)

where ν(S − s, s), for all s = 0, . . . , S, is the stationary measure of the reduced
network with two queues.

We remark that ν(S − s, s) is indeed the stationary measure of a birth-and-death
process with birth rate λ1s<S and death rate µ(s), a fact that will be key in the regret
analysis of our learning algorithm. In particular, we will use the following lemma, which
provides some known properties about the throughput function µ(s) [26].
Lemma 3.1. The throughput function s 7→ µ(s) is increasing, concave and bounded
by µmax :=

∑
i≤N µo

i .

2The throughput of a closed Jackson queueing network with s jobs is the rate at which jobs flow at a
reference queue (queue 0 in our case) and is defined by µ(s) :=

G(s−1)
G(s)

where G(s) is the normalizing
constant appearing in the product-form expression (3) of the stationary measure mo.

7

Norton equivalent queueJackson network

Figure 2: Illustration of Norton Equivalence theorem.

The throughput bound µmax can be significantly improved [25] but this will not
change the structure of our results.

3.2.2 Aggregate MDP

Notice that, in the original MDP Mo, the rewards do not depend on the state but only
on the number of jobs in the network, therefore, the Norton equivalent queue can also
be used to construct an equivalent MDP.

Define the simplified equivalent MDP M = (S,A, r, P).
• The state space S = {0, . . . , S} consists of all possible numbers of jobs in the

queueing network. We denote by S′ := S+1 the number of states of the aggregate
MDP.

• The actions are the same as for the original MDP: A = Ao = {0, 1} (reject or
accept).

• The original reward in (1) does not depend on the precise position of the jobs in
the network but only on their number. Therefore for s ∈ S and a ∈ A, we can
define the expected reward as

r(s, a) =
λγrejecta+ γhold(S − s)

U
. (5)

On a side note that anticipates on the future, we will use an upper bound on the
difference of expected rewards between two neighboring states δmax := γreject+

γhold

U .
We will use δmax instead of rmax (defined in Section 3.1) in the following derivation
of the regret, as δmax does not depend on S and this will help us gain a factor S
in the regret bound.

• The transition probabilities (Pπ) are defined as follows.
Let π be a policy (a function from S → A) on M . By convention, π will also be

seen as a policy in the original MDP Mo using the natural extension, i.e., if x ∈ So,
then π(x) := π(|x|). We can now define the transition matrix for policy π as the
transition matrix in the aggregate MDP M under the stationary measure νo,π:

P (s′ | s, π(s)) =
∑

x,|x|=s

∑
y,|y|=s′

νo,π(x)

νπ(s)
P o(y | x, π(x)), (6)

8

where νπ(s) =
∑

x,|x|=s ν
o,π(x) is the equivalent stationary measure. Under this

construction, these probabilities are those for the Norton equivalent queue. Also,
notice that the equivalent stationary measure νπ(s) is also the stationary measure
of the Norton equivalent queue with transition matrix Pπ under policy π.

Let Π := {π : S → A} denote the set of stationary and deterministic policies.
Definition 3.2. The average gain induced by policy π is:

g(M,π) := lim
T→∞

1

T

T∑
t=1

E[r(st, π(st))]. (7)

The optimal policy π∗ achieves

g(M,π∗) := g∗(M) := sup
π∈Π

g(M,π). (8)

3.3 Comparison between both MDPs
It should be clear that the original MDP Mo has a greater set of policies than
the aggregate MDP M because it has more states. Therefore, go(Mo, π∗) ≥ g∗(M).
However, if we only consider the set of policies in the original MDP Mo that take the
same action (reject or accept) in all the states with the same total number of jobs,
then optimal gains coincide. More precisely, let Πo

sum be the subset of policies in Mo

such that for all π ∈ Πo
sum, π(x) = π(y) if |x| = |y|. Then, the stationary measure on

Mo under any policy π in Πo
sum, and the stationary measure under π on M satisfy∑

x,|x|=s ν
o,π(x) = νπ(s). Therefore, we get for all π in Πo

sum,

go(Mo, π) =
∑
x

νo,π(x)ro(x, π(x))

=
∑
s

∑
x,|x|=s

νo,π(x)r(s, π(s))

=
∑
s

νπ(s)r(s, π(s)) = g(M,π).

Now taking the maximum over all policies in Πo
sum yields

max
π∈Πo

sum

go(Mo, π) = g∗(M).

When the full state is not observable, the best one can aim for is to learn
maxπ∈Πo

sum
go(Mo, π). Therefore, in the following we will consider the regret with

respect to this oblivious optimal gain g∗(M).

3.4 Bias and diameter
In the following, we will heavily use the bias [27] of a policy on M (although it
has no intuitive meaning relative to the original MDP) as well the diameter of the
aggregate MDP.

9

Definition 3.3 (Diameter of an MDP). Let π : S → A be a stationary policy of any
MDP M with initial state s. Let T (s′|M,π, s) := min{t ≥ 0 : st = s′|s0 = s} be the
random variable for the first time step in which s′ is reached from s under π. Then, we
say that the diameter of M is

D(M) := max
s ̸=s′

min
π:S→A

E [T (s′|M,π, s)] .

Again, let us point out that we will only consider the diameter on the aggregate
MDP for the computations, as it is needed to control the bias terms of the aggregate
MDP (see Appendix F). We will never need to consider the bias or the diameter of the
original MDP.

4 Reinforcement Learning
This section presents how reinforcement learning works in this context. The basic
idea is that the learner can observe the external behavior of the network but has no
information about its internal behavior. Despite this lack of information, it decides
which jobs to admit to eventually be as efficient as if it knew everything about the
system.

4.1 What does the learner know?
• The learner has some static information about the system. It knows an upper-

bound on the number of servers (N ≤ Nmax) inside the network and on their
service rates (∀i, µo

i < µmax
i). This means that the partial uniformization constant

U1 =
∑Nmax

i=1 µmax
i is known by the learner.

• The expected cost in state-action pair (s, a) is unknown as it depends on the
unknown parameter λ (see (5)). However, the cost parameters γreject and γhold
are known.

• On the dynamic side, the learner can observe the external events, i.e., the arrivals
and the departures of jobs. This implies that at any time t, the total number of
jobs in the system, st, is known to the learner and will be seen as the partially
observed state.

• The learning algorithm knows T , i.e., the number of time steps where it can take
observations and actions. Notice that this is not a strong requirement as one can
make the algorithm oblivious to T by using a classical doubling trick on T [5].

All these assumptions are either classical in reinforcement learning (as for example
the bounds on the parameters) or natural in this context.

4.2 When does the learner acts?
The queueing system evolves in continuous time. Its external events are the arrival
and departure processes. We assume that the learning algorithm is equipped with an
independent Poisson clock that ticks at rate U1. The algorithm will take decisions at
every tick of its own clock as well as at each arrival and departure.

10

Notice that since we assume that the network is a stable Jackson network, then,
under its stationary state, the arrival process and the departure process are both
Poisson with rate λ and independent (this is a classical property of stable Jackson
networks, see for example Corollary 5.7.3 in [28]). Therefore, the total point process
indicating when the learner acts forms a Poisson process with a unknown rate

U = 2λ+

Nmax∑
i=1

µmax
i . (9)

The rate U is used as the uniformization constant to see the continuous time MDP as
a discrete time one as in Section 3.

4.3 How do we measure the learner performance?
We will use the classical definition on the regret to assess the learning performance.
Definition 4.1 (Regret). The regret at time T of the learning algorithm L is

Reg(M,L, T) := Tg∗(M)−
T∑

t=1

rLt . (10)

Here, g∗(M) is the oblivious optimal gain defined in (8). The reward rLt is the
reward of the state visited at time t by the learning algorithm.

5 Learning Algorithm with Modules: UCRL-M

5.1 High-level description of the proposed algorithm
Our algorithm is episodic, model-based and optimistic. More precisely, the interactions
of the learner with the MDP Mo are decomposed into episodes. In each episode k,
spanning over the interval [tk, tk+1 − 1], one admission policy πk is used to control the
network and the learner observes the system (arrivals and departures) while collecting
rewards under πk. At the end of the episode, the estimation of the true transition
probabilities and rewards (the model), p̂k and r̂k respectively, as well as the confidence
region Mk are updated using the samples collected during the episode. This gives
p̂k+1, r̂k+1 and Mk+1. The next policy πk+1 is the best policy for the best MDP inside
the confidence region Mk+1 (optimism); with ‘best MDP’, we mean the MDP that is
returned by Extended Value Iteration (EVI) as discussed in Appendix B.

In our case with partial observations, the number of jobs at time t, (st)t≤T is not
Markovian, therefore it does not provide enough information to make good estimates
on the underlying MDP. Instead, we collect a set {s1, . . . , sτmix

} of observations and
try to learn using this extended information. If τmix is well chosen, i.e., larger than
the mixing time of the MDP, then each subsequence si, si+τmix

, si+2τmix
, . . . forms an

“almost” independent sequence and therefore can be used for statistical estimations.
Our learning algorithm is based on the following idea. It can be seen as a collection of

τmix learning algorithms L1, . . . ,Lτmix
, using respectively the subsequence (si+kτmix

)k∈N

11

of observations, which are called modules in the following. The behavior of the modules
in illustrated in Figure 3. Each learning module Li behaves similarly as the classical

• • • • • • • •
L1 L2 L3 L1 L2 L3 L1 L2

Figure 3: Illustration of the interleaving of the modules over time with τmix = 3.

optimistic algorithm described above. There are no interactions between modules except
for the number of visits that contributes to the construction of the global confidence
region, as detailed in Section 5.3. The main technical difficulties in the control of the
behavior of the algorithm are:

1. The learning modules L1, . . . ,Lτmix
are not independent of each other, so one

must be careful in assessing the interplay between the modules.
2. For each learning module Li, its own sequence of observations

si+τmix
, si+2τmix

, si+3τmix
, . . . is not really stationary and independent, but only

weakly correlated.

5.2 Number of modules: τmix

Let us first give a more precise definition of the modules, where their number τmix

is yet to be chosen carefully. At the beginning of the algorithm, each time-step t is
attributed a module mt, so that these modules form a partition of the time-steps. For
0 ≤ t ≤ τmix−1, the module mt is defined in the following way: first t ∈ mt, then we wait
τmix steps to add the next time-step to that module, so that t, t+τmix, t+2τmix, . . . ∈ mt,
until time-step T is reached. More formally one can identify, mt = t mod τmix.

The number of modules τmix is chosen using the following construction. Let us
consider the original MDP under any policy π, with stationary measure νo,π. There
exists C > 0, ρ ∈ (0, 1) such that:

max
π∈Π

sup
x0∈S

∥∥Po,π
x0

(xt = ·)− νo,π
∥∥
TV

≤ Cρt ∀t > 0, (11)

where Po,π
x0

(xt = ·) is the distribution of the state at time t under policy π in the
original MDP, with starting state x0. Let us then define

τmix := ⌈5 log T/ log ρ−1⌉. (12)

The reason for this precise choice will appear in the analysis of the regret (see Section 6)
but the general idea behind this choice comes from Lemma D.1 given in appendix, that
basically says that after τmix steps, the correlation between the state at time t and the
state at time t+ τmix, under any policy, is smaller than C ′ρτmix , where C ′ is a constant.

12

The fact that the number of modules used by the algorithm depends on ρ can be
seen as a weakness of our approach because it means that the learner needs to know a
priori a bound on the mixing time of the unknown MDP. This point will be addressed
in Section 7.

