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Abstract
Physicists routinely need probabilistic models for a number of tasks such as parameter inference or the generation of new realizations of a 
field. Establishing such models for highly non-Gaussian fields is a challenge, especially when the number of samples is limited. In this 
paper, we introduce scattering spectra models for stationary fields and we show that they provide accurate and robust statistical 
descriptions of a wide range of fields encountered in physics. These models are based on covariances of scattering coefficients, i.e. 
wavelet decomposition of a field coupled with a pointwise modulus. After introducing useful dimension reductions taking advantage 
of the regularity of a field under rotation and scaling, we validate these models on various multiscale physical fields and demonstrate 
that they reproduce standard statistics, including spatial moments up to fourth order. The scattering spectra provide us with a low- 
dimensional structured representation that captures key properties encountered in a wide range of physical fields. These generic 
models can be used for data exploration, classification, parameter inference, symmetry detection, and component separation.
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Physicists need to characterize fields with a variety of structures, but building probabilistic models beyond the simple Gaussian model 
is often challenging, especially when the number of data samples is limited. We introduce scattering spectra models that make use of 
symmetry and regularity properties of physical fields and show that they can provide accurate and compact statistical descriptions 
for a wide range of fields. Providing both summary statistics and generative models, this representation can be used for data explor-
ation, classification, parameter inference, symmetry detection, and component separation in analyzing the ever-growing datasets in 
physics and beyond.
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Introduction
An outstanding problem in statistics is to estimate the probability 

distribution p(x) of high-dimensional data x from few or even one 

observed sample. In physics, establishing probabilistic models of 

stochastic fields is also ubiquitous, from the study of condensed 

matter to the Universe itself. Indeed, even if physical systems 

can generally be described by a set of differential equations, it is 

usually not possible to fully characterize their solutions. 

Complex physical fields, described here as non-Gaussian random 

processes x, may indeed include intermittent phenomena as well 

as coherent geometric structures such as vortices or filaments. 

Having realistic probabilistic models of such fields however allows 

for considerable applications, for instance to accurately charac-

terize and compare nonlinear processes, or to separate different 

sources and solve inverse problems. Unfortunately, no generic 

probabilistic model is available to describe complex physical fields 

such as turbulence or cosmological observations. This paper aims 
at providing such models for stationary fields, which can be esti-
mated from one observed sample only.

At thermal equilibrium, physical systems are usually character-
ized by the Gibbs probability distribution, also called Boltzmann 
distribution, that depends on the energy of the systems (1). For non-
equilibrium systems, at a fixed time one may still specify the prob-
ability distribution of the field with a Gibbs energy, which is an 
effective Hamiltonian providing a compact representation of its 
statistics. Gibbs energy models can be defined as maximum en-
tropy models conditioned by appropriate moments (2). The main 
difficulty is to define and estimate the moments which specify 
these Gibbs energies.

For stationary fields, whose probability distributions are invari-
ant to translation, moments are usually computed with a Fourier 
transform, which diagonalizes the covariance matrix of the field. 
The resulting covariance eigenvalues are the Fourier power 
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spectrum. However, capturing non-Gaussian properties requires to 
go beyond second-order moments of the field. Third- and fourth- 
order Fourier moments are called bispectrum and trispectrum. 
For a cubic d-dimensional stationary field of length L, the number 
of coefficients in the raw power spectrum, bispectrum, and trispec-
trum are O(Ld), O(L2d), and O(L3d), respectively. High-order moment 
estimators have high variance and are not robust, especially for 
non-Gaussian fields, because of potentially rare outliers which 
are amplified. It is thus very difficult to accurately estimate these 
high-order Fourier spectra from a few samples. Accurate estima-
tions require considerably reducing the number of moments and 
eliminating the amplification effect of high-order moments.

Local conservation laws for mass, energy, momentum, charge, 
etc. result in continuity equations or transport equations. The re-
sulting probability distributions of the underlying processes thus 
are typically regular to deformations that approximate the local 
transport. These properties have motivated many researchers to 
make use of a wavelet transform as opposed to a Fourier transform, 
which provides localized descriptors. Most statistical studies have 
concentrated on second-order and marginal wavelet moments, 
e.g. (3–5), which fail to capture important non-Gaussian properties 
of a field. Other studies (6) use wavelet operator for interpretation 
with application to cosmological parameter inference, but rely on 
a trained neural network model.

In recent years, new representations have been constructed by 
applying pointwise nonlinear operators on the wavelet trans-
forms to recover their non-Gaussian information. The scattering 
transform, for instance, is a representation that is built by cascad-
ing wavelet transforms and nonlinear modulus (7, 8). This re-
presentation has been used in astrophysics and cosmology to 
study the interstellar medium (9, 10), weak-lensing fields (11, 
12), galaxy surveys (13–15), and radio observations (16) (readers 
with physics background may find this review (17) useful). Other 
representations, which are built from covariances of phase har-
monics of wavelet transforms (18, 19), have also been used to 
model different astrophysical processes (20–22). Such models, 
which can be built from a single image, have in turn enabled the 
development of new component separation methods (23, 24), 
which can be directly applied to observational data without any 
particular prior model of the components of a mixture (25, 26).

These models however suffer from a number of limitations: they 
are not very good at reproducing vortices or long thin filaments, and 
they require an important number of coefficients to capture de-
pendencies between distant scales, as well as angular dependen-
cies. Building on those previous works, Morel et al. (27) introduced 
a reduced scattering spectra representations for time series by le-
veraging scale invariance. In this paper, we present the scattering 
spectra for datasets with dimensions more than one, which is a low- 
dimensional representation able to efficiently describe a wide range 
of non-Gaussian processes encountered in physics. In particular, 
we show that it is possible to take into account the intrinsic regular-
ity of physical fields and dramatically reduce the size of such repre-
sentations. The first part of the paper presents maximum entropy 
models and the scattering spectra statistics, as well as their dimen-
sional reduction. The second part of the paper presents a quantita-
tive validation of these models on various 2D multiscale physical 
fields and discuss their limitations.

