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1 Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France.
2 Acoustics Research Institute, Austrian Academy of Sciences, A-1040 Vienna, Austria.

3 University of Vienna, Department of Mathematics, A-1090 Vienna, Austria.

ABSTRACT

Waveform-based deep learning faces a dilemma between nonpara-
metric and parametric approaches. On one hand, convolutional neu-
ral networks (convnets) may approximate any linear time-invariant
system; yet, in practice, their frequency responses become more
irregular as their receptive fields grow. On the other hand, a paramet-
ric model such as LEAF is guaranteed to yield Gabor filters, hence
an optimal time–frequency localization; yet, this strong inductive
bias comes at the detriment of representational capacity. In this
paper, we aim to overcome this dilemma by introducing a neural
audio model, named multiresolution neural network (MuReNN).
The key idea behind MuReNN is to train separate convolutional
operators over the octave subbands of a discrete wavelet transform
(DWT). Since the scale of DWT atoms grows exponentially between
octaves, the receptive fields of the subsequent learnable convolu-
tions in MuReNN are dilated accordingly. For a given real-world
dataset, we fit the magnitude response of MuReNN to that of a well-
established auditory filterbank: Gammatone for speech, CQT for
music, and third-octave for urban sounds, respectively. This is a form
of knowledge distillation (KD), in which the filterbank “teacher” is
engineered by domain knowledge while the neural network “student”
is optimized from data. We compare MuReNN to the state of the art
in terms of goodness of fit after KD on a hold-out set and in terms of
Heisenberg time–frequency localization. Compared to convnets and
Gabor convolutions, we find that MuReNN reaches state-of-the-art
performance on all three optimization problems.

Index Terms— Convolutional neural network, digital filters,
filterbanks, multiresolution analysis, psychoacoustics.

1. INTRODUCTION

Auditory filterbanks are time-invariant systems whose design takes
inspiration from domain-specific knowledge in hearing science [1].
For example, the critical bands of the human cochlea inspires fre-
quency scales such as mel, bark, and ERB [2]. The phenomenon
of temporal masking calls for asymmetric impulse responses, moti-
vating the design of Gammatone filters [3]. Lastly, the constant-Q
transform (CQT), in which the number of filters per octave is fixed,
reflects the principle of octave equivalence in music [4].

In recent years, the growing interest for deep learning in signal
processing has proposed to learn filterbanks from data rather than
design them a priori [5]. Such a replacement of feature engineering
to feature learning is motivated by the diverse application scope of
audio content analysis: i.e., conservation biology [6], urban science
[7], industry [8], and healthcare [9]. Since these applications differ
greatly in terms of acoustical content, the domain knowledge which
prevails in speech and music processing is likely to yield suboptimal
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Figure 1: Graphical outline of the proposed method. We train a
neural network “student” ΦW to regress the squared magnitudes Y
of an auditory filterbank “teacher” Λ in terms of spectrogram-based
cosine distance Lx, on average over a dataset of natural sounds x.

performance. Instead, gradient-based optimization has the potential
to reflect the spectrotemporal characteristics of the data at hand.

Enabling this potential is particularly important in applications
where psychoacoustic knowledge is lacking; e.g., animals outside of
the mammalian taxon [10, 11]. Beyond its perspectives in applied
science, the study of learnable filterbanks has value for fundamental
research on machine listening with AI. This is because it repre-
sents the last stage of progress towards general-purpose “end-to-end”
learning, from the raw audio waveform to the latent space of interest.

Yet, success stories in waveform-based deep learning for audio
classification have been, up to date, surprisingly few—and even
fewer beyond the realm of speech and music [12]. The core hypothe-
sis of our paper is that this shortcoming is due to an inadequate choice
of neural network architecture. Specifically, we identify a dilemma
between nonparametric and parametric approaches, where the former
are represented by convolutional neural networks (convnets) and the
latter by architectures used in SincNet [13] or LEAF [14]. In theory,
convnets may approximate any finite impulse response (FIR), given
a receptive field that is wide enough; but in practice, gradient-based
optimization on nonconvex objectives yields suboptimal solutions
[12]. On the other hand, the parametric approaches enforce good
time–frequency localization, yet at the cost of imposing a rigid shape
for the learned filters: cardinal sine (inverse-square envelope) for
SincNet and Gabor (Gaussian envelope) for LEAF.

