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Backward bifurcation and optimal control of an SVI age–structured epidemic model

Yves Fotso Fotso* Josué Tchouanti � Janvier P. Ntahomvukiye� Samuel Bowong §

July 25, 2023

Abstract

In this work, we study a Susceptible–Vaccinated–Infectious (SVI) epidemiological model with an
infection age structure, an imperfect preventive vaccine administered to susceptible individuals and
a therapeutic treatment of infectious ones. First, using integrated semigroup theory, we handle the
well–posedness property of the model proposed and derive the explicit expression of the basic reproduction
number R0 that determines whether the disease dies out or persists. Using the Lyapunov–Schmidt type
technique, we derive a necessary and sufficient condition for the occurrence of a backward bifurcation.
Second, we extend the model by considering the vaccination and therapeutic treatment as time–dependent
control variables. An optimal control problem is formulated with the aim of minimizing the number
of infected individuals and the cost associated with vaccination and treatment. The existence of an
optimal control pair is proved and the first–order necessary condition for optimality are established.
Finally, the optimal control problem is solved numerically and simulations are provided. They show
that the combination of these two control strategies considerably reduce the spread of the disease by
keeping the population of infected individuals relatively low.

Keywords: Age–structured model, infectious disease, bifurcation theory, optimal control theory, numerical
simulations.

1 Introduction

The human population is going through a period of emergence and re-emergence of infectious diseases of
particular concern, causing enormous human losses worldwide. Understanding the transmission dynamics
and management of these diseases has been of great interest to the scientific community in recent decades.
Mathematical modeling has become a powerful and widely used tool to facilitate the evaluation of infectious
diseases management activities. The interest of the models lies in their capacity to study different scenarios
in order to anticipate the consequences of a disease incursion and test new control strategies. Vaccination
and therapeutic treatment are among the most important control strategies for reducing the spread of many
infectious diseases. However, due to strain variation, vaccination may lose its effect. The age of infection
(time elapsed since the infection) is known as an important factor in the transmission of infectious diseases.
The importance of age structure in epidemiological models has been emphasized by many authors in the
literature (see for instance [1, 2, 3, 4] and references therein).

In this work, we focus on the Susceptible–Vaccinated–Infectious (SVI) epidemic model with age of infection
described by the following differential equations:

dS
dt

=Λ−T (βi)S+T (αi)−(ξ+µ)S
dV
dt

=ξS−mT (βi)V −µV
∂ti(t,θ)+∂θi(t,θ)=−[µ+δ(θ)+α(θ)]i(t,θ)
i(t,0)=[S+mV ]T (βi).

(1)

In the system (1), the states S(t) and V (t) denote the size of susceptible and vaccinated individuals at time
t>0 respectively. The term i(t,θ) represents the density of infectious individuals with the age–since–infection
θ∈R+ at time t> 0. All recruitment is into the susceptible class and occurs at a constant rate Λ. The
transmission of the disease to the susceptibles and vaccinated individuals occurs due to their contact with
infected individuals, with the force of infection T (βi) and mT (βi) respectively, where T (.) is the integral
operator defined for some integrable function h on R+ by T (h)=

∫
R+
h(θ)dθ. These functions represent the

age–since–infection structured transmission rates and m is the modification parameter. It is biologically

*Faculty of Science, Department of Mathematics and Computer Science, University of Dschang, Cameroon. Email:
fotsofyves@yahoo.fr.
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acceptable to assume that the modification parameter m∈(0,1) which is based on the fact that the vaccinated
individuals are thought to have partial immunity and hence the effective contacts with infectious individuals
may decrease compared to those of susceptible individuals. The susceptibles are vaccinated at constant rate
ξ and move to the class of vaccinated at rate ξS. The natural and disease induced death of individuals are
given by the rates µ and δ(θ) respectively. The model considers that the therapeutic treatment do not confer
a permanent immunity and the treat recipients return to the susceptible class S at rate T (αi) where α(θ)
represents the therapeutic treatment rate of infectious individuals of age–since–infection θ. We assume that,
all constant parameters of system (1) are positives and we introduce the following technical hypotheses that
are necessary to place the system in a biological reasonable framework and sufficient to establish its properties.

Assumption 1.1. The parameter functions of system (1) satisfy the following properties: The function
α(.)∈L∞+ (R+) and β(.) is nonnegative bounded and uniformly continuous on R+. The initial conditions S(0),
V (0) are nonnegatives and the initial condition i(0,.)=i0(.)∈L1

+(R+).

Here Lp+(R+) with 1≤p≤∞ denotes the space of functions Lp(R+) which are nonnegatives. Since the exit
rate of infectious individuals class is given by p(θ)=µ+α(θ)+δ(θ), the probability of still being infectious

after an age of infection θ is given by π(θ)=e−
∫ θ
0 p(s)ds. It is clear that, π(.) is a decreasing function that

satisfies π(0)=1 and the differential equation ∂θπ(θ)=−p(θ)π(θ). Compared to the model proposed in [5],
our system includes age–since–infection structure which turns our system into a partial differential equations
and take into account the mortality induced by the disease. However, if therapeutic treatment is not effective
(i.e. α(θ)≡0 for all θ∈R+), then the system (1) can be reduced to the model studied in [1].

Our aims in this work are twofold: firstly, we handle the well–posedness of system (1) using the integrated
semigroup theory which provides a flexible mathematical framework for determining the existence and
uniqueness of evolution equations (see for instance [6, 7, 8]). The explicit expression of basic reproduction
number is calculated by the next generation operator approach (see e.g. [9, 10, 11]). This threshold is well
known in epidemiology as an important parameter which determines if the disease can vanish or persist in the
community. The existence and stability of steady states that are infection age–dependent solutions of system (1)
are investigated. By using the Lyapunov–Schmidt theory introduced recently by Martcheva and Inaba in [12],
we show that the system can exhibit the phenomenon of backward or forward bifurcations. See for instance [13,
14, 15, 16] for more details on such bifurcations. Secondly, we propose and implement an optimal control strategy
in order to minimize the number of infected individuals in the community while at the same time keeping the
cost of implementing vaccination and therapeutic treatment very low. Several researches have explored optimal
control problems for age–structured systems. See for instance [17, 18, 19] for general optimal control theory of
such systems, and also [3, 4, 20, 21, 22, 23, 24, 25, 26] for applications of this theory in many branches of science
such as competing species, harvesting control, birth control, epidemic disease and plant–pest interactions.

The remaining parts of this manuscript are organized as follows. In Sect. 2, the model (1) is rigorously
analyzed. Those results include the existence and uniqueness of a bounded solution, the existence and stability
of stationary states, and bifurcation analysis. Sect.3 is devoted to the formulation of optimal control problem.
We characterize the optimal control pair by using the maximum principle intoduced by Feichtinger et al.[27]
for the systems with age structure. Numerical simulations are provided in Sect.4, to illustrate the theoretical
results. In the last section, we give some brief summaries and discussions of our results.

