DAGOBAH: Table and Graph Contexts for Efficient Semantic Annotation of Tabular Data - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

DAGOBAH: Table and Graph Contexts for Efficient Semantic Annotation of Tabular Data

Viet-Phi Huynh
  • Fonction : Auteur
Yoan Chabot
  • Fonction : Auteur
  • PersonId : 1268049
Thomas Labbé
  • Fonction : Auteur
Pierre Monnin
Raphaël Troncy

Résumé

In this paper, we present the latest improvements of the DAGOBAH system that performs automatic pre-processing and semantic interpretation of tables. In particular, we report promising results obtained in the SemTab 2021 challenge thanks to optimisations in lookup mechanisms and new techniques for studying the context of nodes in the target knowledge graph. We also present the deployment of DAGOBAH algorithms within the Orange company via the TableAnnotation API and a front-end DAGOBAH user interface. These two access methods enable to accelerate the adoption of Semantic Table Interpretation solutions within the company to meet industrial needs.
Fichier principal
Vignette du fichier
iswc2021.pdf (739.15 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04170864 , version 1 (25-07-2023)

Identifiants

  • HAL Id : hal-04170864 , version 1

Citer

Viet-Phi Huynh, Jixiong Liu, Yoan Chabot, Frédéric Deuzé, Thomas Labbé, et al.. DAGOBAH: Table and Graph Contexts for Efficient Semantic Annotation of Tabular Data. The 20th International Semantic Web Conference (ISWC 2021), Oct 2021, En ligne, Unknown Region. pp.2. ⟨hal-04170864⟩

Collections

CNRS EURECOM
106 Consultations
47 Téléchargements

Partager

More