5.3 Confidence region
As mentioned earlier, our learning algorithm relies on the “Optimism in face of uncer-
tainty” principle. Here, we provide the explicit construction of a confidence region Mk

based on the observations, which depends on the visit counts. For each state-action
pair (s, a) and each module m, let N

(m)
tk

(s, a) be the cumulative number of visits to
(s, a) at all times t = m mod τmix smaller than tk, and excluding the visits during the
ramping phases Φ (see the UCRL-M algorithm).

We also define the most frequent module for each state-action pair (s, a): Let mk(s, a)
be a module with the highest visit count until episode k,

mk(s, a) ∈ argmax
m

N
(m)
tk

(s, a), (13)

so that for this module, the empirical observations are the most accurate, and we can
relate the number of observations for this module to the total number of visits Ntk(s, a)

of the pair (s, a) with the inequality: N (mk(s,a))
tk

(s, a) ≥ 1
τmix

Ntk(s, a).

To define the confidence region Mk, first define r̂
(m)
k and p̂

(m)
k the empirical reward

and transition estimates in module m:

p̂
(m)
k (s′|s, a) :=

∑tk−1
t=1 1{st=s,at=a,st+1=s′,mt=m}1{t/∈Φ}

max
{
1, N

(m)
tk

(s, a)
} (14)

r̂
(m)
k (s, a) := p̂

(m)
k (s+ 1|s, a)γreject + γhold

S − s

U
, (15)

where Φ is the set of the time steps in the ramping phases defined in the algorithm.
Mk is the confidence set of MDPs whose rewards r̃ and transitions p̃ satisfy:

∀(s, a),
∣∣∣r̃(s, a)− r̂

(mk(s,a))
k (s, a)

∣∣∣ ≤ δmax

√√√√ 2 log (2Atk)

max
{
1, N

(mk(s,a))
tk

(s, a)
} ; (16)

∀(s, a), ∥p̃(· | s, a)− p̂
(mk(s,a))
k (· | s, a) ∥1 ≤

√
8 log (2Atk)

max{1, N (mk(s,a))
tk

(s, a)}
. (17)

Notice that for each state-action pair (s, a), we only need the empirical reward and
transition estimates for the module mk(s, a): this means that the confidence region
Mk is built from the comparison between modules from (13), and we do not build a
specific confidence region for each module.

The algorithm, formally defined below, finds the best optimistic MDP and policy
within this confidence set using Extended Value Iteration, and executes the policy on

13

the true MDP until the stopping criterion is met, that is when for any module m the
number of visits V

(m)
k (s, a) in the current episode of a state-action pair (s, a) reaches

the number of visits of this pair and module until time tk. More formally, if at episode
k we choose the policy π̃k, then the stopping criterion gives the following guarantee:

∀(s,m) V
(m)
k (s, π̃k(s)) ≤ max{1, N (m)

tk
(s, π̃k(s))}. (18)

5.4 UCRL-M: learning with τmix modules
We are now in a position to give our learning algorithm, UCRL-M (Upper Confidence
Reinforcement Learning with several Modules), in Algorithm 1. First, the algorithm
initializes the different modules. Here, for each episode k and module m, it computes
the empirical estimates of the reward and probability transition as in (15) and (14).
Then, it applies Extended Value Iteration (EVI) (Appendix B) to find a policy π̃k

and an optimistic MDP M̃k ∈ Mk according to (19). Finally, to explore the MDP
at episode k, it first iterates on the MDP over τmix time-steps and discards these
samples (ramping phase) to start the observations closer to the stationary distribution
of the current policy. This phase is necessary to guarantee that observations within a
module are nearly independent. Afterwards, UCRL-M explores the true MDP with the
optimistic policy π̃k and updates the empirical estimates with its observations.

The episode ends when the stopping criterion (18) is met. The next optimistic
policy for the episode k + 1 is found with respect to the observations inducing the
confidence region Mk that is built using all modules (see (17)).

Algorithm 1: The UCRL-M algorithm.
Input: S and A.

1 Set t = 0, k = 0;
2 while t ≤ T do

3 Initialize episode k with tk := t;
4 Compute for all (s, a) the modules mk(s, a) according to (13);
5 Compute the confidence region Mk as in (17);
6 Find a policy π̃k and an optimistic MDP M̃k ∈ Mk with “Extended Value

Iteration” such that

g(M̃k, π̃k) ≥ max
Mk∈Mk

max
π

g(Mk, π)−
δmax√
tk

. (19)

7 Ramping phase (Φ): Iterate the MDP with policy π̃k for τmix time-steps,
discard the observations and set t := t+ τmix.

8 Exploration: while criterion (18) is true do
1. Use policy π̃k; // choose action at = π̃k(st) and observe state st+1;
2. Set t := t+ 1;

9 end
10 k := k + 1;

11 end

14

5.5 Time complexity of UCRL-M
Proposition 1. The time complexity of UCRL-M is O(KSτmix +Ktevi + T), where
K is the number of episodes and tevi the time complexity of extended value iteration.
Furthermore, E(K) = O(log T).

Proof. The time complexity of lines 5 and 6 is O(KSτmix). The complexity of line
7 is O(Ktevi). The complexity of line 8 is O(Kτmix). The complexity of line 9 is
O(T − Kτmix), the number of useful observations. As for the expected number of
episodes, EK = O(log T) because of the doubling trick used to end the episodes (see
[5] for example).

Note that the total number of useful samples (excluding the steps made during the
ramping phases) is T −Kτmix, and each module uses T−Kτmix

τmix
samples. As for the

time complexity of EVI, each iteration of EVI is O(S3) and the number of iterations
depends on the starting point and is more difficult to estimate. In total, the time
complexity does not really depend on τmix or tevi that only appears at the beginning
of each episode, and the number of episodes is small w.r.t. T .

6 Regret of UCRL-M

6.1 Main result
Let us recall that S is the global bound on the number of jobs, S′ = S + 1 is the
number of states, γreject is the rejection cost, γhold is the unit-time holding cost and D
is the diameter of the aggregate MDP. Also, νπ

max

(s) is the stationary measure in the
aggregate MDP under the policy that accepts all jobs, ρ ∈ (0, 1) is such that (11) holds
true and µ(i) is the service rate in the aggregate MDP when i jobs are in the system.

Define the constant C1 :=
∏i0−1

i=1
µ(i0)
µ(i) ≥ 1, where i0 is chosen such that µ(i0) > λ.

We notice that i0 exists because the open (unconstrained) network defined in Section 2
is assumed to be stable (see Section 2) regardless of S. Hence, the flow equivalent
queue is also stable regardless of S. Define also C2 :=

(λγreject+γhold)C1

µ(1)(1−λ/µ(i0))
.

Theorem 6.1. Let M ∈ M. Define Qmax :=
(

10C2S
′2

νπmax (S)

)2
log

((
10C2S

′2

νπmax (S)

)4)
. Define

also the constant κ = 228(γreject +
γhold

U) U
µ(1)C1

(
1−

√
λ

µ(i0)

)−3

. For the choice τmix =

5 log T
log 1/ρ and A = 2, and assuming τmixS ≥ 2 and T > max

{
e2

4T , τmix

}
, it holds that

E [Reg(M,UCRL-M, T)] ≤ κ log (2T)

√
T log−1(1/ρ) +RLO, (20)

where RLO := 138rmaxD
2 max

{
Qmax, T

1/4
} log4(4T)

log2 1/ρ
is a lower order term of the regret.

Before diving into the proof, which involves many technical points, let us comment
on our result. In contrast with most bounds from the literature, the most remarkable

15

point is that both the diameter and the size of the state space do not appear in our
bound. These are both replaced by log−1/2(1/ρ).

Although we do not know any explicit bounds on ρ for all possible networks, it is
quite reasonable to predict that log−1/2(1/ρ) can be of order

√
S. In fact, this can be

shown for acyclic networks as well as for hyper-stable networks as it will be shown in
Section 7.

This implies that the regret of UCRL-M is Õ(
√
ST), which is a major improvement

over the best bound for general MDPs, namely Õ(
√
DSAT). This further confirms the

fact that exploiting the structure of the learned system actually leads to more efficient
algorithms as well as tighter analysis of their performance.

6.2 Outline of the proof
To compute the expected regret E[Reg], we will mainly follow the strategy from [5,
Section 4]. First, we deal with the regret term corresponding to the initialization phase
of each episode, which depends in the number of episodes. Then, for each episode k,
we consider the case where the true MDP M does not belong to the confidence region
Mk, and use concentration inequalities along with the independence Lemma D.1 to
show that this regret term will remain low. Then, we consider the case where the true
MDP belongs to the confidence region, and for each episode, we split the regret into
relevant comparisons. Here, we expose terms depending on the difference of rewards and
transitions between the true and optimistic MDPs, terms depending on the difference
of biases, a term depending on the number of episodes and a term coming from the
the computation of the optimistic policy and MDP with EVI.

To achieve the first split, we need to define: R(m)
k (s) :=

∑
a V

(m)
k (s, a)(ρ∗ − r(s, a))

the regret at episode k induced by state s in module m, with V
(mt)
k (s, a) the number

of visit of (s, a) during episode k in module m. We split the regret into terms where
the true MDP belongs to the confidence region, terms where it does not, and the terms
from initializing the episodes:

E [Reg] ≤ E [Rin] + E [Rout] + E [Rramp] (21)

with K the number of episodes and the regret where the MDP is in the confi-
dence region being Rin :=

∑
m

∑
s

∑K
k=1 R

(m)
k (s)1M∈Mk

, and when it is outside
Rout :=

∑
m

∑
s

∑K
k=1 R

(m)
k (s)1M/∈Mk

and the regret of the ramping phases Rramp =∑
k

∑tk+τmix−1
t=tk

r(st, π̃k(s, t)). Each term is then bounded as explained in Appendix A.

7 Controlling the regret bound parameter ρ

The efficiency of UCRL-M is critically based on controlling τmix and ρ. In particular,
Theorem 6.1 says that the regret of UCRL-M depends on W := log−1/2(1/ρ).

16

7.1 Bounds using mixing and coupling times
In Section 5, the number of modules τmix is defined as τmix := 5 log T/ log ρ−1. where
ρ is such that

max
π

sup
x0∈S

∥∥Po,π
x0

(xt = ·)− νo(π)
∥∥
TV

≤ Cρt ∀t > 0. (22)

Let us first recall classical results from Markov chain theory [29] relating ρ with
the mixing and coupling time of a Markov chain. Let us consider any Markov chain
with transition matrix P and stationary distribution ν (in our case, consider the
Markov chain under the policy that attains the maximum in (22)). Let us define
d(t) := supx0∈S ∥Px0(xt = ·)− ν∥TV . Then, the mixing time of the chain is defined as
tmix := min{t : d(t) ≤ 1/4}.

A classical bound on ρ is then obtained by using the mixing time:

ρ ≤ 1

2t
−1
mix

(23)

This implies that W ≤
√

tmix log(2).
Another bound on ρ can be obtained by using the coupling time. The coupling

time is τx,y := min{t : Xt = Yt}. If Xt and Yt are coupled and start at X0 = x and
Y0 = y respectively. Then, d(t) ≤ maxx,y P(τx,y > t). By using Markov inequality, this
implies that

tmix ≤ 4max
x,y

E[τx,y]. (24)

Therefore, a bound on the expected coupling time translates into a bound on ρ.

7.1.1 Acyclic networks

In our model, if the queueing network is acyclic, then the coupling time is controllable
because whenever a queue couples it stays coupled forever.

More precisely, since the total number of states in the network increases with the
admission threshold, the threshold policy under which the coupling time is the largest
is when all jobs are admitted. Under this policy, by monotonicity, the coupling time
is upper bounded by the coupling in an open network where all the N queues have
buffers bounded by S. In this case, the coupling time has been studied in [30, Theorem
5.3], where the following result is proved in the stable case. Using our notation,

max
x,y

E[τx,y] ≤
N∑
i=1

U2

(λo
i + µo

i)(µ
o
i − λo

i)
S, (25)

where U is the uniformization constant and (λi)i≤N is the solution of the traffic
equations.

