Photocatalytic CO2 reduction using La-Ni bimetallic sites within a covalent organic framework - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Nature Communications Année : 2023

Photocatalytic CO2 reduction using La-Ni bimetallic sites within a covalent organic framework

Résumé

The precise construction of photocatalysts with diatomic sites that simultaneously foster light absorption and catalytic activity is a formidable challenge, as both processes follow distinct pathways. Herein, an electrostatically driven self-assembly approach is used, where phenanthroline is used to synthesize bifunctional LaNi sites within covalent organic framework. The La and Ni site acts as optically and catalytically active center for photocarriers generation and highly selective CO2-to-CO reduction, respectively. Theory calculations and in-situ characterization reveal the directional charge transfer between La-Ni double-atomic sites, leading to decreased reaction energy barriers of *COOH intermediate and enhanced CO2-to-COconversion. As a result, without any additional photosensitizers, a 15.2 times enhancement of the CO2 reduction rate (605.8 μmol·g−1·h−1) over that of a benchmark covalent organic framework colloid (39.9 μmol·g−1·h−1) and improved CO selectivity (98.2%) are achieved. This work presents a potential strategy for integrating optically and catalytically active centers to enhance photocatalytic CO2 reduction.

Domaines

Catalyse
Fichier principal
Vignette du fichier
Nature Comm 2023 bimetallic photocatalyst for CO2 reduction.pdf (6.58 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04170903 , version 1 (25-07-2023)

Identifiants

Citer

Min Zhou, Zhiqing Wang, Aohan Mei, Zifan Yang, Wen Chen, et al.. Photocatalytic CO2 reduction using La-Ni bimetallic sites within a covalent organic framework. Nature Communications, 2023, 2023 (14), pp.2473. ⟨10.1038/s41467-023-37545-2⟩. ⟨hal-04170903⟩
33 Consultations
22 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More