2 Qualitative analysis of model

2.1 Well–posedness of the System (1)

Since the system (1) has a nonlinear boundary condition, we use the integrated Semigroup theory introduced by
Thieme [7] (see also [8] and references therein) in the context of age–structured models. It consists of removing
the nonlinearity from the domain and incorporates it into the Lipschitz continuous perturbation function. To do
so, we introduce the Banach space X=R×R×L1(0,∞)×R endowed with the usual product norm. The posi-
tive cone of space X is defined by X+ =R+×R+×L1

+(0,∞)×R+. We set X0 =R×R×L1(0,∞)×{0} and de-
note byX0+ =X0∩X+. Let us consider the linear differential operatorA :D(A)⊂X−→X defined as follows:

A

SVi
0

=

 −µS
−(µ+ξ)V
−i′−p(θ)i
−i(0)

, (2)
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where the domain D(A)=R×R×W1,1(0,∞)×{0}, where W1,1(0,∞)={f∈L1(0,∞): Dkf∈L1(0,∞), ∀|k|≤
1} is a Sobolev space. Remark that the domain D(A) is not dense in X since it can be seen that

X0 =D(A) 6=X. Let us introduce the nonlinear map H : X0⊂X−→X defined by

H

SVi
0

=

Λ−T (βi)S+T (αi)
ξS−mT (βi)V

0L1(0,∞)

[S+mV ]T (βi)

. (3)

By identifying z(t) together with state vector (S(t),V (t),i(t,.),0)> where ”>” denotes the transposition
symbol and by setting z(0)=(S(0),V (0),i0(.),0)> one obtains that, the system (1) can be rewritten in the
following abstract Cauchy problem.

dz(t)

dt
=Az(t)+H(z(t)), ∀t≥0 and z(0)=z0∈X0+. (4)

Now, we are ready to establish the well–posedness of the system (1) which is given by the following result:

Theorem 2.1. Let Assumption 1.1 be satisfied. Then there exists a unique strongly continuous semiflow
{Φ(t,.)}t≥0 on X0+ such that for each z0∈X0+, the map z(.)∈C([0,+∞),X0+) defined by z(.): t−→z(t)=

Φ(t,z0) is an integrated (or mild) solution of the Cauchy problem (4). It satisfies for all t≥0,
∫ t

0
z(s)ds∈X0

and z(t)=z0+A
∫ t

0
z(s)ds+

∫ t
0
H(z(s))ds. Moreover, the non–empty compact set

Ω:=

{
(S,V,i,0)∈X0+ : S(t)+V (t)+T (i)≤Λ

µ

}
, (5)

is positively invariant under the semiflow {Φ(t,.)}t≥0 and attracts all points of space X0+.

Proof. We notice that the map H(.) is Lipschitz continuous on the bounded sets. It is easy to check that
the operator (A,D(A)) satisfies the Hille–Yosida properties [6]. Then, classical techniques apply to provide
the existence and uniqueness of an integrated solution to system (4), see e.g. [8, 2, 28, 7]. Let z0∈X0+, then
‖Φ(t,z0)‖X =S(t)+V (t)+T (i). By integrating the third equation of system (1) on R+ with respect to θ
and combining with the first–second equation of (1), one can easily get

d‖Φ(t,z0)‖X
dt

≤Λ−µ‖Φ(t,z0)‖X. (6)

Thus, using the Grönwall–Bellman inequality we have
‖Φ(t,z0)‖X≤Λ/µ−(Λ/µ−‖z0‖X)e−µt, (7)

which shows that Φ(t,z0)∈Ω holds for every solution of (1) satisfying z0∈Ω. Hence the set Ω is positively
invariant. Furthermore we have the bound limsup

t→+∞
‖Φ(t,z0)‖X ≤ Λ/µ which implies that the semiflow

{Φ(t,z0)}t≥0 is bounded and Ω attracts all point of space X0+.

2.2 Basic reproduction number and steady states

System (1) has always a disease–free steady state E0 = (S0,V 0,0,0) ∈ X0+ where S0 = Λ/(µ+ ξ) and
V 0 =ξS0/µ, corresponding to the steady state without disease. In order to study the long time behaviour
of system (1), we need to compute a key threshold parameter called the basic reproduction number denoted
R0. This threshold depends on the epidemiological parameters of the model, that ensures or not the outbreak
of an epidemic process and measures the expected number of secondary cases produced by a typical infected
individual during its entire period of infectiousness in a completely susceptible population [29, 9, 10]. It is
based on the so–called next generation operator that gives the distribution of secondary infections as a function
of the distribution of the primary infected individuals. In order to compute R0, we use the methodology
developed in Dieckmann et al. [9] (see also Inaba [11] and references therein) where R0 coincides with the
spectral radius of the next generation operator. Specifically, we linearize system (1) around the disease–free
steady state E0 to obtain the following equations for the dynamics of the infected population:{

∂ti(t,θ)+∂θi(t,θ)=−p(θ)i(t,θ)
i(t,0)=[S0+mV 0]T (βi).

(8)

Using the characteristics method, the solution of system (1) can be expressed as

i(t,θ)=

{
i0(θ−t) π(θ)

π(θ−t) if θ≥t
i(t−θ,0)π(θ) if θ<t.

(9)
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Let ~(t)=i(t,0) be the number of newly infectious individuals at time t>0. Inserting expression (9) into
the boundary condition of (8), we get the renewal equation:

~(t)=ϕ(t)+

∫ t

0

Ψ(θ)~(t−θ)dθ, (10)

where ϕ(t):=[S0+mV 0]
∫∞
t
β(θ) π(θ)

π(θ−t)i0(θ−t)dθ and Ψ(θ):=[S0+mV 0]β(θ)π(θ). According to [9, 11], the

basic reproduction number is calculated as the spectral radius of the next generation operator
∫∞

0
Ψ(θ)dθ.