According to Equations (23) and (24), this induces the following bound on the term
W in the regret:

W ≤ κ0

√
NS,

17

where κ0 is a constant: κ0 = maxi
∑N

i=1
U

λo
i+µo

i
.

7.1.2 Hyperstable networks

This is another type of networks for which an explicit bound on the coupling time
exists. A network is called hyperstable if for each queue i,

∑
j Ljiµ

o
j + L0iλ < µo

i .
As in the acyclic case, the threshold policy under which the coupling time is the

largest is when all jobs are admitted. Under this policy, as for the acyclic case, the
coupling time is upper bounded by the coupling in an open network where all the N
queues have buffers bounded by S.

Coupling times of hyperstable networks with finite buffer queues have been studied
in [31], where the following bound is given (Theorem 2):

max
x,y

E[τx,y] ≤ κ2N
2S

N∑
i=1

λo
i

µo
i − λo

i

, (26)

where κ2 is a constant. Using Equations (23) and (24), this induces a similar bound
on the term W in the regret:

W ≤ κ3N
√
S,

where κ3 is yet another constant.

7.2 Making the algorithm oblivious to ρ

By construction, the current version of UCRL-M uses explicitly τmix = 5 log T/ log ρ−1

modules. This can be a problem as it implies an a priori knowledge of ρ, and of the
mixing time (or at least an upper bound) of the network being learned.

These types of assumptions are sometimes made in the reinforcement learning
literature. For example, the UCBVI algorithm [32] requires the knowledge of the
diameter of the MDP being learned.

Here, we can patch UCRL-M to make it oblivious to ρ by making sure that τmix ≥
5 log T/ log ρ−1 for any large enough T . For example, one can chose τmix := log2(T),
as it is asymptotically larger than the previous one. This patch adds a multiplicative
log(T) term in the asymptotic bound of the regret given in Theorem 6.1.

8 Numerical experiments

8.1 A multi-tier queueing network
To assess the performance of UCRL-M, we rely on a standard multi-tier queueing
network as displayed in Figure 4. The topology of this network is composed of three
tiers. Namely, tiers 1, 2 and 3 represent the web, application and database stages of a
typical web-application request. Each tier is composed of multiple servers, each with
its own queue. After accessing the web tier, a request may either return back to the
issuing user with probability 1− p or flow through the application and database tiers.
This multi-tier structure is common in empirical studies of computer systems [33] and

18

is the default architecture of web applications deployed on Amazon Elastic Compute
Cloud (EC2) [34].

Controller

1/n

λ

S − s jobs outside

reject

1/n

1/n

p/n

1− p

admit

Figure 4: A queueing network model with three interconnected tiers. Each tier contains
n queues and the total capacity is of S jobs.

This model may be studied as an example of the generic case described in Section 2.
Notice that given the routing from Figure 4, the stability condition is met if λ

1−p < µ,
where µ = µo

1 = . . . = µo
3n is the service rate of the queues in the network.

8.2 Regret of UCRL-M on the multi-tier queueing network
We provide the performance of UCRL-M over the queueing network described above
when the number of queues per tier n and the total number of jobs S vary. In Figure 5,
we display the average regret over 66 runs of the UCRL-M algorithm when n varies,
and with parameters scaling with n to keep the systems proportionally comparable.
More precisely, the scaling in S and µ is such that as the number of queues increases,
the waiting time in each tier remains roughly identical for a job in each tier, and the
scaling in the holding cost is also consistent with the increase of the number of jobs in
the system. Notice that for our choice of parameters, the network is not stable, so that
we use the UCRL-M algorithm under more general conditions than those assumed in
Section 7 and even in Section 2.

19

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps ×107

0.0

0.5

1.0

1.5

2.0

R
eg

re
t

×106

Regret with 3 queues per tier

Regret with 6 queues per tier

Regret with 12 queues per tier

Regret with 24 queues per tier

Parameter Value

S 10
3 n

λ 0.99

µ 1
n

γreject 10

γhold
4
3n

U λ+ 3nµ

p 0.2

τmix 3

Figure 5: Regret of the UCRL-M algorithm on the queueing network for different
values of n and scaling parameters.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps ×107

0

10

20

30

40

50

60

70

80

T
h

re
sh

ol
d

Policy with 3 queues per tier

Policy with 6 queues per tier

Policy with 12 queues per tier

Policy with 24 queues per tier

Optimal thresholds

(a) Average threshold over time.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps ×107

0

10

20

30

40

50

60

70

80
T

h
re

sh
ol

d
Policy with 3 queues per tier

Policy with 6 queues per tier

Policy with 12 queues per tier

Policy with 24 queues per tier

Optimal thresholds

(b) Cesarò sum of the average threshold.

Figure 6: Comparison between the average threshold and its Cesarò sum.

In Figure 5, we remark that as we let the number of queues n (and the number
of jobs S) scales multiplicatively, the regret increases as log(S). Knowing that the
dependency in S of the regret bound from Theorem 6.1 mainly comes from ρ, this is
much slower than the square root bounds given in Section 7 (under strong assumptions).
This can be interpreted as the bound of Equation (22) being too large as it considers
the mixing from the worst state, while on average it is more likely for the algorithm to
mix from states that are visited the most, which are already close to stationary states.

We see in Figure 6 that the chosen policy does not converge to the optimal threshold,
as the algorithm needs to ensure exploration phases. Its Cesarò sum however does

20

converge to the optimal threshold, for each value of n. It suggests that the optimal
threshold is scaling linearly with n, and that the convergence is slower as S increases.

In the previous experiments, the number of modules is arbitrarily fixed to τmix = 3.
Now, we perform another experiment to observe the dependency of the regret in the
choice of τmix for this queueing system. The intuition is the following: as explained
in the high-level description of the algorithm in Subsection 5.1, UCRL-M could be
compared to τmix instances of UCRL2 [5], where all modules but the best one is
discarded at each episode. This best module runs on roughly T

τmix
time-steps, and

its regret can be compared to 1
τmix

times the expected regret of UCRL-M. With this
intuition in mind, we plot in Figure 7 the regret of UCRL-M, where we rescaled both
the regret and the time-steps by a factor 1

τmix
.

0.0 0.2 0.4 0.6 0.8 1.0

Rescaled Time-steps ×107

0

50000

100000

150000

200000

R
es

ca
le

d
R

eg
re

t

Rescaled UCRL-M regret with τmix = 1

Rescaled UCRL-M regret with τmix = 2

Rescaled UCRL-M regret with τmix = 3

Rescaled UCRL-M regret with τmix = 6

Parameter Value

S 20

n 6

λ 0.99

µ 1
n

γreject 10

γhold
4
3n

U λ+ 3nµ

p 0.2

Figure 7: Rescaled regret of the UCRL-M algorithm on the queueing network for
different values of τmix.

Within the considered queueing model, we notice that the modules do not seem
to bring any practical upside because the regret is almost perfectly linear in the
number of modules. In this particular example, the observations behave as if they were
independent even if the algorithm only uses a single module. Intuitively, the system
remains close to stationarity despite the policy changes, which could explain the limited
effect of the modules. However, they remain necessary to guarantee the correctness of
the confidence sets and to get the theoretical bound on the regret given in Theorem 6.1.

21

9 Conclusion
In the context of queueing networks, we have shown that efficient learning in POMDPs
is possible. Provided that the learner’s objective is to learn the optimal admission
control policy, which is a problem appearing in a number of applications as discussed
in Section 2, we have proposed UCRL-M, an optimistic algorithm whose regret is
independent of the diameter D, i.e., a quantity that appears in most of the existing
regret analyses [5] and that is exponential in the size of the space S in most queueing
systems.

While our result strongly relies on Norton’s equivalence theorem, which only applies
exactly to product-form queueing networks, our main perspective is that this type of
results under partial observations may be found in several other models from queueing
theory. In fact, Norton’s theorem has been generalized to multiclass networks [35]
and also used in the context of non-product-form queueing networks for approximate
analysis [25, 36].

References
[1] Walkins, C.J.: Learning from delayed rewards. PhD thesis, Cambridge University

(1989)

[2] Jin, C., Yang, Z., Wang, Z., Jordan, M.I.: Provably efficient reinforcement learning
with linear function approximation. In: Abernethy, J., Agarwal, S. (eds.) Proceed-
ings of Thirty Third Conference on Learning Theory. Proceedings of Machine
Learning Research, vol. 125, pp. 2137–2143 (2020). https://proceedings.mlr.press/
v125/jin20a.html

[3] Ouyang, Y., Gagrani, M., Nayyar, A., Jain, R.: Learning unknown Markov decision
processes: A Thompson sampling approach. arXiv preprint arXiv:1709.04570
(2017)

[4] Ouyang, Y., Gagrani, M., Nayyar, A., Jain, R.: Learning unknown markov deci-
sion processes: A thompson sampling approach. In: 31st Conference on Neural
Information Processing Systems, Long Beach, CA, USA (2017)

[5] Jaksch, T., Ortner, R., Auer, P.: Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research 11(4), 1563–1600 (2010)

[6] Fruit, R., Pirotta, M., Lazaric, A., Ortner, R.: Efficient bias-span-constrained
exploration-exploitation in reinforcement learning (2018)

[7] Tossou, A., Basu, D., Dimitrakakis, C.: Near-optimal Optimistic Reinforcement
Learning using Empirical Bernstein Inequalities (2019). https://doi.org/10.48550/
ARXIV.1905.12425 . https://arxiv.org/abs/1905.12425

[8] Wei, C.-Y., Jahromi, M.J., Luo, H., Sharma, H., Jain, R.: Model-free Reinforcement
Learning in Infinite-horizon Average-reward Markov Decision Processes. In: III,

22

https://proceedings.mlr.press/v125/jin20a.html
https://proceedings.mlr.press/v125/jin20a.html
https://doi.org/10.48550/ARXIV.1905.12425
https://doi.org/10.48550/ARXIV.1905.12425
https://arxiv.org/abs/1905.12425

H.D., Singh, A. (eds.) Proceedings of the 37th International Conference on Machine
Learning. Proceedings of Machine Learning Research, vol. 119, pp. 10170–10180
(2020). https://proceedings.mlr.press/v119/wei20c.html

[9] Jin, C., Kakade, S., Krishnamurthy, A., Liu, Q.: Sample-efficient reinforcement
learning of undercomplete pomdps. In: Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems,
vol. 33, pp. 18530–18539 (2020)

[10] Azizzadenesheli, K., Lazaric, A., Anandkumar, A.: Reinforcement learning of
POMDPs using spectral methods. In: COLT. JMLR Workshop and Conference
Proceedings, vol. 49, pp. 193–256 (2016)

[11] Guo, Z.D., Doroudi, S., Brunskill, E.: A PAC RL algorithm for episodic pomdps.
In: AISTATS. JMLR Workshop and Conference Proceedings, vol. 51, pp. 510–518
(2016)

[12] Papadimitriou, C.H., Tsitsiklis, J.N.: The complexity of markov decision processes.
Math. Oper. Res. 12(3), 441–450 (1987)

[13] Vlassis, N., Littman, M.L., Barber, D.: On the computational complexity of
stochastic controller optimization in pomdps. ACM Trans. Comput. Theory 4(4)
(2012) https://doi.org/10.1145/2382559.2382563

[14] Even-Dar, E., Kakade, S.M., Mansour, Y.: Reinforcement learning in POMDPs
without resets. In: Proceedings of the 19th International Joint Conference on
Artificial Intelligence. IJCAI’05, pp. 690–695, San Francisco, CA, USA (2005)