Our goal is to overcome this dilemma by developing a neural
audio model which is capable of learning temporal envelopes from
data while guaranteeing near-optimal time–frequency localization.
In doing so, we aim to bypass the explicit incorporation of psychoa-
coustic knowledge as much as possible. This is unlike state-of-the-art
convnets for filterbank learning such as SincNet or LEAF, whose
parametric kernels are initialized according to a mel-frequency scale.
Arguably, such careful initialization procedures defeat the purpose of
deep learning; i.e., to spare the human effort of feature engineering.

Companion website: https://github.com/lostanlen/lostanlen2023waspaa



2023 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 22-25, 2023, New Paltz, NY

Furthermore, it contrasts with other domains of deep learning (e.g.,
image processing) in which all convnet layers are simply initialized
with i.i.d. Gaussian weights [15].

Prior work on this problem has focused on advancing the state
of the art on a given task, sometimes to no avail [16]. In this article,
we take a step back and formulate a different question: before we try
to outperform an auditory filterbank, can we replicate its responses
with a neural audio model? To answer this question, we compare
different “student” models in terms of their ability to learn from a
black-box function or “teacher” by knowledge distillation (KD).

Given an auditory filterbank Λ and a discrete-time signal x of
length T , let us denote the squared magnitude of the filter response
at frequency bin f by Y [f, t] = |Λx|2[f, 2J t], where 2J is the
chosen hop size or “stride”. Then, given a model ΦW with weights
W, we evaluate the dissimilarity between teacher Λ and student
ΦW as their (squared) spectrogram-based cosine similarity Lx(W).
The distance of student and teacher in this similarity measure can
be computed via the L2 distance after normalizing across frequency
bins f , independently for each time t. Let |Φ̃Wx

∣∣2 and Ỹ denote
these normalized versions of student and teacher, then

Lx(W) = cosdist
(
|ΦW|2,Y

)
=

1

2

T/2J∑
t=1

F∑
f=1

∣∣|Φ̃Wx
∣∣2[f, t]− Ỹ[f, t]

∣∣2, (1)

where F is the number of filters. We seek to minimize the quantity
above by gradient-based optimization on W, on a real-world dataset
of audio signals {x1 . . .xN}, and with no prior knowledge on Λ.

2. NEURAL AUDIO MODELS

2.1. Learnable time-domain filterbanks (Conv1D)

As a baseline, we train a 1-D convnet ΦW with F kernels of the
same length 2L. With a constant stride of 2J , ΦWx writes as

ΦWx[f, t] = (x ∗ ϕf )[2
J t] =

L−1∑
τ=−L

x
[
2J t− τ

]
ϕf [τ ], (2)

where x is padded by L samples at both ends. Under this setting, the
trainable weights W are the finite impulse responses of ϕf for all
f , thus amounting to 2LF parameters.We initialize W as Gaussian
i.i.d. entries with null mean and variance 1/

√
F .

2.2. Gabor 1-D convolutions (Gabor1D)

As a representative of the state of the art (i.e., LEAF [14]), we train
a Gabor filtering layer or Gabor1D for short. For this purpose, we
parametrize each FIR filter ϕf as Gabor filter; i.e., an exponential
sine wave of amplitude af and frequency ηf which is modulated by
a Gaussian envelope of width σf . Hence a new definition:

ϕf [τ ] =
af√
2πσf

exp

(
− τ2

2σ2
f

)
exp(2πiηfτ). (3)

Under this setting, the trainable weights W amount to only 3F
parameters: W = {a1, σ1, η1, . . . , aF , σF , ηF }. Following LEAF,
we initialize center frequencies ηf and bandwidths σf so as to form
a mel-frequency filterbank [17] and set amplitudes af to one. We
use the implementation of Gabor1D from SpeechBrain v0.5.14 [18].