Hence, the explicit expression of R0 is given by
R0 =[S0+mV 0]T (βπ). (11)

Let E∗(θ)=(S∗,V ∗,i∗(θ),0) be an arbitrary steady state of system (1). Then to analyze the local stability
of system in the neighbourhood of E∗(θ), we linearize the system around E∗(θ) with x(t), y(t) and ω(t,θ)
being the small perturbations, that is x(t)=S(t)−S∗, y(t)=V (t)−V ∗ and ω(t,θ)=i(t,θ)−i∗(θ). We obtain
the following linear system written in the abstract Cauchy problem form:

du(t)

dt
=Au(t)+DHE∗(u(t)), ∀t≥0 and u(0)∈X0+, (12)

where u(t)=(x(t),y(t),ω(t,θ),0)> and the linear operator DHE∗ : X0⊂X−→X is defined for φ∈X0 by

DHE∗(u(t))=

 −T (βω)S∗−T (βi∗)x+T (αω)
ξx−mT (βω)V ∗−mT (βi∗)y

0L1(0,∞)

[x+my]T (βi∗)+[S∗+mV ∗]T (βω)

. (13)

Let us denote by A0 the restriction of the linear operator A in X0, i.e. A0 : ψ∈X0−→A0ψ=Aψ∈X0

and let {TA0(t)}t≥0 the semigroup generated by the linear operator A0. It is easy to check, by adapting
the proof of Proposition 1 of [30], that ‖TA0(t)‖≤e−µt, ∀t≥0. It follows that ωess(A0), the essential growth
rate of {TA0(t)}t≥0 is less than or equal to −µ. Let {T(A+DHE∗)0(t)}t≥0 be the semigroup generated by
(A+DHE∗)0, the part of linear operator A+DHE∗. Since DHE∗ is compact operator, it follows using the
result in [31, Theorem 1.2] that ωess((A+DHE∗)0)≤ωess(A0)≤−µ<0. Therefore, according to the results
obtained in [7, Corollary 4.3] that the steady state E∗(θ) is locally asymptotically stable if all eigenvalues
of linear operator (A+DFE∗)0 have negative real part. In this case, the trajectories which start sufficiently
close to E∗(θ) remain close and converge to this steady state when time tends towards infinity. However,
if at least one eigenvalue of (A+DFE∗)0 has strictly positive real part, then E∗(θ) is unstable steady state.

Proposition 2.1. Let Assumption 1.1 be satisfied. If R0< 1, the disease–free steady state E0 is locally
asymptotically stable and is unstable when R0>1.

Proof. We consider the exponential solutions of the linearized system (12) at disease–free steady state E0 by
x(t)=xeλt, y(t)=yeλt and ω(t)=ω(θ)eλt with (x,y,ω(θ))∈R×R×W(0,∞)\{0} and λ∈C with Reλ>−µ
(here the symbol Re denotes the real part), to derive the characteristic equation. We get the following linear
eigenvalue problem: 

(λ+µ+ξ)x=−S0T (βω)+T (αω)
(λ+µ)y=ξx−mV 0T (βω)
ω′(θ)=−[λ+p(θ)]ω(θ)
ω(0)=[S0+mV 0]T (βω).

(14)

Since x and y do not interact on ω–equation, we can determine λ follows the three–four equations of (14).
From the third equation of (14), we get ω(θ)=ω(0)π(θ)e−λθ. Putting this expression in the last equation
of (14) and canceling ω(0), we obtain the following characteristic equation:

G(λ):=[S0+mV 0]

∫ ∞
0

β(θ)π(θ)e−λθdθ=1. (15)

Consider that λ∈C with Reλ≥0, we have 1= |G(λ)|≤G(Reλ)≤G(0)=R0<1 which is a contradiction.
hence the equation G(λ)=1 does not have a root with a nonnegative real part when R0<1. Hence, the
disease–free steady state E0 is locally asymptotically stable whenever R0<1. Now, assume that R0>1 and
λ∈R+, we have G(0)=R0>1. Moreover lim

λ→+∞
G(λ)=0. Since G(.) is a decreasing function, there exists a

unique λ0>0 such that G(λ0)=1. Therefore E0 is unstable whenever R0>1. This completes the proof.

Now, we examine the existence of the endemic steady states. For this, Let E?(θ)=(S?,V ?,i?(θ),0) be any
arbitrary steady state of system (1). To find conditions for the existence of steady states for which disease
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Table 1: Number of possible positive real roots of the equation (16) according of the sign of the coefficient
ak, k=0,1,2.

a2 a1 a0 Number of possible positive real roots
– – – 0
+ – – 1
+ + – 1
– + – 0 or 2
– – + 1
– + + 1
+ + + 0
+ – + 0 or 2

is endemic in the population (i.e. steady state with disease is endemic) we set the derivatives with respect
to time in (14) equal to zero (i.e. by solving the abstract equation Az?+H(z?)=0). Then, steady state
E? with positive components is such that

S?=
Λ+T (αi?)

T (βi?)+µ+ξ
, V ?=

ξS?

mT (βi?)+µ
, i?(θ)=i?(0)π(θ),

and i?(0) is the positive real solution of the quadratic equation
a2(i

?(0))2+a1i
?(0)+a0 =0, (16)

where
a2 = m[T (βπ)]2[1−T (βπ)]; a0 =µ(µ+ξ)(1−R0);

a1 = mT (βπ)[µ−ΛT (βπ)]+(µ+mξ)T (βπ)[1−T (απ)].
Clearly the coefficients a2 and a0 are positives (resp. negatives) if and only if T (απ)<1 and R0<1 (resp.
T (απ)>1 and R0>1) respectively. Thus the number of possible real roots of the polynomial (16) depend
of the signs of coefficients a2, a1 and a0. This can be analyzed using the Descartes’ rule of signs on the
quadratic polynomial (16). The different possibilities of existence for the positive real roots of equation (16)
are summarized in Table 1. This table shows that under the condition R0<1, it is possible to have one
or more endemic steady states. In this case, it is interesting to analyze the system’s bifurcations to see if
it is possible to have a bi–stability phenomenon, and if so, to determine its cause.

2.3 Bifurcation analysis

In this subsection, we study the existence of bifurcations in the system (1). For this, we start by recalling an
analogue result of the Castillo Chavez and Song Theorem [32] designed for the partial differential equations
introduced recently by Martcheva and Inaba [12] in order to detect the presence of backward and forward
bifurcations and driving a necessary and sufficient conditions for its occurence. This result is somewhat easier
to use but it is based on more abstract approach and its proof is based on the Lyapunov–Schmidt theory.
For more details, we refer readers to the article [12].

Theorem 2.2 (Martcheva and Inaba [12]). Let Y and Z be Banach spaces, x∈Y and q∈R is a parameter.
We consider the following abstract differential equation

dx

dt
=F(x,q), F :Y ×R−→Z. (17)

Without loss of generality, we assume that 0 is an equilibrium point of the system (that is F(0,q)=0 for
all q∈R) and assume
1. A :=DxF(0,q0) is the linearization around the equilibium 0 evaluated at a critical value of parameter q0,

such that A is a closed operator with a simple isolated eigenvalue zero and remaining eigenvalues having
negative real part. Let v̂0 be the unique (up to a constant) positive solution of Av=0.