[15] Ross, S., Chaib-draa, B., Pineau, J.: Bayes-adaptive POMDPs. In: Platt, J.,
Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Pro-
cessing Systems, vol. 20 (2007). https://proceedings.neurips.cc/paper/2007/file/
3b3dbaf68507998acd6a5a5254ab2d76-Paper.pdf

[16] Poupart, P., Vlassis, N.A.: Model-based bayesian reinforcement learning in partially
observable domains. In: International Symposium on Artificial Intelligence and
Mathematics (2008)

[17] Anselmi, J., Gaujal, B., Rebuffi, L.-S.: Reinforcement Learning in a Birth and
Death Process: Breaking the Dependence on the State Space. In: NeurIPS 2022 -
36th Conference on Neural Information Processing Systems, New Orleans, United
States (2022). https://hal.science/hal-03799394

[18] Borgs, C., Chayes, J., Doroudi, S., Harchol-Balter, M., Xu, K.: The op-
timal admission threshold in observable queues with state dependent pric-
ing. In: Probability in the Engineering and Informational Sciences 28,
pp. 101–110 (2014). https://www.microsoft.com/en-us/research/publication/
optimal-admission-threshold-observable-queues-state-dependent-pricing/

23

https://proceedings.mlr.press/v119/wei20c.html
https://doi.org/10.1145/2382559.2382563
https://proceedings.neurips.cc/paper/2007/file/3b3dbaf68507998acd6a5a5254ab2d76-Paper.pdf
https://proceedings.neurips.cc/paper/2007/file/3b3dbaf68507998acd6a5a5254ab2d76-Paper.pdf
https://hal.science/hal-03799394
https://www.microsoft.com/en-us/research/publication/optimal-admission-threshold-observable-queues-state-dependent-pricing/
https://www.microsoft.com/en-us/research/publication/optimal-admission-threshold-observable-queues-state-dependent-pricing/

[19] Xia, L.: Event-based optimization of admission control in open queueing networks.
Discrete Event Dynamic Systems 24(2), 133–151 (2014) https://doi.org/10.1007/
s10626-013-0167-1

[20] Chandy, K.M., Herzog, U., Woo, L.: Parametric analysis of queuing networks.
IBM Journal of Research and Development 19(1), 36–42 (1975) https://doi.org/
10.1147/rd.191.0036

[21] Rolia, J.A., Sevcik, K.C.: The method of layers. IEEE Transactions on Software
Engineering 21(8), 689–700 (1995) https://doi.org/10.1109/32.403785

[22] Rolia, J., Casale, G., Krishnamurthy, D., Dawson, S., Kraft, S.: Predictive mod-
elling of SAP ERP applications: Challenges and solutions. VALUETOOLS ’09,
Brussels, BEL (2009). https://doi.org/10.4108/ICST.VALUETOOLS2009.7988 .
https://doi.org/10.4108/ICST.VALUETOOLS2009.7988

[23] Configuring Concurrency in Knative. https://knative.dev/docs/serving/
autoscaling/concurrency/. Online; accessed: 2023-01-30 (2022)

[24] Wang, R., Casale, G., Filieri, A.: Estimating multiclass service demand distri-
butions using markovian arrival processes. ACM Trans. Model. Comput. Simul.
(2022) https://doi.org/10.1145/3570924

[25] Krieger, U.R.: Queueing networks and markov chains, 2nd edition by g. bolch,
s. greiner, h. de meer, and k.s. trivedi. IIE Transactions 40(5), 567–568 (2008)
https://doi.org/10.1080/07408170701623187

[26] Kameda, H.: A property of normalization constants for closed queueing networks.
IEEE Transactions on Software Engineering SE-10(6), 856–857 (1984) https:
//doi.org/10.1109/TSE.1984.5010314

[27] Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic
Programming, (2014)

[28] Ross, S.: Stochastic Processes. Wiley series in probability and mathematical
statistics. Wiley, ??? (1983)

[29] Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times, (2008)

[30] Dopper, J.G., Gaujal, B., Vincent, J.-M.: Bounds for the coupling time in queueing
networks perfect simulation. In: Langville, A.N., Stewart, W.J. (eds.) MAM, 150th
Anniversary of A.A. Markov, Charleston, SC (2006)

[31] Anselmi, J., Gaujal, B.: Efficiency of simulation in monotone hyper-stable queue-
ing networks. Queueing Systems 76(1), 51–72 (2014) https://doi.org/10.1007/
s11134-013-9357-7

[32] Azar, M.G., Osband, I., Munos, R.: Minimax regret bounds for reinforcement

24

https://doi.org/10.1007/s10626-013-0167-1
https://doi.org/10.1007/s10626-013-0167-1
https://doi.org/10.1147/rd.191.0036
https://doi.org/10.1147/rd.191.0036
https://doi.org/10.1109/32.403785
https://doi.org/10.4108/ICST.VALUETOOLS2009.7988
https://doi.org/10.4108/ICST.VALUETOOLS2009.7988
https://knative.dev/docs/serving/autoscaling/concurrency/
https://knative.dev/docs/serving/autoscaling/concurrency/
https://doi.org/10.1145/3570924
https://doi.org/10.1080/07408170701623187
https://doi.org/10.1109/TSE.1984.5010314
https://doi.org/10.1109/TSE.1984.5010314
https://doi.org/10.1007/s11134-013-9357-7
https://doi.org/10.1007/s11134-013-9357-7

learning. In: International Conference on Machine Learning, pp. 263–272 (2017)

[33] Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., Tantawi, A.: An analytical
model for multi-tier internet services and its applications. SIGMETRICS Perform.
Eval. Rev. 33(1), 291–302 (2005) https://doi.org/10.1145/1071690.1064252

[34] AWS Architecture Center. https://aws.amazon.com/architecture. Online; accessed:
2023-06-19 (2022)

[35] Kritzinger, P.S., van Wyk, S., Krzesinski, A.E.: A generalisation of norton’s
theorem for multiclass queueing networks. Performance Evaluation 2(2), 98–107
(1982) https://doi.org/10.1016/0166-5316(82)90002-5

[36] Anselmi, J., Casale, G., Cremonesi, P.: Approximate solution of multiclass queuing
networks with region constraints. In: 2007 15th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems,
pp. 225–230 (2007). https://doi.org/10.1109/MASCOTS.2007.10

[37] Bhandari, J., Russo, D., Singal, R.: A finite time analysis of temporal difference
learning with linear function approximation. In: Bubeck, S., Perchet, V., Rigollet,
P. (eds.) Proceedings of the 31st Conference On Learning Theory. Proceedings of
Machine Learning Research, vol. 75, pp. 1691–1692 (2018). https://proceedings.
mlr.press/v75/bhandari18a.html

[38] Ipsen, I.C.F., Meyer, C.D.: Uniform stability of markov chains. SIAM Journal on
Matrix Analysis and Applications 15, 1061–1074 (1994)

25

https://doi.org/10.1145/1071690.1064252
https://doi.org/10.1016/0166-5316(82)90002-5
https://doi.org/10.1109/MASCOTS.2007.10
https://proceedings.mlr.press/v75/bhandari18a.html
https://proceedings.mlr.press/v75/bhandari18a.html

Appendix A Proof of Theorem 6.1
The proof of Theorem 6.1 is quite cumbersome and is decompsed into many lemmas.
The scheme in Figure A1 gives an overall picture of the interactions between them.

Th. 6.1

A.1A.2 A.3 A.4 A.5 A.6 A.7

D.1

D.2

C.2

C.3

B.1

E.1

E.2 E.3

E.4

E.5

E.6

F.1 F.3

F.4

Figure A1: Dependencies in the proof of Theorem 6.1

A.1 Terms for the ramping phases
We first briefly deal with the terms coming from the ramping phases Φ of the episodes,
Rramp. We have:

Rramp =
∑
k

tk+τmix−1∑
t=tk

r(st, π̃k(s, t)) ≤ Kτmixrmax ≤ rmaxSAτ2mix log2

(
8T

SAτmix

)
,

(A1)
where in the last inequality we used Lemma C.2. Assuming τmixSA ≥ 4, and using
log(2) ≥ 1

2 , we rewrite it:

Rramp ≤ 2rmaxSAτ2mix log(2T). (A2)

This term is therefore among the lower-order terms of the regret.

A.2 Terms in the confidence bound
We start with the terms coming from the case where the MDP is out of the confidence
regions Mk. For each episode k, we define:

• V
(m)
k (s) the number of visits to state s during episode k in module m.

• N
(m)
t (s) is the number of visits to state s until time-step t excluded, in module m.

26

• M(t) the set of MDPs Mk such that tk ≤ t < tk+1

For the terms out of the confidence sets, we have:

Rout ≤ rmax

∑
m

∑
s

K∑
k=1

V
(m)
k (s)1M/∈Mk

≤ rmax

∑
m

∑
s

K∑
k=1

N
(m)
tk

(s)1M/∈Mk
using the stopping criterion

= rmax

T∑
t=1

∑
s

K∑
k=1

1tk=tNt(s)1M/∈M(t) ≤ rmax

T∑
t=1

∑
s

Nt(s)1M/∈M(t)

= rmax

T∑
t=1

1M/∈M(t)

∑
s

Nt(s) ≤ rmax

T∑
t=1

t1M/∈M(t).

We now need Lemma D.2 to control the probability that the MDP fails to be within
the confidence bounds P {M /∈ M(t)}. Taking the expectations and using Lemma D.2,
we obtain

E [Rout] ≤ rmax

T∑
t=1

tP {M /∈ M(t)} ≤ rmax

T∑
t=1

S′ + 16CS′A

2t2
≤ rmax(S

′ + 16CS′A).

(A3)

This term is constant in T and therefore it does not significantly contribute to the
regret.

A.3 Split of confidence bound
We assume that M ∈ Mk and to simplify the notations, we will omit the use of the
indicator functions 1M∈Mk

. For each episode k and module m, let us define
• R

(m)
in,k :=

∑
s R

(m)
k ,

• π̃k the optimistic policy,
• P̃k := (p̃k(s

′|s, π̃k(s))) the transition matrix of policy π̃k on the optimistic MDP
M̃k,

• v
(m)
k := (Vk(s, π̃k) the row vector of visit counts,

• hk the bias vector of the Markov chain in the true MDP M with policy π̃k.
Now, we split the regret term R

(m)
in into subterms that have different meaning. Assuming

M ∈ Mk and using Lemma B.1 on the accuracy of EVI, we get:

R
(m)
in,k =

∑
s,a

V
(m)
k (s, a)(g∗ − r(s, a))

≤
∑
s,a

V
(m)
k (s, a)(g̃k − r(s, a)) + εk

∑
s,a

V
(m)
k (s, a)

27

=
∑
s,a

V
(m)
k (s, a)(g̃k − r̃k(s, a)) +

∑
s,a

V
(m)
k (s, a)(r̃k(s, a)− r(s, a) + εk).

In the next few steps, we will focus on rewriting the first sum. With (B18) and using the
definition of the iterated values from EVI, we have for a given state s and as := π̃k(s):∣∣∣∣∣(g̃k − r̃k(s, as))−

(∑
s′

p̃k(s
′|s, as)u(k)

i (s′)− u
(k)
i (s)

)∣∣∣∣∣ ≤ εk,

so that:

R
(m)
in,k ≤ v

(m)
k

(
P̃k − I

)
ui +

∑
s,a

V
(m)
k (s, a)(r̃k(s, a)− r(s, a)) + εk

∑
s,a

V
(m)
k (s, a).