2.3. Multiresolution neural network (MuReNN)

As our original contribution, we train a multiresolution neural net-
work, or MuReNN for short. MuReNN comprises two stages, mul-
tiresolution approximation (MRA) and convnet; of which only the
latter is learned from data. We implement the MRA with a dual-tree
complex wavelet transform (DTCWT) [19]. The DTCWT relies on a
multirate filterbank in which each wavelet ψj has a null average and
a bandwidth of one octave. Denoting by ξ the sampling rate of x,
the wavelet ψj has a bandwidth with cutoff frequencies 2−(j+1)π
and 2−jπ. Hence, we may subsample the result of the convolution
(x ∗ψj) by a factor of 2j , yielding:

∀j ∈ {0, . . . , J − 1}, xj [t] = (x ∗ψj)[2
jt], (4)

where J is the number of multiresolution levels. We take J = 9 in
this paper, which roughly coincides with the number of octaves in
the hearing range of humans. The second stage in MuReNN consists
in defining convnet filters ϕf . Unlike in the Conv1D setting, those
filters do not operate over the full-resolution input x but over one
of its MRA levels xj . More precisely, let us denote by j[f ] the
decomposition level assigned to filter f , and by 2Lj the kernel size
for that decomposition level. We convolve xj[f ] with ϕf and apply
a subsampling factor of 2J−j[f ], hence:

ΦWx[f, t] = (xj[f ] ∗ ϕf )[2
J−j[f ]t]

=

Lj−1∑
τ=−Lj

xj[f ]

[
2J−j[f ]t− τ

]
ϕf [τ ] (5)

The two stages of subsampling in Equations 4 and 5 result in a uni-
form downsampling factor of 2J for ΦWx. Each learned FIR filter
ϕf has an effective receptive field size of 2j[f ]+1Lj[f ], thanks to the
subsampling operation in Equation 4. This resembles a dilated con-
volution [20] with a dilation factor of 2j[f ], except that the DTCWT
guarantees the absence of aliasing artifacts.

Besides this gain in frugality, as measured by parameter count
per unit of time, the resort to an MRA offers the opportunity to
introduce desirable mathematical properties in the non-learned part
of the transform (namely, ψf ) and have the MuReNN operator
ΦW inherit them, without need for a non-random initialization nor
regularization during training. In particular, ΦW has at least as many
vanishing moments as ψf . Furthermore, the DTCWT yields quasi-
analytic coefficients: for each j, xj = xR

j +ixI
j with xI

j ≈ H
(
xR

j

)
,

where the exponent R (resp. I) denotes the real part (resp. imaginary
part) and H denotes the Hilbert transform. Since ϕf is real-valued,
the same property holds for MuReNN: ΦIx = H(ΦRx).

We implement MuReNN on GPU via a custom implementation
of DTCWT in PyTorch1. Following [19], we use a biorthogonal
wavelet for j = 0 and quarter-shift wavelets for j ≥ 1. We set
Lj = 8Mj where Mj is the number of filters f at resolution j.
We refer to [21] for an introduction to deep learning in the wavelet
domain, with applications to image classification.

3. KNOWLEDGE DISTILLATION

3.1. Target auditory filterbanks

For each of the three different domains, speech, music and urban
environmental sounds, we use an auditory filterbank Λ that is tailored
to its respective spectrotemporal characteristics.

1https://github.com/kymatio/murenn
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Domain Dataset Teacher Conv1D Gabor1D MuReNN
Speech NTVOW Gammatone 2.12± 0.05 10.14± 0.09 2.00± 0.02
Music TinySOL VQT 8.76± 0.2 16.87± 0.06 5.28± 0.03
Urban SONYC-UST ANSI S1.11 3.26± 0.1 13.51± 0.2 2.57± 0.2
Synth Sine waves CQT 11.54± 0.5 22.26± 0.9 9.75± 0.4

Table 1: Mean and standard deviation of test loss after knowledge distillation over five independent trials. Each column corresponds to a
different neural audio model ΦW while each row corresponds to a different auditory filterbank and audio domain. See Section 4.2 for details.
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Figure 2: Left to right: evolution of validation losses on different domains with Conv1D (green), Gabor1D (blue), and MuReNN (orange), as a
function of training epochs. The shaded area denotes the standard deviation across five independent trials. See Section 4.2 for details.