2. F(x,q)∈C2(U0×I0, Z) for some neighbourhood U0 of 0 and interval I0 containing q0.
3. Assume Z∗ is the dual of Z and 〈.,.〉 is the pairing between Z and Z∗. Assume v̂∗0 ∈Z∗ is the unique

(up to a constant) positive vector satisfying 〈Ax, v̂∗0〉=0 for all x∈Y , that is dim(kerA∗)=1 where A∗

is the adjoint of A and kerA∗=span{v̂∗0}.
4. Assume 〈D2

xqF(0,q0)v̂0,̂v
∗
0〉 6=0 where D2

xqF(0,q0) is the second derivative of F with respect to x and q.
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Then, the direction of the bifurcation is determined by the numbers a= 〈D2
xxF(0,q0)[̂v0,v̂0],v̂

∗
0〉 and b=

〈D2
xqF(0,q0)v̂0,v̂

∗
0〉, where D2

xxF(0,q0)[h1,h2] is the second derivative of F with respect to x applied to the
function h1 and h2. If b>0, then the bifurcation is backward if and only if a>0 and forward if and only if a<0.

In order to examine the bifurcations of system (1) at disease–free steady state E0. Let us set β(θ)= β̄β0(θ)
where β0(θ) is a normalized function such that [S0+mV 0]T (β0π)=1, which suggests that R0 =1 is equivalent
to β̄=1 and it is used to be a bifurcation parameter for deriving the existence of bifurcations. To use the
Lyapunov Schmidt method, we set z=(z1,z2,z3,0)∈X0 and introduce the nonlinear map F (z,β̄):=Az+H(z)
where the linear operator A and map H(z) are defined in (2) and (13) respectively. Then, it is easy to see that
F(z∗,β̄)=0 if z∗=E0. Then the linearized operator B :=DzF(E0,β̄) acting on X is calculated as follows:

Bz=


−β̄S0T (β0z3)+T (αz3)−(ξ+µ)z1

ξz1−β̄mV 0T (β0z3)−µz2

−z′3−p(θ)z3

−z3(0)+β̄[S0+mV 0]T (β0z3)

, (18)

where its domain is given by D(B)=D(A). Let us consider the eigenvalues of B and solving the differential
equation form Bz=λz for z∈X0. Then, we have z3(θ)=z3(0)π(θ)e−λθ. Inserting the expression of z3(θ)
into the four equation in Bz=λz and canceling z3(0). Thus we get the characteristic equation:

β̄[S0+mV 0]

∫ ∞
0

β0(θ)π(θ)e−λθdθ=1, (19)

which has a single eigenvalue of zero when β̄= 1. To find the eigenvector v̂0 associated with eigenvalue
zero, we need to solve the equation Bz = 0. We can choose z3(θ) = π(θ) and the boundary condition
(the four equation of Bz = 0) is trivially satisfied at β̄ = 1. From the first equation of Bz = 0, we get

z0
1 :=z1 = −β̄S

0T (β0π)+T (απ)
ξ+µ

and the second equation of Bz=0 gives z0
2 :=z2 =− β̄m

µ
V 0T (β0π)+ ξ

µ
z0

1. Therefore,

we set the vector v̂0 =(z0
1,z

0
2,π(θ),1). Now, we seek the adjoint operator B∗. To do so, let us consider the

vector Ψ=(Ψ1,Ψ2,Ψ3,Ψ4)∈X∗ :=R2×L1(0,∞)×R. Then, we have the relation
〈Ψ, Bz〉 =

[
−β̄S0T (β0z3)+T (αz3)−(ξ+µ)z1

]
Ψ1+

[
ξz1−β̄mV 0T (β0z3)−µz2

]
Ψ2

+

∫ ∞
0

[−z′3−p(θ)z3]Ψ3(θ)dθ+
[
−z3(0)+β̄[S0+mV 0]T (β0z3)

]
Ψ4.

Notice that, by integrating by part assuming that Ψ3(∞)=0 we get∫ ∞
0

[−z′3−p(θ)z3]Ψ3(θ)dθ=z3(0)Ψ3(0)+

∫ ∞
0

[Ψ′3−p(θ)Ψ3]z3(θ)dθ.

Hence we have
〈Ψ, Bz〉 = [ξΨ2−(ξ+µ)Ψ1]z1−µΨ2z2+(Ψ3(0)−Ψ4)z3(0)

+

∫ ∞
0

[Ψ′3−pΨ3+(−β̄S0β0+α)Ψ1−β̄mV 0β0Ψ2+β̄(S0+mV 0)β0Ψ4]z3(θ)dθ

= 〈B∗Ψ,z〉,
which should hold for Ψ∈D(B∗) and z∈D(B)⊂X0. Thus we choose the domain of B∗ as

D(B∗)=
{

Ψ∈R2×W1,∞(0,∞)×R : Ψ3(∞)=0, Ψ4 =Ψ3(0)
}
.

Therefore, the adjoint operator B∗ is defined on D(B∗)⊂X∗=R2×L∞(0,∞)×R as follows:

B∗Ψ=


ξΨ2−(ξ+µ)Ψ1

−µΨ2

Ψ′3−pΨ3+(−β̄S0β0+α)Ψ1−β̄mV 0β0Ψ2+β̄[S0+mV 0]β0Ψ4

Ψ3(0)

, (20)

with Ψ∈D(B∗). To find v̂∗0, we solve the equation B∗Ψ = 0 with β̄= 1. We have Ψ1 = Ψ2 = 0. Solving

the differential equation in B∗Ψ=0, we get Ψ3(θ)= [S0+mV 0]Ψ3(0)
∫∞
θ
β0(s)

π(s)
π(θ)

ds. Hence, we have the

eigenfunction v̂∗0 =(0,0,Ψ3(θ),Ψ3(0)) where Ψ3(0)>0. Computing the second derivative for F with respect
to z and β̄, we obtain

D2
zβ̄F(E0,1)v̂0 =

 −S0T (β0π)z0
1

−mV 0T (β0π)z0
2

0
[S0+mV 0]T (β0π)

. (21)

Therefore, one obtains
b=〈D2

zβ̄F(E0,1)v̂0,̂v
∗
0〉=[S0+mV 0]Ψ3(0)T (β0π)>0. (22)
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On the order hand, the second derivative D2
zzF (E0, 1)[̂v0,̂v0] can be computed with the following formula:

D2
zzF(E0,1)[̂v0,̂v0]=∂

2
hkF(E0+(h+k)v̂0,1)=

 −2T (β0π)z0
1

−2mT (β0π)z0
2

0
2[z0

1 +mz0
2]T (β0π)

. (23)

Thus, we have
a=〈D2

zzF(E0,1)[̂v0,̂v0],̂v
∗
0〉=2[z0

1 +mz0
2]T (βπ)Ψ3(0). (24)

Let us introduce the threshold

Θ:=z0
1 +mz0

2 =−
[(

1+m
ξ

µ

)
S0

ξ+µ
+
m2

µ
V 0

]
T (β0π)+

(
1+m

ξ

µ

)
T (απ)

ξ+µ
. (25)

Hence it follows that a<0 (respectively a>0) if and only if Θ<0 (respectively Θ>0). According to Theorem
2.2, we obtain the following result:

Theorem 2.3. If Θ>0, then system (1) undergoes a backward bifurcation at (E0,1). Otherwise, when Θ<0,
the system (1) exhibits a forward bifurcation at (E0,1).