Again, with h̃k being the bias of the average optimal policy for the optimist MDP,
define:

dk(s) :=
(
u
(k)
i (s)−min

x
u
(k)
i (x)

)
−
(
h̃k(s)−min

x
h̃k(x)

)
.

Then for any s: |dk(s)| ≤ εk.

Notice that the unit vector is in the kernel of
(
P̃k − I

)
. Therefore, in the first term,

we can replace ui by any translation of it. We get:

v
(m)
k

(
P̃k − I

)
ui = v

(m)
k

(
P̃k − I

)
h̃k + v

(m)
k

(
P̃k − I

)
dk.

so that, using the definition of εk, we have that overall:

R
(m)
in ≤

∑
k

v
(m)
k

(
P̃k − I

)
h̃k︸ ︷︷ ︸

R
(m)
bias

+
∑
k

v
(m)
k

(
P̃k − I

)
dk + 2δmax

∑
k

∑
s,a

V
(m)
k (s, a)√

tk︸ ︷︷ ︸
R

(m)
EVI

+
∑
k

∑
s,a

V
(m)
k (s, a)(r̃k(s, a)− r(s, a))︸ ︷︷ ︸

R
(m)
rewards

We can already further simplify the term related to EVI. Notice that:

v
(m)
k

(
P̃k − I

)
dk ≤

∑
s

Vk (s, π̃k(s)) · ∥p̃k (·|s, π̃k(s))− 1s∥1 · sup
s′

|dk(s′)|

≤ 2εk
∑
s

V
(m)
k (s, π̃k(s)) ≤ 2δmax

∑
s,a

V
(m)
k (s, a)√

tk

≤ 2δmax

∑
s,a

V
(m)
k (s, a)√

max {1, N (mk(s,a))
tk

(s, a)}
,

28

where in the last inequality we used that max{1, N (mk(s,a))
tk

(s, a)} ≤ tk ≤ T . Thus, for
T ≥ e2

2AT the regret term coming from the consequences and approximations of EVI
satisfies

R
(m)
EVI ≤ δmax2

√
2 log(2AT)

∑
k

∑
s,a

V
(m)
k (s, a)√

max {1, N (mk(s,a))
tk

(s, a)}
. (A4)

Let us now deal with the term R
(m)
rewards, as it will be bounded by a similar term as

in equation (A4). Indeed, as M ∈ Mk, we may use that both the optimistic and true
rewards are within the confidence region from equation 16, and use that tk < T , so that:

R
(m)
rewards ≤ δmax2

√
2 log(2AT)

∑
k

∑
s,a

Vk(s, a)√
max {1, N (mk(s,a))

tk
(s, a)}

(A5)

On the other hand, we can also split more precisely the term that depends on the
bias. Define Pk as the transition matrix of the optimistic policy π̃k in the true MDP
M . We get

R
(m)
in ≤

∑
k

v
(m)
k

(
P̃k −Pk

)
hk︸ ︷︷ ︸

R
(m)
trans

+
∑
k

v
(m)
k

(
P̃k −Pk

)(
h̃k − hk

)
︸ ︷︷ ︸

R
(m)
diff

+
∑
k

v
(m)
k (Pk − I)h̃k︸ ︷︷ ︸

R
(m)
ep

+ δmax4
√

2 log(2AT)
∑
k

∑
s,a

V
(m)
k (s, a)√

max {1, N (mk(s,a))
tk

(s, a)}︸ ︷︷ ︸
R

(m)
EVI+R

(m)
rewards

. (A6)

Now that we split the regret into several terms, we still need to sum over the
modules and analyze for each term its contribution to the regret. For instance, we can
sum over the modules the terms depending on EVI and the reward differences to get:

REVI +Rrewards = δmax4
√

2 log(2AT)
∑
k

∑
s,a

Vk(s, a)√
max {1, N (mk(s,a))

tk
(s, a)}

. (A7)

This term is related to the choice of the confidence bounds, and it will contribute to the
main term of the regret. Regarding the other terms, R(m)

trans will also use the confidence
bounds on the transition as well as our knowledge of the bias in the true MDP. R(m)

diff

will be a lower order term in the regret, using the confidence bounds for both the
comparisons between the transitions and the biases. Finally, R(m)

ep will be related to
the count of episodes, so that it will also be a lower order term. The discussion for
each of these terms will be spread over the next subsections.

29

A.4 Bound on R
(m)
trans

To bound R
(m)
trans, we can follow the computations from [17]. We will use our knowledge

of the bias hk and the control on the transitions in the optimistic MDP to simplify the
regret term.

Notice that for a fixed state 1 ≤ s ≤ S − 1:∑
s′

p (s′|s, π̃k(s))hk(s
′) =

∑
s′

p (s′|s, π̃k(s)) (hk(s
′)− hk(s)) + hk(s).

The same is true for p̃k, and knowing the MDP is a birth and death process:

R
(m)
trans =

∑
k

∑
s

∑
s′

V
(m)
k (s, π̃k(s)) · (p̃k (s′|s, π̃k(s))− p (s′|s, π̃k(s))) · hk(s

′)

=
∑
k

∑
s

∑
s′

V
(m)
k (s, π̃k(s)) (p̃k (s

′|s, π̃k(s))− p (s′|s, π̃k(s))) · (hk(s
′)− hk(s))

≤
∑
k

∑
s

V
(m)
k (s, π̃k(s))∥p̃k (·|s, π̃k(s))−p (·|s, π̃k(s))∥1max

{
∆π̃k(s),∆π̃k(s+ 1)

}
≤ 4
√

2 log (2AT)
∑
k

∑
s,a

∆(s+ 1)V
(m)
k (s, a)√

max{1, N (mk(s,a))
tk

(s, a)}
,

where ∆ is the difference of bias in the last inequality, we used the bound on the
variations of the bias from Proposition F.4, and that the optimistic MDP has transitions
close to the true transitions with inequality (17). Notice that the final term looks
similar to the term coming from EVI and rewards related computations (A7). We
will deal with these terms together in the next subsection, as they are both mainly
contributing to the regret.

A.5 Bound on the main term
In the previous Section A.4, we have shown that:

R
(m)
trans ≤ 4

√
2 log (2AT)

∑
s,a

∆(s+ 1)V
(m)
k (s, a)√

max{1, N (mk(s,a))
tk

(s, a)}
.

Summing over the modules m, we get:

Rtrans ≤ 4
√

2 log (2AT)
∑
s,a

∆(s+ 1)Vk(s, a)√
max{1, N (mk(s,a))

tk
(s, a)}

. (A8)

We now wish to control this term, REVI and Rrewards using our knowledge of the bias,
rather than bounding it directly with the diameter D. We first sum over the episodes
and take the expectation, so that with Lemma C.1, and using that N

(mk(s,a))
tk

(s, a) ≥

30

1
τmix

Ntk(s, a) we had from Equation (13), we get:

E

[∑
s,a

∑
k

√
τmixVk(s, a)√

max{1, Ntk(s, a)}

]
≤ 3E

[∑
s,a

√
τmixNT (s, a)

]
≤ 3

∑
s

√
τmixE [NT (s)]A, by Jensen’s inequality.

Therefore:

Rtrans ≤ 12
√

2Aτmix log (2AT)

S∑
s=0

∆(s+ 1)
√
E [NT (s)]. (A9)

This is one of the terms mainly contributing to the regret, the other one being, doing
similar computations:

REVI +Rrewards ≤ 12δmax

√
2Aτmix log (2AT)

∑
s≥0

√
E [NT (s)] (A10)

Now, let Nπmax

T be the number of visits when the starting state is sampled randomly
from the initial distribution νπ

max

and the policy πmax is always chosen. By stochastic
ordering, as NT (s) ≤st N

πmax

T , we have E [NT (s)] ≤ E
[
Nπmax

T

]
= Tνπ

max

(s). We can
therefore rewrite the main contributing term to the regret as:

12
√

2AτmixT log (2AτmixT)

S∑
s=0

(∆(s+ 1) + δmax)
√

νπmax(s). (A11)

Replace in the equation the choice τmix = 5 log T/ log ρ−1 and recall that we had, from
Proposition F.4, ∆(s) := 2δmaxν

πmax

(0)−1
∑s

i=1
U

µ(i) ≤ 2δmaxν
πmax

(0)−1 U
µ(1)s. Using

Lemma F.1, since

S∑
s=0

(∆(s+ 1) + δmax)
√

νπmax(s) ≤ 3δmaxν
πmax

(0)−1 U

µ(1)

S∑
s=0

(s+ 1)
√

νπmax(s)

≤ 3δmaxν
πmax

(0)−1/2 U

µ(1)

√
C1

∑
s≥0

s

(
λ

µ(i0)

)s/2

≤ 3δmaxν
πmax

(0)−1/2 U

µ(1)

√
C1

1(
1−

√
λ

µ(i0)

)2
≤ 3δmax

U

µ(1)
C1

1(
1−

√
λ

µ(i0)

)3 ,

31

then, assuming τmix ≤ T , the main term is upper bounded by:

72δmax
U

µ(1)
C1

(
1−

√
λ

µ(i0)

)−3

log (AT)

√
5AT log−1(ρ−1). (A12)

A.6 Bound on R
(m)
diff

We now deal with the term involving the difference of bias R(m)
diff , defined in equation A6.

The proof mainly follows the one from [17], with a final tweak to relate the visits
from a module to the total number of visits. Notice that we cannot directly use the
confidence regions to control the difference between h̃k and hk, so that we will need
Lemma E.4, and we are interested in controlling ∥h̃k − hk∥∞.

Fix the module m and the episode k, with policy π̃k. Choose a state minimizing
N

(mk(s,π̃k(s)))
tk

(s, π̃k(s)), and call this state xk, ak := π̃k(xk) and m′ := mk(xk, ak):

for this state, the confidence bounds are at their worst, and
√

log(2Atk)

max{1,N(m′)
tk

(xk,ak)}
is

maximal for episode k. This means that controlling the number of visits of the worst
state lets us control the number of visits for any state. As the true MDP is within the
confidence bounds, with a triangle inequality we get:

∥P̃k − Pk∥∞ ≤ 4

√
2 log (2Atk)

max{1, N (m′)
tk

(xk, ak)}
.

We now want to use Lemma E.4. In our case, notice that in the true MDP we have
D ≥ T π̃k

hit ≥ 1 for S large enough. Remark also that Dπ̃k can be replaced by D in the
last inequality of the proof of E.4, as span(hπ̃k) ≤ D by construction of π̃k with EVI,
following the same argument as in [5, Equation (11)].

∥h̃k − hk∥∞ ≤ 8rmaxD
2

√
2 log (2Atk)

max{1, N (m′)
tk

(xk, ak)}
. (A13)

Hence,

R
(m)
diff ≤

∑
s

∑
s′

V
(m)
k (s, π̃k(s)) · (p̃k (s′|s, π̃k(s))− p (s′|s, π̃k(s))) · (h̃k(s

′)− hk(s
′))

≤
∑
s

V
(m)
k (s, π̃k(s)) · ∥p̃k (·|s, π̃k(s))− p (·|s, π̃k(s))∥1 ∥h̃k − hk∥∞

≤ 32D2rmax log (2AT) Σ(m),

where in the last inequality we have used (A13) and defined

Σ(m) :=
∑
s,a

∑
k

tk+1−1∑
t=tk

1{st,at=s,a}1{t∈m}√
max{1, N (mk(s,a))

tk
(s, a)}

√
max{1, N (m′)

tk
(xk, ak)}

.