Synth A constant-Q filterbank with Q = 8 filters per octave, cover-
ing eight octaves with Hann-modulated sine waves.

Speech A filterbank with 4-th order Gammatone filters tuned to the
ERB-scale, a frequency scale which is adapted to the equiv-
alent rectangular bandwidths of the human cochlea [22]. In
psychoacoustics, Gammatone filters provide a good approx-
imation to measured responses of the filters of the human
basilar membrane [3]. Unlike Gabor filters, Gammatone fil-
ters are asymmetric, both in the time domain and frequency
domain.We refer to [23] for implementation details.

Music A variable-Q transform (VQT) with Mj = 12 frequency
bins per octave at every level. The VQT is a variant of the
constant-Q transform (CQT) in which Q is decreased grad-
ually towards lower frequencies [24], hence an improved
temporal resolution at the expense of frequency resolution.

Urban A third-octave filterbank inspired by the ANSI S1.11-2004
standard for environmental noise monitoring [25]. In this
filterbank, center frequencies are not exactly in a geomet-
ric progression. Rather, they are aligned with integer Hertz
values: 40, 50, 60; 80, 100, 120; 160, 200, 240; and so forth.

We construct the Synth teacher via nnAudio [26], a PyTorch port
of librosa [27]; and Speech, Music, and Urban using the Large
Time–Frequency Analysis Toolbox (LTFAT) for MATLAB [28].

3.2. Gradient-based optimization

For all four “student” models, we initialize the vector W at random
and update it iteratively by empirical risk minimization over the
training set. We rely on the Adam algorithm for stochastic opti-
mization with default momentum parameters. Given the definition
of spectrogram-based cosine distance in Equation 1, we perform

reverse-mode automatic differentiation in PyTorch to obtain

∇Lx(W)[i] =

F∑
f=1

T/2J∑
t=1

∂|Φ̃Wx
∣∣2[f, t]

∂W[i]
(W)

×
(
|Φ̃Wx

∣∣2[f, t]− Ỹ[f, t]
)

(6)

for each entry W[i]. Note that the gradient above does not involve
the phases of the teacher filterbank Λ, only its normalized magni-
tude response Y given the input x. Consequently, even though our
models ΦW contain a single linear layer, the associated knowledge
distillation procedure is nonconvex, and thus resembles the training
of a deep neural network.

4. RESULTS AND DISCUSSION

4.1. Datasets

Synth As a proof of concept, we construct sine waves in a geometric
progression over the frequency range of the target filterbank.

Speech The North Texas vowel database (NTVOW) [29] contains
utterances of 12 English vowels from 50 American speakers,
including children aged three to seven as well as male and
female adults. In total, it consists of 3190 recordings, each
lasting between one and three seconds.

Music The TinySOL dataset [30] contains isolated musical notes
played by eight instruments: accordion, alto saxophone, bas-
soon, flute, harp, trumpet in C, and cello. For each of these
instruments, we take all available pitches in the tessitura (min
= B0, median = E4, max = C♯8 ) in three levels of intensity
dynamics: pp, mf, and ff. This results in a total of 1212 audio
recordings.

Urban The SONYC Urban Sound Tagging dataset (SONYC-UST)
[31] contains 2803 acoustic scenes from a network of au-
tonomous sensors in New York City. Each of these ten-second
scenes contains one or several sources of urban noise pollu-
tion, such as: engines, machinery and non-machinery impacts,
powered saws, alert signals, and dog barks.
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Figure 3: Compared impulse responses of Conv1D (left), Gabor1D
(center), and MuReNN (right) with different center frequencies after
convergence, with a Gammatone filterbank as target. Solid blue
(resp. dashed red) lines denote the real part of the impulse responses
of the learned filters (resp. target). See Section 4.3 for details.