Remark 2.1. We see that components of the eigenvector v̂0, that corresponds to positive entries in the disease–
free steady state, may be negative. This is in general the case with the partial differential equations as well [12].

The occurrence of a backward bifurcation in the transmission dynamics of an infectious disease where stable
disease–free steady state coexists with one or more stable endemic steady states when the basic reproduction
rate is smaller than unity makes it difficult to control effectively in a community. In such a scenario, the
fact that the basic reproduction rate is below one becomes only a necessary but not sufficient condition for
disease eradication. It is worth noting that we always have Θ<0 when the therapeutic treatment rate is
zero i.e. α(θ)=0 for all θ∈ [0,+∞). Thus, the backward bifurcation property of the model is caused by
the treatment of infectious individuals. To further confirm the above, the global asymptotic stability of the
steady states of the model are given below for the special case α(θ)=0 (the proofs are given in [1]).

Theorem 2.4. Assume that the therapeutic treatment is not effective (i.e. α(θ)=0 for all θ∈R+). Then
the system (1) always admits a disease–free steady state E0 which is globally asymptotically stable whenever
R0≤ 1. Moreover, if R0 > 1, the system (1) has a unique endemic steady state E?(θ) which is globally
asymptotically stable.

3 Optimal control

3.1 Control problem statement

Because of the seriousness of infectious diseases, a time–independent vaccination and treatment policy may not
be a good choice in the socio–economic context of many countries. However, it is important to know how much
and when these control strategies should be applied in order to control the spread of the disease at low cost. In
addition, the implementation of these control strategies remains very costly and difficult. For this purpose, we
consider that the vaccination and therapeutic treatment are represented by Lebesgue measurable functions on
finite time horizon [0,T ], denoted ξ(t) and α(t,θ) respectively and where T >0 is the final time of intervention
strategies. In addition, we replace the upper limit of the integral with respect to infection age by a finite

number θmax>0 for practical consideration, i.e. the integral function T (f)=
∫ θmax

0
f(θ)dθ. Let us introduce the

set Q=[0,T ]×[0,θmax]. Due to the limited resources and time available to implement these control strategies,
policies must be constrained to a predefined objective. For this reason, we consider by D :=L∞(0,T ;[0,ξmax])×
L∞(Q;[0,αmax]) the set of admissible control pair which is the space of measurable and bounded functions
pair (ξ(.),α(.,.)) defined by ξ(.) : [0,T ]−→ [0,ξmax] and α(.,.) :Q−→ [0,αmax]. The positive constants ξmax

and αmax represent the maximum rates at which individuals may be vaccinated and treated respectively.
Hence, implementing both time–dependent controls in system (1), we obtain the following controlled system:

dS
dt

=Λ−T (βi)S+T (α(t,.)i)−(ξ(t)+µ)S
dV
dt

=ξ(t)S−mT (βi)V −µV
∂ti(t,θ)+∂θi(t,θ)=−[µ+δ(θ)+α(t,θ)]i(t,θ)
i(t,0)=[S+mV ]T (βi).

(26)
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Our main objective is to minimize the total number of infected individuals and the necessary cost of vaccination
and therapeutic treatment. To achieve this goal, we work together with system (26), the following objective
functional:

J (ξ,α)=

∫
Q

χ(θ)i(t,θ)dtdθ+
C1

2
‖ξ‖2L2(0,T)+

C2

2
‖α‖2L2(Q), (27)

where χ(.)∈L∞+ (0,θmax), C1>0 and C2>0 measure the relative costs of infection and the applied control
interventions. Quadratic expression of the control in (27) is included to indicate the nonlinearity of the
implementation cost as it is more costly to increase the control efficiency when it is already high. As mentioned
before, our optimal control problem reads as follows: find an admissible control pair (ξ?(.),α?(.,.))∈D steering
the optimal trajectory (S?(.),V ?(.),i?(.,.)) satisfying the optimization problem

J (ξ?,α?)= min
(ξ,α)∈D

J (ξ,α). (OCP)

3.2 Existence of an optimal solution

Here, we establish the existence of a solution for optimization problem (OCP) subject to the controlled
age–structured system (26).

Theorem 3.1. Under Assumption 1.1, there exists at least one optimal control pair (ξ?,α?)∈D at which
corresponds the state variable (S?,V ?,i?), solution of the optimization problem (OCP).

Proof. Since the state variables S(.), V (.), T (i) and controls are uniformly bounded, then it follows that
d=inf{J (ξ,α): (ξ,α)∈D} is finite. Thus, there exists a minimizing sequence (ξn,αn)∈D such that

d≤J (ξn,αn)≤d+
1

n
. (28)

Since the sequence (ξn,αn) is bounded, there exists a subsequence still denoted (ξn,αn) that converges to some
(ξ?,α?) for the weak–? topology of L∞(0,T )×L∞(Q). The limit (ξ?,α?)∈D since the set D is a closed convex
subset of L∞(0,T )×L∞(Q) and so it is weakly closed. Let (Sn,Vn,in) be the state variables associated with
control pair (ξn,αn). The sequence (Sn,Vn) is uniformly bounded and equicontinuous on [0,T ]. Then, by the
Arzerla–Ascoli’s theorem, we can extract a subsequence still denoted (Sn,Vn) which converges uniformly to the

limit (S?,V ?) in C(0,T ). Let us denote by παn(t,θ)=e−
∫ θ
0 [µ+δ(s)+αn(t−θ+s,s)]ds. It is easy to see that the function

παn is Lipschitz in the following sense, for (α1,α2), there exists a constant k≥0 such that |πα1(t,θ)−πα2(t,θ)|≤
kT (|α1(t,.)−α2(t,.)|). As consequence, we have the convergence παn(t,θ)−→πα?(t,θ) as n→∞ almost
everywhere in Q. By using the method of characteristics, we get explicit expression of in(t,θ)–equation

in(t,θ)=

{
i0(θ−t) παn(t,θ)

παn(t,θ−t) if θ>t

in(t−θ,0)παn(t,θ) if θ<t.
This sequence is bounded since the sequences (Sn), (Vn), (T (in)) and (αn) are all bounded. Then we can
extract a subsequence still denoted (in) that converges weakly to i?(t,θ) in L2(Q) defined as follows

i?(t,θ)=

{
i0(θ−t) πα?(t,θ)

πα?(t,θ−t) if θ>t

i?(t−θ,0)πα?(t,θ) if θ<t.
Since the sequence (T (in)) is bounded, it converges to T (i?) by the uniqueness of the limit. Moreover, passing
to the limit in the differential equations satisfied by the subsequences Sn and Vn in controlled system (26),
we obtain: {

dS
dt

=Λ−T (βi?)S?+T (α(t,.)i?)−(ξ?(t)+µ)S?
dV
dt

=ξ?(t)S?−mT (βi?)V ?−µV ?.
(29)

Passing to the limit as n−→∞ in (28), we obtain lim
n→∞
J (ξn,αn)=J (ξ?,α?)=d. Hence, ((S?,V ?,i?),(ξ?,α?))

is an optimal solution of the optimization problem (OCP). This achieves the proof.