32

By the choice of xk, N
(m′)
tk

(xk, ak) ≤ N
(mk(s,a))
tk

(s, a) for any state-action pair (s, a),
so that we can compute the sum Σ :=

∑
m Σ(m), with Ik := tk+1 − tk the length of

episode k:

Σ ≤
∑
m

∑
s,a

∑
k

tk+1−1∑
t=tk

1{st,at=s,a}1{t∈m}

max{1, N (m′)
tk

(xk, ak)}
=
∑
k

Ik

max{1, N (m′)
tk

(xk, ak)}
.

Now, define Qmax :=
(

10C2S
′2

νπmax (S)

)2
log

((
10C2S

′2

νπmax (S)

)4)
where we defined the constant

C2 =
(λγreject+γhold)C1

µ(1)(1−λ/µ(i0))
, and I(T) := max

{
Qmax, T

1/4
}
. We split the sum depending on

whether the episodes are shorter than I(T) or not, and call K≤I the number of such
episodes. This yields:

Σ ≤ K≤II(T) +
∑

k,Ik>I(T)

Ik

max{1, N (m′)
tk

(xk, ak)}
.

Using the stopping criterion for episodes, and that we have chosen the module m′ in
equation (13) to have the inequality V

(m′)
k (xk, ak) ≥ 1

τmix
Vk(xk, ak):

Σ ≤ K≤II(T) +
∑

k,Ik>I(T)

τmixIk
max{1, Vk(xk, ak)}

.

Now we can end the computations as in [17]. Denote by E the event:

E =

{
∀k s.t Ik > I(T),

1

max{1, Vk(xk, ak)}
≤ 2

νπmax(S)Ik

}
.

By splitting the sum, using the above event, we get:

Σ ≤ K≤II(T) + 1E
∑

k,Ik>I(T)

2τmix

νπmax(S)
+ 1Ē

∑
k,Ik>I(T)

τmixIk

≤ K≤II(T) + 1E (K −K≤I)
2τmix

νπmax(S)
+ 1ĒτmixT.

We use Corollary E.6 to get P
(
Ē
)
≤ 1

4T , so that when taking the expectation:

E [Σ] ≤ E [K≤I] I(T) + E [(K −K≤I)]
2τmix

νπmax(S)
+

τmix

4
.

Now using Lemma C.2, S′A ≥ 4, I(T) ≥ 2
νπmax (S)

and that 1
log 2 + 1

4 ≤ 2:

E [Σ] ≤ E [K] I(T)τmix +
τmix

4
≤ 2S′Aτmix log(2AT)I(T).

33

Therefore, we have that:

E
[
R

(m)
diff

]
≤ 64rmaxS

′AD2τmixI(T) log
2 (2AT) . (A14)

A.7 Bound on Rep

The last regret term we have to bound is related to the count of episodes.

R(m)
ep =

∑
k

v
(m)
k (Pk − I) h̃k.

We first want to sum over the modules to get the same kind of term as in [5], written as
a martingale difference sequence, and then take the expectation. Following that proof,
we define Xt := (p(·|st, at)− est) h̃k(t)1M∈Mk(t)

, where k(t) is the episode containing
step t and ei the vector with i-th coordinate 1 and 0 for the other coordinates. We
obtain

∑
c

v
(m)
k (Pk − I) h̃k ≤ vk (Pk − I) h̃k ≤

tk+1−1∑
t=tk

Xt + h̃k(stk+1
)− h̃k(stk)

≤
tk+1−1∑
t=tk

Xt +Drmax,

and by summing over the episodes we get

∑
m

R(m)
ep ≤

T∑
t=1

Xt +KDrmax.

Notice that E [Xt|s1, a1, . . . , st, at] = 0, so that when taking the expectations, only the
term in the number of episodes remains.

On the other hand, using Lemma C.2 on the number of episodes, when taking the
expectation we obtain

E

[∑
m

R(m)
ep

]
≤ S′Aτmix log2

(
8T

S′Aτmix

)
·Drmax.

As for the computation of (A2), assuming τmixS
′A ≥ 4:

E [Rep] ≤ 2rmaxS
′ADτmix log(2AT). (A15)

34

A.8 Total sum
We remind that we showed in subsection A.5 that the main term of the regret is:

72δmax
U

µ(1)
C1

(
1−

√
λ

µ(i0)

)−3

log (AT)

√
5AT log−1(ρ−1),

and now it remains to compute the lower order term of the regret RLO. Using (A2),
(A3), (A14) and (A15), the lower order term of the regret is upper bounded by, omitting
the rmax factor:

64S′AD2τmixI(T) log
2 (2AT) + 2S′Aτmix(D + τmix) log(2AT) + (S′ + 16CS′A),

and for T large enough so that 1 + 16C ≤ log2(T) the upper bound is :

rmax69S
′AD2τ2mixI(T) log

2 (2AT) ,

which concludes the proof of Theorem 6.1.

Appendix B Lemmas on Extended Value Iteration
We remind the fundamental properties of the Extended Value Iteration (EVI) algorithm,
first described in [5], which is used to find the optimistic MDP M̃k and the policy π̃k

for each episode k given a confidence region Mk. These properties are useful notably
in the first splits of the regret terms in Section A.3. EVI iteratively computes values in
the following way:{

u
(k)
0 (s) = 0

u
(k)
i+1(s) = maxa∈A

{
r(s, a) + maxp(·)∈P(s,a)

{∑
s∈S p(s′)u

(k)
i (s′)

}}
,

where P(s, a) is the set of probabilities from (17), and the iterations are stopped with
respect to the following lemma [5, Theorem 7].
Lemma B.1. For episode k and accuracy εk := δmax√

tk
, denote by i the last step of

extended value iteration, stopped when:

max
s

{u(k)
i+1(s)− u

(k)
i (s)} −min

s
{u(k)

i+1(s)− u
(k)
i (s)} < εk. (B16)

The optimistic MDP M̃k and the optimistic policy π̃k at the last step of EVI are so
that the gain is εk− close to the optimal gain:

g̃k := min
s

g(M̃k, π̃k, s) ≥ max
M ′∈Mk,π,s′

g(M ′, π, s′)− εk. (B17)

35

Moreover, from [27, Theorem 8.5.6]:∣∣∣u(k)
i+1(s)− u

(k)
i (s)− g̃k

∣∣∣ ≤ εk, (B18)

and as the optimal policy yields an aperiodic unichain Markov chain, we have that
g̃k = g(M̃k, π̃k, s) for any s, so that we can define the bias:

h̃k(s0) = Es0

[∞∑
t=0

(r̃(st, at)− g̃k)

]
. (B19)

Rather than using the last value of EVI in the computations of the regret, we rely on
the bias to show that the last value and the optimistic bias are nearly equal, up to a
translation. By choosing iteration i large enough, from [27, Equation 8.2.5], we can
ensure that: ∣∣∣u(k)

i (s)− (i− 1)g̃k − h̃k(s)
∣∣∣ < εk

2
, (B20)

so that we can define the following difference

dk(s) :=
∣∣∣u(k)

i (s)−min
s

u
(k)
i (s)−

(
h̃k(s)−min

s
h̃k(s)

)∣∣∣ < εk. (B21)

Appendix C Classical lemmas for the regret
computation in UCRL-like algorithms

We introduce classic lemmas from [5] that are needed for the regret computations. The
first lemma, proven in [5, Appendix C.3], is used to simplify the main regret terms
(A7) and (A8).
Lemma C.1. For any fixed state action pair (s, a), and time T , we have:

T∑
t=1

1{st,at=s,a}√
max{1, Nt(s, a)}

≤ 3
√

NT+1(s, a).

The next lemma, proven in [5, Appendix C.2] is useful to bound the term from in
A.1 and in equation (A14).
Lemma C.2. Denote by Kt the number of episodes up to time t, and let t > SAτmix.
It is bounded by:

Kt ≤ S′Aτmix log2

(
8t

S′Aτmix

)
.

The next lemma is needed in the proof of Lemma E.5. While it includes the diameter,
this will only impact a lower-order term of the regret.
Lemma C.3 (Azuma-Hoeffding inequality). Let X1, X2, . . . be a martingale difference
sequence with |Xi| ≤ RD for all i and some R > 0. Then, for all ε > 0 and n ∈ N:

P

{
n∑

i=1

Xi ≥ ε

}
≤ exp

(
− ε2

2nDR

)
.

36

Appendix D Probability of not being in the
confidence region

We compute the probability that the true MDP M fails to be in the confidence set.
This lemma controls the corresponding regret terms in Section A.2 when we consider
the episodes k with M /∈ Mk.

Let us first prove the key Lemma D.1.
Lemma D.1. Let us consider the original MDP under any policy π, with stationary
measure νπ. There exists C > 0, ρ ∈ (0, 1) such that:

max
π∈Π

sup
x0∈S

∥Pπ
x0
(xt = ·)− νπ∥TV ≤ Cρt ∀t > 0. (D22)

Let t, t′ > 0 such that t′ − τmix ≥ t, with t′ and t′ − τmix belonging to the same episode.
Let X be a function of the state of the original MDP until time t and Y function of the
state of the original MDP from time t′. Let Ŷ be a random variable following the same
distribution as Y independently from X. Let f be a real-valued, bounded function. Then:∣∣∣E [f(X,Y)]− E

[
f(X, Ŷ)

]∣∣∣ ≤ 4C∥f∥∞ρτmix .

Proof. The proof is essentially the same as in [37, Lemma 9], but as states are sampled
from the original MDP and not a single Markov chain, we cannot just assume that
the starting distribution at time 0 is a stationary distribution. Instead, we have to
make sure that it is the case for each start of the episodes, hence the initial phase
where τmix samples of the aggregate MDP are discarded, so that the original MDP is
close to its stationary distribution. Due to this ramping time, we can make sure that t′
and t′ − τmix belong to the same episodes and can therefore be related to the same
stationary distribution.

Let t, t′ > 0 such that t′ − τmix ≥ t, with t′ and t′ − τmix belonging to the same
episode k. Now, X is a function of the state of the original MDP until time t, so there
are t observed transitions but there might be many more that are hidden. In turn, Y is
a function of the state of the original MDP from time t′. Let Ŷ be a random variable
following the same distribution as Y and independent of X. Note that there are at
least τmix observed or hidden transitions between t and t′ on the original MDP.

We also define the distribution P := P {X ∈ ·, Y ∈ ·} and the distribution
Q := P {X ∈ ·} ⊗ P {Y ∈ ·}, and we define the total variation information
ITV (X,Y) :=

∑
x P {X = x} ∥P {Y = · | X = x} − P {Y = y}∥TV . To simplify, assume

that ∥f∥∞ ≤ 1
2 . By definition of the total variation distance, we first have that:∣∣∣E [f(X,Y)]− E

[
f(X, Ŷ)

]∣∣∣ ≤ ∥P −Q∥TV ,

Then, using the properties of the total variation information related to a Markov chain
described in [37], we obtain

∥P −Q∥TV ≤ ITV (X,Y) ≤ ITV (xt, xt′) ≤ ITV (xt′−τmix
, xt′)

37

≤
∑
x

P {xt′−τmix = x} ∥P {xt′ = · | xt′−τmix = x} − P {xt = ·}∥TV

then using a triangle inequality:

∥P {xt′ = · | xt′−τmix
= x} − P {xt = ·}∥TV ≤

∥∥P {xt′ = ·} − νπ̃k
∥∥
TV

+∥∥P {xt′ = · | xt′−τmix = x} − νπ̃k
∥∥
TV

,

we get
∥P −Q∥TV ≤ 2Cρτmix ,

where in the last inequality we used assumption (11) twice, as t′ and t′−τmix belong
to the same episode, and therefore can be related to the same stationary measure νπ̃k .
To clarify, the exponent τmix in the inequality is loose, as τmix is the number of time-
steps in the aggregate MDP, so there are at least as many time steps in the original
MDP, and the mixing is confirmed.