4.2. Benchmarks

For each audio domain, we randomly split its corresponding dataset
into training, testing and validation subsets with a 8:1:1 ratio. During
training, we select 212 time samples from the middle part of each
signal, i.e., the FIR length of the filters in the teacher filterbank. We
train each model with 100 epochs with an epoch size of 8000.

Table 1 summarizes our findings. On all three benchmarks, we
observe that MuReNN reaches state-of-the-art performance, as mea-
sured in terms of cosine distance with respect to the teacher filterbank
after 100 epochs. The improvement with respect to Conv1D is most
noticeable in the Synth benchmark and least noticeable in the Speech
benchmark. Furthermore, Figure 2 indicates that Gabor1D barely
trains at all: this observation is consistent with the sensitivity of
LEAF with respect to initialization, as reported in [32]. We also
notice that MuReNN trains faster than Conv1D on all benchmarks
except for Urban, a phenomenon deserving further inquiry.

4.3. Error analysis

The mel-scale initialization of Gabor1D filters and the inductive
bias of MuReNN enabled by octave localization gives a starting
advantage when learning filterbanks on log-based frequency scales,
as used for the Gammatone and VQT filterbank. Expectedly, this
advantage is absent with a teacher filterbank that does not follow a
geometric progression of center frequencies, as it is the case in the
ANSI scale. Figure 2 reflects these observations.

To examine the individual filters of each model, we take the
speech domain as an example and obtain their learned impulse re-
sponses. Figure 3 visualizes chosen examples at different frequencies
learned by each model together with the corresponding teacher Gam-
matone filters. In general, all models are able to fit the filter responses
well. However, it is noticeable that the prescribed envelope for Ga-
bor1D impedes it from learning the asymmetric target Gammatone
filters. This becomes prominent especially at high frequencies. From
the strong envelope mismatches at coinciding frequency we may
deduce that center frequencies and bandwidths did not play well
together during training. On the contrary, MuReNN and Conv1D
are flexible enough to learn asymmetric temporal envelopes without
compromising its regularity in time. Although the learned filters
of Conv1D are capable of fitting the frequencies well, they suf-
fer from noisy artifacts, especially outside their essential supports.

Figure 4: Distribution of Heisenberg time–frequency ratios for each
teacher–student pair (lower is better). See Section 4.3 for details.

Indeed, through limiting the scale and support of the learned fil-
ters, MuReNN restrains the potential introduction of high-frequency
noises of a learned filter of longer length. The phase misalignment at
low frequencies is a natural consequence of the fact that the gradients
are computed from the magnitudes of the filterbank responses.

Finally, we measure the time–frequency localization of all filters
by computing the associated Heisenberg time–frequency ratios [33].
From theory we know that Gaussian windows are optimal in this
sense [34]. Therefore, it is not surprising that Gabor1D yields the
best localized filters, even outperforming the teacher, see Figure 4.
Expectedly, the localization of the filters from Conv1D is poor and
appears independent of the teacher. MuReNN roughly resembles the
localization of the teachers but has some poorly localized outliers in
higher frequencies, deserving further inquiry.

5. CONCLUSION

Multiresolution neural networks (MuReNN) have the potential to
advance waveform-based deep learning. They offer a flexible and
data-driven procedure for learning filters which are “wavelet-like”:
i.e., narrowband with compact support, vanishing moments, and
quasi-Hilbert analyticity. Those experiments based on knowledge
distillation from three domains (speech, music, and urban sounds)
illustrate the suitability of MuReNN for real-world applications. The
main limitation of MuReNN lies in the need to specify a number
of filters per octave Mj , together with a kernel size Lj . Still, a
promising finding of our paper is that prior knowledge on Mj and
Lj suffices to finely approximate non-Gabor auditory filterbanks,
such as Gammatones on an ERB scale, from a random i.i.d. Gaussian
initialization. Future work will evaluate MuReNN in conjunction
with a deep neural network for sample-efficient audio classification.
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