3.3 Optimality conditions

In this section, we use the maximum principle for general age–structured systems on a finite horizon established
by Feichtinger et al.[27] to derive the first–order necessary conditions for optimality and characterize the
optimal control pair solution of (OCP). To this end, we set state vector x(t) = (S(t),V (t))> to rewrite
controlled system (26) in the following compact form:

dx(t)
dt

=G(t,x(t),q(t),ξ(t))=:G(t)
∂ti(t,θ)+∂θi(t,θ)=F(t,θ,i(t,θ), α(t,θ))=:F(t,θ)
i(t,0)=ψ(t,x(t),q(t))=:ψ(t),

(30)
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where q(t)=(q1(t),q2(t))> derives from the vector function h(t,θ)=(h1(t,θ),h2(t,θ))> with h1(t,θ)=β(θ)i(t,θ)
and h2(t,θ) = α(t,θ)i(t,θ), and qj(t) = T (hj(t,.)) for j = {1,2}. The functions G(t) = (G1(t),G2(t))

>,
F(t,θ) and ψ(t) represent the right hand side of the controlled system (26) for S(t)−, V (t)−, i(t,θ)− and
i(t,0)−equations, respectively. We also define the following functional L(t,θ)=χ(θ)i(t,θ)+C1

2
ξ2(t)+C2

2
α2(t,θ).

Below ∇z denotes differentiation with respect to state variable z. Let us introduce the adjoint functions
Zx(.)=(ZS(.),ZV (.))∈L∞(0,T ;R2) and Zi(.,.)∈L∞(Q;R) corresponding to the state vector x(t) and variable
i(t,θ) respectively. Then, from [27] the adjoint functions satisfy the following adjoint system:

−dZx(t)
dt

=Zx(t)∇xG(t)+Zi(t,0)∇xψ(t)
−∂tZi(t,θ)−∂θZi(t,θ)=∇iL(t,θ)+Zi(t,θ)∇iF(t,θ)

+Zx(t)∇qG(t)∇ih(t,θ)+Zi(t,0)∇qψ(t)∇ih(t,θ)
Zi(T,θ)=0, Zi(t,θmax)=0, Zx(T)=(0,0).

(31)

This leads to the following adjoint system:
dZS
dt

=[T (βi)+µ]ZS+ξ[ZS−ZV ]−Zi(t,0)T (βi)
dZV
dt

=[mT (βi)+µ]ZV−mT (βi)Zi(t,0)
∂tZi+∂θZi=−χ(θ)+[β(θ)S−α(t,θ)]ZS+mβ(θ)ZV V

−[S+mV ]β(θ)Zi(t,0)+[µ+δ(θ)+α(t,θ)]Zi
ZS(T)=0, ZV (T)=0, Zi(T,θ)=0, Zi(t,θmax)=0.

(32)

From the solution S(t), V (t) and i(t,θ) of system (26) and the corresponding solution ZS(t), ZV (t) and
Zi(t,θ) of adjoint system (32), we introduce the following distributed Hamiltonian functional associated with
the optimization problem (OCP) by:

H(t,θ):=L(t,θ)+ZS(t)G1(t)+ZV (t)G2(t)+Zi(t,θ)F(t,θ)+Zi(t,0)ψ(t). (33)
Applying Pontryagin’s Maximum Principle introduced in [27], which consists in solving equations ∂ξH(t,θ)=0
and ∂αH(t, θ) = 0, and taking into account the boundaries of each control strategies, we obtain the
characterization of optimal control pair by:

ξ(t)=P1

(
[ZS(t)−ZV (t)]S(t)

C1

)
and α(t,θ)=P2

(
[−ZS(t)+Zi(t,θ)]i(t,θ)

C2

)
, (34)

where Pj(.) denotes the projection map on D defined as follows:

Pj(z)=

 0, if z<0
z, if 0≤z≤zjmax

zjmax, if z>zjmax,

with j∈{1,2}, z1max =ξmax and z2max =αmax.

Remark 3.1. A the final time T >0, the optimal controls defined in (34) vanish, that are ξ(T)=0 and
α(T,θ)=0 for all θ∈ [0,θmax], since the adjoint state variables are all equal to zero at time T .

3.4 Uniqueness of solution to (OCP)

Note that the Theorem 3.1 only shows the existence of an optimal control pair, but does not guarantee its
uniqueness. However using the optimal control structure (34) this uniqueness can be obtained using the
procedure based on Ekeland’s variational principle [33, 34]. This principle consists in generating a sequence of
controls and its corresponding state variables that converge towards the optimal controls and its corresponding
state variables using the convergence of a minimizing sequence of approximate objective functional. For this
purpose, we embed the objective functional J (ξ,α) into L1(0,T )×L1(Q) by defining the following functional:

~(ξ,α)=

{
J (ξ,α), if (ξ,α)∈D
+∞ otherwise.

(35)

Let us introduce the following technical lemma that we shall use to establish the uniqueness result of the
optimal control pair of (OCP).

Lemme 3.1. We have the following properties:
1. For T >0 sufficiently small, there are positive constants C1T and C2T such that:

(i) The map (ξ,α)∈D−→(S,V,i) is Lipschitz in the following ways:∥∥(S1,V 1,i1)−(S2,V 2,i2)
∥∥
L∞
≤C1T

∥∥(ξ1,α1)−(ξ2,α2)
∥∥
L∞
,

where (Sk,V k,ik) is a solution of (26) associated to control pair (ξk,αk) for k∈{1,2}.
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(ii) For (ξk,αk)∈D, the adjoint system (32) admits a weak solution (ZkS,ZkV ,Zki )∈L∞(0,T)×L∞(0,T)×
L∞(Q) such that for k∈{1,2} we have∥∥(Z1

S,Z1
V ,Z1

i )−(Z2
S,Z2

V ,Z2
i )
∥∥
L∞
≤C2T

∥∥(ξ1,α1)−(ξ2,α2)
∥∥
L∞
.