We can now give the lemma that actually shows that M is likely to be in the
confidence set of MDPs.
Lemma D.2. For t > 1, the probability that the MDP M is not within the set of
plausible MDPs M(t) is bounded by:

P {M /∈ M(t)} ≤ S′

2t3
+

8CS′A

t3
.

Compared to [5, Lemma 17], we notice that the first term comes from the choice of
the confidence bound adapted to the birth and death structure of the MDP, but the
second one comes from the imperfect independence of the observations. To prove this
inequality, we will need Lemma D.1 to consider independent events again, and to be
able to use concentration inequalities.

Let us now prove Lemma D.2.

Proof. Fix a state-action pair (s, a), m any module and n the number of visits of
this pair within the module before time t. We will first consider the confidence
around the empirical transitions, and then the confidence around the rewards. Let
εp =

√
2
n log (16At4) ≤

√
8
n log (2At). Define the events:

An =

(
∥p̂(m)(·|s, a)− p(·|s, a)∥1 ≥

√
8

n
log (2At)

)
(D23)

Here, we aim to control these events but the difficulty is that the observations from
the state-action pairs are not independent. On the other hand, we notice that the
observations within a fixed module are nearly independent, which is why we needed to
introduce these modules in the first place.

38

Define p̂⊥(·|s, a) the empirical transition probabilities from n independent obser-
vations of the state-action pair (s, a). Define events that are copies of An but with
independent observations:

A⊥
n =

(
∥p̂⊥(·|s, a)− p(·|s, a)∥1 ≥

√
8

n
log (2At)

)
. (D24)

Similarly, define A⊥,k
n events such that the first n − k observations are the same as

the ones for An and the next k observations are independent, so that for example
A⊥,0

n = An and A⊥,n−1
n = A⊥

n . Then, applying n− 1 times Lemma D.1:

∣∣P {An} − P
{
A⊥

n

}∣∣ ≤ n−1∑
k=1

∣∣P{A⊥,k−1
n

}
− P

{
A⊥,k

n

}∣∣ ≤ 4Cnρτmix ≤ 4CT 1−5.

We can therefore work on the events with independent observations. Knowing that
from each pair, there are at most 3 transitions, a Weissman’s inequality gives:

P
{
∥p̂(m)(·|s, a)− p(·|s, a)∥1 ≥ εp

}
≤ 6 exp

(
−nε2p

2

)

and we get

P
{
A⊥

n

}
≤ 3

8At4
,

and within our choice of τmix,

P {An} ≤ 3

8At4
+

4C

t4
.

We deal with the rewards in a similar manner. Define the events:

Bn :=

(
|r̂(m)(s, a)− r(s, a)| ≥ δmax

√
2

n
log (2At)

)
. (D25)

By definition of r̂(m)(s, a) = γrejectp̂
(m)(s + 1|s, a) + γhold

U (S − s) 15, and using that
γreject ≤ δmax, we can write:

P {Bn} ≤ P

{
|p̂(m)(s+ 1|s, a)− p(s+ 1|s, a)| ≥

√
2

n
log (2At)

}
.

Once again, we consider p̂⊥(s + 1|s, a) the empirical transition probabilities from
independent observations of (s, a) to s + 1, and we look to control the probability
of the events B⊥

n . With the independence, we may now use the following Hoeffding

39

inequality on the Bernoulli random variable of parameter p(s+ 1|s, a):

P
{
|p̂(m)(s+ 1|s, a)− p(s+ 1|s, a)| ≥ εr

}
≤ 2 exp

(
−2nε2r

)
,

where εr =
√

1
2n log (16At4) ≤

√
2
n log (2At). We therefore get:

P
{
B⊥

n

}
≤ 1

8At4
,

and with the previous choice of τmix,

P {Bn} ≤ 1

8At4
+

4C

t4
.

Overall:
P {An ∪Bn} ≤ 1

2At4
+

8C

t4
.

Now, with a union bound for all values of n = max{1, N (m)
t (s, a)} ∈{

0, 1, · · · ,
⌈

t−1
τmix

⌉}
and all τmix possible modules, and also summing over all state-action

pairs:

P {M /∈ M(t)} ≤ S′

2t3
+

8CS′A

t3

as desired.

Appendix E Lemmas specific to our regret
computations

In this section, we prove generic properties on the difference of biases between two
MDPs. This control on the difference is needed in subsection A.6 to compare the
optimistic MDP and the true MDP.

E.1 Lemmas on the bias differences
The next three lemmas of this subsection are already proved in [17], for the sake
of completeness, we rewrite them in this appendix. They are used in the proof of
Lemma E.4, to control the difference between the bias of the policy π̃k in the optimistic
MDP and in the true MDP.
Lemma E.1. For an MDP with rewards r ∈ [0, rmax] and transition matrix P , denote
by Js(π, T) := E

[∑T
t=0 r(st, π(st))

]
the expected cumulative rewards until time T

starting from state s, under policy π. Let Dπ be the diameter under policy π. The
following inequality holds: span (J(π, T)) ≤ rmaxDπ.

40

Proof. Let s, s′ ∈ S be recurrent states under policy π. Call τs→s′ the random time
needed to reach state s′ from state s. Then:

Js(π, T) = E

[
T∑

t=0

r(st)

]

= E

[
τs→s′−1∑

t=0

r(st)

]
+ E

 T∑
t=τs→s′

r(st)

≤ rmaxE [τs→s′] + Js′(π, T)

≤ rmaxDπ + Js′(π, T),

which proves the lemma.

Lemma E.2. Consider two unichain MDPs M and M ′. Let r = r′ ∈ [0, rmax] and
P, P ′ be the rewards and transition matrix of MDP M,M ′ under policy π, π′ respectively,
where both MDPs have the same state and action spaces. Denote by g, g′ the average
reward obtained under policy π, π′ in the MDP M,M ′ respectively. Then the difference
of the gains is upper bounded.

|g − g′| ≤ rmaxDπ∥P − P ′∥∞.

Proof. Define for any state s the following correction term b(s) := rmaxDπ∥p(·|s) −
p′(·|s)∥1. Let us show by induction that for T ≥ 0,

T−1∑
t=0

P tr ≤
T−1∑
t=0

P ′t(r + b).

This is true for T = 0. Assume that the inequality is true for some T ≥ 0, then

T∑
t=0

P tr −
T∑

t=0

P ′t(r + b) = −b+ P

T−1∑
t=0

P tr − P ′
T−1∑
t=0

P ′t(r + b)

= −b+ P ′

(
T−1∑
t=0

P tr −
T−1∑
t=0

P ′t(r + b)

)
+ (P − P ′)

T∑
t=0

P tr

≤ −b+ (P − P ′)

T∑
t=0

P tr by induction hypothesis.

Notice that, for any recurrent state s for policy π:(
(P − P ′)

T∑
t=0

P tr

)
(s) ≤ ∥p(·|s)− p′(·|s)∥1 · span (J(T))

≤ rmaxDπ∥p(·|s)− p′(·|s)∥1 by Lemma E.1

41

= b(s).

In the same manner we show that:

T∑
t=0

P tr ≥
T∑

t=0

P ′t(r − b).

Hence, as P ′ has non-negative coefficients, denoting by e the unit vector:∥∥∥∥∥
T∑

t=0

P tr −
T∑

t=0

P ′tr

∥∥∥∥∥
∞

≤ ∥b∥∞
∥∥∥∥∥

T∑
t=0

P ′t · e
∥∥∥∥∥
∞

= ∥b∥∞(T + 1).

As r = r′, with a multiplication by 1
T+1 and by taking the Cesáro limit :

|g − g′| ≤ ∥b∥∞,

where ∥b∥∞ = rmaxDπ∥P − P ′∥∞.

Lemma E.3. Let P be the stochastic matrix of an ergodic Markov chain with state
space 1, . . . , S. The matrix A := I − P has a block decomposition

A =

(
AS b
c d

)
;

then AS, of size S × S is invertible and ∥A−1
S ∥∞ = supi∈S E τi→S, where E τi→S is the

expected time to reach state S from state i.
Remark that this lemma is true for any state in S.

Proof. (E τi→S)i is the unique vector solution to the system:{
v(S) = 0

∀i ̸= S, v(i) = 1 +
∑

j∈S P (i, j)v(j)

We can rewrite this system of equations as: Ãv = e− eS , where Ã is the matrix

Ã :=

(
AS b
0 1

)
,

e the unit vector and eS the vector with value 1 for the last state and 0 otherwise.
Then Ã and AS are invertible and we write:

Ã−1 =

(
A−1

S −A−1
S b

0 1

)
.

42

Thus, by computing Ã−1(e − eS), for i ̸= S, (E τi→S)i = A−1
S e. By definition of the

infinite norm and using that AS is an M-matrix and that its inverse has non-negative
components, ∥A−1

S ∥∞ = supi∈S E τi→S .

In the following lemma, we use the same notations as in Lemma E.2 with a common
state space {0, 1, . . . S}.
Lemma E.4. Let the biases h, h′ be the biases of the two MDPs that verify their
respective Bellman equations with the renormalization choice h(S) = h′(S) = 0, and
respective policies π, and π′. Let sups∈S E τπs→s′ be the worst expected hitting time to
reach the state s′ with policy π, and call Thit := infs′∈S sups∈S E τπs→s′ . We have the
following control of the difference:

∥h− h′∥∞ ≤ 2Tπ
hitD

π′
rmax∥P − P ′∥∞.

Notice that although the biases are unique up to a constant additive term, the
renormalization choice does not matter as the unit vector is in the kernel of (P − P ′).

Proof. The computations in this proof follow the same idea as in the proof of [38,
Theorem 4.2]. The biases verify the following Bellman equations r−ge = (I−P)h, and
also the arbitrary renormalization equations, thanks to the previous remark: h(S) = 0.
Using the same notations as in the proof of Lemma E.3, we can write the system of
equations Ãh = r̃ − g̃, with r̃ and g̃ respectively equal to r and g everywhere but on
the last state, where their value is replaced by 0.

We therefore have that h = Ã−1(r̃ − g̃), and with identical computations, h′ =

Ã′−1
(r̃′− g̃′). By denoting dX := X−X ′ for any vector or matrix X, we get, as r = r′:

dh = −Ã−1(−dg̃ + dÃh′).

The previously defined block decompositions are:

Ã−1 =

(
A−1

S −A−1
S b

0 1

)
and dÃ =

(
AS −A′

S b− b′

0 0

)
.

For s < S, dh(s) = −eTs A
−1
S (dASh

′ − dg̃) and dh(S) = 0. Now by taking the norm and
using E.1:

∥dh∥∞ ≤ ∥A−1
S ∥∞(rmaxD

π′∥dAS∥∞ + |dg̃|).
Notice that ∥dAS∥∞ ≤ ∥dP∥∞ and |dg̃| = |dg|. Using Lemma E.2 and Lemma E.3, and
taking the infimum for the choice of the state of renormalization implies the claimed
inequality for the biases.

E.2 Visits of the furthest state
We also need the next lemmas to bound Rdiff by controlling the number of visits of the
state with the fewest visits. If we can guarantee that each state receives enough visits,
then we will have a good approximation of the biases and transition probabilities. The
proof can be found in [17].

43

Lemma E.5. Let νπ
max

be the stationary measure of the Markov chain under policy
πmax, such that for every state s: πmax(s) = 1, so that every job is admitted in the
network until maximal capacity S is reached.