2. The functional ~(.,.) is lower semi–continuous with respect to (ξ,α) in L1(0,T)×L1(Q).

Proof. See Appendix A.

Since the functional ~(.,.) is lower semi–continuous in L1, then according to Ekeland’s variational principle
[34, 33], it follows that for any given ε>0, there exists a control pair (ξε,αε)∈L1(0,T)×L1(Q) such that:

(i) ~(ξε,αε)≤ inf
(ξ,α)∈D

~(ξ,α)+ε

(ii) ~(ξε,αε)= inf
(ξ,α)∈D

{~(ξ,α)+
√
ε‖(ξ,α)−(ξε,αε)‖L1}.

Note that, the perturbated functional ~ε(ξ,α)=~(ξ,α)+
√
ε‖(ξ,α)−(ξε,αε)‖L1 attains its infimum at the

control pair (ξε,αε). From item (ii) and a similar argument as that in Subsection 3.3 give the characterization
of control pair (ξε,αε) by

ξε(t)=P1

(
[ZεS−ZεV ]Sε−

√
εϑε1

C1

)
and αε(t,θ)=P2

(
[−ZεS+Zεi ]iε−

√
εϑε2

C2

)
, (36)

where (Sε,V ε,iε) and (ZεS,ZεV ,Zεi ) are the solutions of controlled and adjoint system respectively, corresponding
to the control pair (ξε,αε). The functions ϑε1∈L∞(0,T ), ϑε2∈L∞(Q) and |ϑεj|≤1 for j∈{1,2} and (t,θ)∈Q.
We now ready to prove our main result of this subsection concerning the uniqueness of an optimal control pair
solution of optimization problem (OCP). To do so, let us consider the following mapM : D−→D defined by

M(ξ,α)=

(
P1

(
[ZS−ZV ]S

C1

)
, P2

(
[−ZS+Zi]i

C2

))
,

Let (Sk,V k,ik) and (ZkS,ZkV ,Zki ) are the state and adjoint variables corresponding to the control pair (ξk,αk)
with k∈{1,2}. Using the Lipschitz properties of the state and ajoint variable established in the Lemma
3.1, we have

‖M(ξ1,α1)−M(ξ2,α2)‖L∞=

∥∥∥∥P1

(
[Z1

S−Z1
V ]S1

C1

)
−P1

(
[Z2

S−Z2
V ]S2

C1

)∥∥∥∥
L∞(0, T)

+

∥∥∥∥P2

(
[−Z1

S+Z1
i ]i

1

C2

)
−P2

(
[−Z2

S+Z2
i ]i

2

C2

)∥∥∥∥
L∞(Q)

≤C−1
1

∥∥[Z1
S−Z1

V ]S1−[Z2
S−Z2

V ]S2
∥∥
L∞(0,T)

+C−1
2

∥∥[−Z1
S+Z1

i ]i
1−[−Z2

S+Z2
i ]i

2
∥∥
L∞(Q)

≤K1

∥∥(S1,i1)−(S2,i2)
∥∥
L∞

+K2

∥∥(Z1
S,Z1

V ,Z1
i )−(Z2

S,Z2
V ,Z2

i )
∥∥
L∞

≤(K1C1T+K2C2T )
(
‖ξ1−ξ2‖L∞(0,T)+‖α1−α2‖L∞(Q)

)
≤C3T

(
‖(ξ1,α1)−(ξ2,α2)‖L∞

)
,

where the constants K1 and K2 depend on the L∞ bounds on the state and adjoint state variables and
C3T =K1C1T+K2C2T , (37)

where C1T and C2T are the Lipschitz constants obtained in Lemma 3.1. ClearlyM is a contraction function
if C3T <1. Hence,M has a unique fixed point (ξ?,α?)∈D by the Banach contraction theorem when C3T <1.
We show that this fixed point is an optimal control pair by using the approximating minimizers sequence
(ξε,αε) from Ekeland’s principle and corresponding state variables Sε, V ε and iε, and adjoint variables ZεS,
ZεV and Zεi . From Lemma 3.1 and the contraction property of the applicationM, we have

‖(ξ?,α?)−(ξε,αε)‖L∞=

∥∥∥∥M(ξ?,α?)−
(
P1

(
[ZεS−ZεV ]Sε−

√
εϑε1

C1

)
,P2

(
[−ZεS+Zεi ]iε−

√
εϑε2

C2

))∥∥∥∥
L∞

≤‖M(ξ?,α?)−M(ξε,αε)‖L∞

+

∥∥∥∥M(ξε,αε)−
(
P1

(
[ZεS−ZεV ]Sε−

√
εϑε1

C1

)
,P2

(
[−ZεS+Zεi ]iε−

√
εϑε2

C2

))∥∥∥∥
L∞

≤C3T‖(ξ?,α?)−(ξε,αε)‖L∞+
√
ε(C−1

1 +C−1
2 ).

Then for C3T <1, we obtain

‖(ξ?, α?)−(ξε, αε)‖L∞≤
√
ε(C−1

1 +C−1
2 )

1−C3T

,
10



which gives passing to the limit as ε→0 the convergence (ξε,αε)−→(ξ?,α?). Since ~ is lower semi–continuous
and using property (i) of Ekeland’s principle, the inequality ~(ξε,αε)≤ inf

(ξ,α)∈D
~(ξ,α)+ε implies (as ε→0)

that ~(ξ?,α?)≤ inf
(ξ,α)∈D

~(ξ,α). Therefore, we have ~(ξ?,α?)= inf
(ξ,α)∈D

~(ξ,α). We can summarize the uniqueness

of optimal control pair in the following result.

Theorem 3.2. If C3T <1, then there exists only one admissible optimal control pair (ξ,α)∈D which is given
by (34) solution of optimization problem (OCP).

4 Numerical Simulations

In this section, we perform the numerical simulations that illustrate the effect of the optimal strategies
on the spread of the disease. Generally, it is not possible to solve optimal control problems analytically.
Therefore, we use a numerical method to approximate the optimal solutions and display the results. We apply
the semi–implicit finite difference scheme for partial differential equations based on finding solutions along
characteristic curves to system (26) involved, for simplicity in numerical setup and ease of code development.
In addition, the integral terms are discretized using an explicit composite trapezoidal rule. Among the
practical approaches of optimization algorithms, we use the Forward–Backward sweep method [18, 19] to
approximate numerically the solution of problem (OCP). The algorithm proceeds as follows. Firstly, the
state variables of controlled system (26) are approximated using the forward difference method in time and
backward difference method in age with an initial guess for the control. Secondly, the adjoint system (32)
is solved by using the backward difference in time and forward difference in age using the solution of the state
variables. After these two steps, the control function values are updated with the new values of the state and
adjoint variables, thanks to equation (34) that characterize the optimal strategy. This procedure is repeated
until successive values of all state, adjoint and control variables are sufficiently close, that is ‖x̂−x̂old‖≤ε‖x̂‖
where ε>0 is the accepted tolerance fixed here at 10−4; ẑ=(x,Z,(ξ,α)) is the state vector of current values
(state, adjoint and control variables), x̂old is the vector from the previous iteration and finally ‖.‖ refers to
the norm of vector x̂. Our numerical simulations are done for the control time T =50 and with the maximal
age of infection θmax =30. Baseline parameters Λ=700, µ=0.04, m=0.25 and δ(θ)≡δ=0.05. Moreover,
we use the age–dependent infection rate β(θ)=0.00005(1+θ/(1+5θ)). The initial and boundary conditions

are S(0)=104, V (0)=0 and i0(θ)=60(θ+20)e−0.4(θ+50). Let I(t)=
∫ θmax

0
i(t,θ)dθ be the total number of

infected individuals and we further set ξmax =0.75 and αmax =0.65. The simulation results of optimization
problem (OCP) are illustrated in Figure 1 where we assume that the cost weighting factors for the two
control strategies are the same, that is C1 =C2 =50 and in Figure 2 where we assume that the weighting
factor for the cost of vaccination is lower than that of therapeutic treatment, that is C1 =50 and C2 =200.

We observe that the application of optimal controls keeps susceptible individuals at a relatively low level
and increases the population of vaccinated individuals for almost the entire intervention period. In addition,
it is optimal to start vaccination at the maximum rate. However, when the cost of therapeutic treatment
is higher than that of vaccination (see Figure 2), more effort should be devoted to vaccination than when
control costs are identical (see Figure 1). The application of the controls decreases with time and cancels
out at the final instant in both figures, which is consistent with the theoretical result of the Remark 3.1.
As a result, the total population of infected people, which had remained relatively low, increased at the end
of the intervention campaign, but not enough. Optimal therapeutic treatment differs according to the age of
infection. In fact, it is higher in people who have been infected for a short time, and decreases over time. This
means that to fight this disease effectively, we need to treat people from the very beginning of their infection.

5 Conclusion

In this work, we have formulated an age–structured model describing the transmission dynamics of an
infectious disease and taking into account imperfect vaccination and therapeutic treatment as control measures.
The model was rigorously analyzed to better understand its qualitative dynamics. These include mainly the
calculation of explicit expression of basic reproduction numberR0, the study of existence and stability of steady
states which shown that the disease–free steady state is locally asymptotically stable when R0<1. However,
this steady state may not be globally asymptotically stable for R0<1 since the model exhibits the backward
bifurcation phenomenon where the stable disease–free steady state coexists with a stable endemic steady state.
It is shown that this dynamics feature (backward bifurcation) is caused by the rate of therapeutic treatment
of infectious individuals. An optimal control problem is then formulated, aiming at minimizing the total
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Figure 1: Simulation of system (26) with the optimal control variables for the same control costs C1 =C2 =50.

Figure 2: Simulation of system (26) with the optimal control variables for the control costs C1 =50 and C2 =200.
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number of infected individuals and cost associated to vaccination and therapeutic treatment. We establish the
existence of an optimal solution, which we characterize using the maximum principle for general age–structured
systems. The problem is solved numerically using a Forward–Backward sweep method. Our numerical results
show that optimal vaccination and therapeutic treatment can significantly reduce the prevalence of the disease
and slow the spread of infection in the population. These optimal protocols are highly dependent on the
cost of the interventions, and the optimal treatment depends considerably on the age of the infection.

A Proof of Lemma 3.1

1.(i) Let us consider the functions h
(1)
r (i, ξ) = e−

∫ t
r [T (βi(σ,.))+ξ(σ)+µ]dσ and h

(2)
r (i) = e−

∫ t
r [T (βi(σ,.))+µ]dσ for

r > 0 and t ∈ [0, T ]. Then by direct computation based on the following arguments: for all
x,y ∈ R+, we have |e−x− e−y| ≤ |x− y|, there exists the positive constants Kk with k ∈ {1,2,3}
such that the functions h

(1)
r and h

(2)
r satisfy for (ik, ξk) with k ∈ {1,2}, the following inequal-

ities, |h(1)
r (i1, ξ1) − h

(1)
r (i2, ξ2)| ≤ K1

∫ t
0
|T (i1(σ, .)) − T (i2(σ, .))|dσ + K2

∫ t
0
|ξ1(σ) − ξ2(σ)|dσ and

|h(1)
r (i1)−h(1)

r (i2)| ≤K3

∫ t
0
|T (i1(σ,.))−T (i2(σ,.))|dσ. Using the method of integrating factors on

the ordinary differential equations and the method of caracteristic on the first–second and third equations
of system (26) respectively, we obtain the following expression of state variables:

S(t)=S0h
(1)
0 (i,ξ)+

∫ t

0

[Λ+T (α(r,.)i(r,.))]h(1)
r (i,ξ)dr;

V (t)=V0h
(2)
0 (i)+

∫ t

0

ξ(r)S(r)h(2)
r (i)dr;

i(t θ)=i0(θ−t)
πα(t, θ)

πα(t,θ−t)
1{θ>t}+i(t−θ,0)πα(t,θ)1{θ≤t}

(38)

From the above representation of solutions of system (26) and using the Lipschitz properties of the

functions h
(1)
r and h

(2)
r for all r≥0, the proof of these estimates follow similarly as in corresponding

result found in [3, 35].
(ii) Follows like in Item (i).

2. Let (ξn,αn)−→ (ξ,α) as n→∞, (Sn,Vn,in) and (S,V,i) be the state of system (26) corresponding to
(ξn,αn) and (ξ,α), respectively. By Riez theorem, there is a subsequence still denoted (ξn,αn), such that
(ξ2
n,α

2
n)−→(ξ2,α2) almost everywhere in [0,T ]×Q as n→∞. Thus, Lebesgue’s dominated convergence

theorem yields that ‖ξn‖2L1(0,T)−→‖ξ‖2L1(0,T) and ‖αn‖2L1(Q)−→‖α‖2L1(Q) as n→∞. On the other hand,

it follows that
∫
Q
χ(θ)in(t,θ)dtdθ−→

∫
Q
χ(θ)i(t,θ)dtdθ as n→∞. By Fatou’s Lemma, it follows that

~(ξ,α)≤ liminf
n→∞

~(ξn,αn). Hence, the functional ~(.,.) is lower semi–continuous. This achieves the proof
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