Let k be an episode and assume that the length of this episode Ik is at least

I(T) = 1 + max
{
Qmax, T

1/4
}
, with Qmax :=

(
10C2S

′2

νπmax (S)

)2
log

((
10C2S

′2

νπmax (S)

)4)
, C2 :=

(λγreject+γhold)C1

µ(1)(1−λ/µ(i0))
and C1 as in Lemma F.1. Then, with probability at least 1− 1

4T :

Vk(xk, ak) ≥ νπ
max

(S)Ik − 5C2S
′2
√

Ik log Ik.

We will now prove Lemma E.5:

Proof. Let k be an episode such that Ik ≥ I(T), and first consider it is of fixed length I.
Let xk ∈ S be a recurrent state, ak = π̃k(sk). Denote by νk the stationary distribution
under policy π̃k. Notice that νπ

max

(S) ≤ νk(xk) for S large enough.
Define a new Markov reward process: consider again the original state space S ′ and

the transitions p′ with policy π̃k, but the rewards r̊, where r̊(s′) = 1 for states s′ such
that |s′| = xk and 0 otherwise. Denote by g̊π̃k

the gain associated to the policy π̃k and
similarly define h̊π̃k

the bias, translated so that h̊π̃k
(S) = 0. Then:

Vk(xk, ak) =

tk+1−1∑
u=tk

r̊(s′u)

=

tk+1−1∑
u=tk

g̊π̃k
+ h̊π̃k

(s′u)−
〈
p′ (·|s′u, π̃k(s

′
u)) , h̊π̃k

〉
using a Bellman equation

=

tk+1−1∑
u=tk

g̊π̃k
+ h̊π̃k

(s′u)− h̊π̃k
(s′u+1) + h̊π̃k

(s′u+1)−
〈
p′ (·|s′u, π̃k(s

′
u)) , h̊π̃k

〉
.

By Azuma-Hoeffding inequality C.3, following the same proof as in section 4.3.2 of
[5], notice that Xu = h̊π̃k

(s′u+1)−
〈
p′ (· | s′u, π̃k(s

′
u)) , h̊π̃k

〉
form a martingale difference

sequence with the bound |Xu| ≤ span h̊π̃k
:

P

{
tk+1−1∑
u=tk

Xu ≥ C2S
′2
√

10I log I

}
≤ 1

I5
.

With Proposition F.4 proved in Appendix F, we have span h̊π̃k
≤ C2S

′2 with C2 =
(λγreject+γhold)C1

µ(1)(1−λ/µ(i0))
, so that with probability at least 1− 1

I2 :

Vk(xk, ak) ≥
tk+1−1∑
u=tk

g̊π̃k
− 5C2S

′2
√

I log I.

44

On the other hand:
tk+1−1∑
u=tk

g̊π̃k
= Vk(sk, ak)νk(xk),

so that, using that νk(xk) ≥ νπ
max

(S), with probability at least 1− 1
I5 :

Vk(xk, ak) ≥ νπ
max

(S)I − 5C2S
′2
√

I log I.

We now use a union bound over the possible values of the episode lengths Ik, between
I(T) + 1 and T :

P
{
Vk(xk, ak) < νπ

max

(S)Ik − 5C2S
′2
√

Ik log Ik

}
≤

T∑
I=I(T)+1

1

I5
≤

T∑
I=T 1/4+1

1

I5

≤ 1

4T
,

so that we now have that with probability at least 1− 1
4T :

Vk(xk, ak) ≥ νπ
max

(S)Ik − 5C2S
′2
√

Ik log Ik.

We can show a corollary of Lemma E.5 that we will use for the regret computations:
Corollary E.6. For an episode k such that its length Ik is greater than I(T),with
probability at least 1− 1

4T :

Vk(xk, ak) ≥
νπ

max

(S)

2
Ik.

Proof. With Lemma E.5, it is enough to show that 5C2S
′2√Ik log Ik ≤ νπmax

(S)
2 Ik, i.e.

that
√

Ik
log Ik

≥ 10C2S
′2

νπmax (S)
=: B. By monotonicity, as Ik ≥ Qmax = B2 logB4 we can

show instead that B2 logB4 ≥ B2 log
(
B2 logB4

)
.

This last inequality is true, using that log x ≥ log(2 log x) for x > 1. This proves
the corollary.

Appendix F Properties of the aggregate MDP
In this section, we prove properties on the aggregate MDP that are needed to control
the average number of visits of the states of the MDP under any policy. We also prove
a bound on the bias of the true MDP under any policy, which is eventually needed to
control the main term in subsections A.4 and A.5.

45

F.1 Properties of the policies in the aggregate MDP
We may only consider policies that are threshold policies, as we are mainly interested in
the average reward scored by these policies, so that we consider that the policies chosen
by EVI are threshold policies. We remind that the aggregate MDP is stable (as seen in
Section 2), so that there exists a i0 large enough for which i ≥ i0, µ(i) ≥ µ(i0) > λ.

With the following lemma, we compute the stationary measures νπ and give a
comparison between any νπ with the stationary measure νπ

max

of the maximal policy
πmax, that admits every job into the queue, by relating these Markov chains to the
M/M/1/S queue with rates λ and µ(i0).
Lemma F.1. Denote by s̄ the last recurrent state of the MDP for policy π, so that
π(s) = 0 for s ≥ s̄. Define the constant C1 :=

∏i0−1
i=1

µ(i0)
µ(i) ≥ 1, independent of S.

We have the following inequalities
• On the stationary measure of the maximal policy:

νπ
max

(0)−1 :=

S∑
s′=0

s′∏
i=1

λ

µ(i)
≤ C1

1− λ
µ(i0)

,

• On the stationary measure of any policy:

νπ(0)−1 :=

s̄∑
s′=0

s′∏
i=1

λ

µ(i)
≤ νπ

max

(0)−1 ≤ C1

1− λ
µ(i0)

,

• Also we can compute for s ≤ S:

νπ
max

(s) := νπ
max

(0)

s∏
i=1

λ

µ(i)
= νπ

max

(0)C1

(
λ

µ(i0)

)s

.

We now remind a definition of the bias for any policy π and control its variations,
as they play a major role in the computations of the main term of the regret (see A.4).
Definition F.2 (Bias). Let π be a policy, P the transition matrix and νπ the stationary
measure of the Markov chain under policy π. The bias hπ of this policy is defined as:

hπ(s) =

∞∑
t=1

(P t(s, ·)− νπ)r. (F26)

In order to control the variation of the bias of any policy, we will relate the bias
to the expected hitting time to hit the state 0 from state s, so that we first need to
compute the hitting times:
Lemma F.3. Let π be any policy, (Xt)t be the Markov chain with policy π and
transitions P starting from any state s. Denote by τs the random time needed for Xt

to hit 0. Then:

Eτs ≤ νπ(0)−1
s∑

i=1

U

µ(i)

46

Proof. We write the expected hitting time equations, and use induction. Let τi be the
hitting time to 0 starting from state i, and e be the unit vector. We have the system:

Eτ = e+ P Eτ , (F27)
with the extra equation τ0 = 0. The system gives for s ≥ s̄:

Eτs = 1 + Eτs
1− µ(s)

U
+ Eτs−1

µ(s)

U
,

so that:
Eτs =

U

µ(s)
+ Eτs−1

Then, by induction, we want to prove the equation for s < s̄:

Eτs = Eτs−1 +
U

µ(s)

s̄∑
s′=s

s′∏
i=s+1

λ

µ(i)
(F28)

For s < s̄, assume (F28) is true for Eτs+1:

Eτs = 1 + Eτs+1
λ

U
+ Eτs

1− µ(s)− λ

U
+ Eτs−1

µ(s)

U

= 1 + Eτs
1− µ(s)− λ

U
+ Eτs−1

µ(s)

U
+ Eτs

λ

U
+

s̄∑
s′=s+1

s′∏
i=s+1

λ

µ(i)

=
U

µ(s)
+ Eτs−1 +

U

µ(s)

s̄∑
s′=s+1

s′∏
i=s+1

λ

µ(i)
by gathering the τs terms

= Eτs−1 +
U

µ(s)

s̄∑
s′=s

s′∏
i=s+1

λ

µ(i)
,

the induction is therefore true, and we have: Eτs ≤ Eτs−1 +
U

µ(s)ν
π(0)−1.

Proposition F.4. For any policy π, define for s ∈ {1, . . . , S} the variation of the bias

∆π(s) := hπ(s)− hπ(s− 1) =

∞∑
t=1

(
P t(s, ·)− P t(s− 1, ·)

)
r.

Remind that δmax := maxs,a,a′ |r(s, a)− r(s− 1, a′)| = λγreject+γhold

U :

∆π(s) ≤ ∆(s) := 2δmaxν
πmax

(0)−1
s∑

i=1

U

µ(i)
.

Using the monotonicity of the rates µ from Lemma 3.1, we therefore have :

∆(s) ≤ 2(λγreject + γhold)ν
πmax

(0)−1s
1

µ(1)

47

Proof. We will use an optimal coupling, that is, a coupling such that the following
infimum is reached, as defined in [29].∥∥P t(s, ·)−P t(s−1, ·)

∥∥
TV

=inf{P(Xt ̸= Yt) : (Xt, Yt) couples P t(s, ·) and P t(s−1, ·)}.
(F29)

More precisely, let X and Y be Markov chains with transition matrix P and starting
states X1 = s, Y1 = s− 1, coupled in the following way: For each time-step t ≥ 2, let
Ut ∼ U([0, 1]) be a sequence of independent random variables sampled uniformly on
[0, 1]. We have:

Xt+1 =

Xt − 1 if Ut ≤ µ(Xt)

Xt if µ(Xt) ≤ Ut ≤ 1− λ

Xt + 1 if 1− λ ≤ Ut

(F30)

and define Yt+1 the same way from Yt. This coupling is optimal, but in particular we
have:

(P t(s, ·)− P t(s− 1, ·))r ≤ 2P(Xt ̸= Yt)δmax.

We remind that τs is the random time needed for the Markov chain Xt to hit 0. The
coupling time is lower than τs:

P(Xt ̸= Yt) ≤ P (τs→0 > t) ,

so that summing over t gives:

∆π(s) ≤ 2δmaxEτs,

and using Lemma F.3 and Lemma F.1:

∆π(s) ≤ 2δmaxν
πmax

(0)−1
s∑

i=1

U

µ(i)
.

48

	Introduction
	Reinforcement learning in POMDPs
	Contribution and methodology
	Organization

	Admission control in a queueing network
	Problem formulation
	Motivating applications

	Markov Decision Process Formulation
	Original MDP
	Aggregate model
	Norton equivalent queue
	Aggregate MDP

	Comparison between both MDPs
	Bias and diameter

	Reinforcement Learning
	What does the learner know?
	When does the learner acts?
	How do we measure the learner performance?

	Learning Algorithm with Modules: UCRL-M
	High-level description of the proposed algorithm
	Number of modules: taumix
	Confidence region
	UCRL-M: learning with taumix modules
	Time complexity of UCRL-M

	Regret of UCRL-M
	Main result
	Outline of the proof

	Controlling the regret bound parameter rho
	Bounds using mixing and coupling times
	Acyclic networks
	Hyperstable networks

	Making the algorithm oblivious to rho

	Numerical experiments
	A multi-tier queueing network
	Regret of UCRL-M on the multi-tier queueing network

	Conclusion
	Proof of Theorem 6.1
	Terms for the ramping phases
	Terms in the confidence bound
	Split of confidence bound
	Bound on Rtrans
	Bound on the main term
	Bound on Rdiff
	Bound on Rep
	Total sum

	Lemmas on Extended Value Iteration
	Classical lemmas for the regret computation in UCRL-like algorithms
	Probability of not being in the confidence region
	Lemmas specific to our regret computations
	Lemmas on the bias differences
	Visits of the furthest state

	Properties of the aggregate MDP
	Properties of the policies in the aggregate MDP