Notations
v∗ is the complex conjugate of a scalar v. Avei averages values in-
dexed by i in a finite set. x̂[k] is the Fourier transform of x[u], 
whether u is a continuous variable in Rd or belongs to finite 

periodic lattice. E{Φ(x)} is the expectation of Φ(x) according to the 
probability distribution p(x) of a vector x. log stands for base 2 
logarithm.

Methods
Gibbs energy of stationary fields
We first review the properties of Gibbs energies resulting from max-
imum entropy models conditioned by moment values (28–30). We 
write x[u] a field, where the site index u belongs to a cubic 
d-dimensional lattice of size L. It results that x ∈ RLd

.
Assume that x ∈ RLd 

has a probability density p(x) and consider 
Gibbs energy models linearly parameterized by a vector θ = 
{θm}m≤M over a potential vector Φ(x) = {Φm(x)}m≤M of dimension M

Uθ(x) = 〈θ, Φ(x)〉 =
M

m=1

θ∗m Φm(x). (1) 

They define exponential probability models

pθ(x) = Z−1
θ e−〈θ,Φ(x)〉. (2) 

The model class is thus defined by the potential vector Φ(x), which 
needs to be chosen appropriately.

If it exists, the maximum entropy distribution conditioned by 
E{Φ(x)} is a pθ0 which belongs to this model class. It has a maximum 
entropy H(pθ0 ) = − ∫ pθ0 (x) log pθ0 (x) dx under the expected value 
condition

∫ Φ(x) pθ0 (x) dx = E{Φ(x)}. (3) 

In statistical physics, pθ0 is a macrocanonical model defined by a 

vector E{Φ(x)} of observables. One can verify that θ0 also minimizes 
the Kullback–Liebler divergence within the class

D(p‖pθ0 ) = ∫ p(x) log
p(x)

pθ0 (x)
dx = H(pθ0 ) − H(p). (4) 

The main topic of the paper is to specify Φ(x) in order to define ac-
curate maximum entropy models for large classes of physical 
fields, which can be estimated from a small number n of samples 
x̅i. In this section, we suppose that n = 1. Reducing the model error 
given by Eq. 4 amounts to defining Φ which reduces the excess en-
tropy of the model. This can be done by enriching Φ(x) and build-
ing very high-dimensional models. However, we must also take 
into account the empirical estimation error of E{Φ(x)} by Φ(x̅1), 

measured by E{‖Φ(x) − E{Φ(x)}‖2}.
In this paper, macrocanonical models are approximated by mi-

crocanonical models, which have a maximum entropy over a mi-
crocanonical set of width ϵ > 0

Ωϵ = {x ∈ RLd
: ‖Φ(x) − Φ(x̅1)‖2 ≤ ϵ}. (5) 

Supplementary material A reviews a sampling algorithm for such 
model. It also explains how to extend the definition of Ωϵ for n > 1 
samples x̅i by replacing Φ(x̅1) by AveiΦ(x̅i). If Φ(x) concentrates 
around E{Φ(x)} then the microcanonical model converges to the mac-
rocanonical model when the system length L goes to ∞ and ϵ goes to 
0. The concentration of Φ(x) generally imposes that its dimension M 

is small relatively to the dimension Ld of x. The choice of Φ(x) must 
thus incorporate a tradeoff between the model error [4] and the dis-
tance between micro and macrocanonical distributions.

Fourier polyspectra
Gaussian random fields are maximum entropy models condi-
tioned on first- and second-order moments. The potential vector 
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Φ(x) is then an empirical estimator of first- and second-order mo-
ments of x. For stationary fields, there is only one first-order mo-
ment E{x[u]} which can be estimated with an empirical averagea

over u: Aveux[u]. Similarly, the covariance matrix E{x[u]x[u′]} 
only depends on u − u′, so only the diagonal coefficients in 
Fourier space are informative, which are called the power spec-
trum,

E{x̂[k] x̂[k′]∗} with k = k′. (6) 

The off-diagonal elements vanish because of phase cancellation 
under all possible translations, which means the second-order 
moments treat Fourier coefficients independently, and cannot 
describe relations or dependence between them. The diagonal el-

ements, which can also be written as |x̂[k]|2, can be estimated 

from a single sample x by averaging |x̂[k]|2 over frequency bins 
that are large enough to reduce the estimator variance. A uni-
form binning and sampling along frequencies results in power 

spectrum estimators with O(Ld) elements, so the Gaussian model 
is compact and feasible.

However, the Gaussian random field model has limited power 
to describe complex structures. The majority of fields encoun-
tered in scientific research are not Gaussian. Non-Gaussianity 
usually means dependence between Fourier coefficients at differ-
ent frequencies. The traditional way goes to higher orders mo-
ments of x̂, the polyspectra (31), where phase cancellation 
implies that for stationary fields, only the following moments 
are informative,

E{x̂[k1] . . . x̂[kn]} with k1 + · · · + kn = 0, (7) 

while other moments are zero. These polyspectra at order n > 2 
capture dependence between n − 1 independent frequencies. As 
the leading term, the Fourier bispectrum specifies the nonzero 

third-order moments and has O(L2d) coefficients. However, bispec-
trum is usually not sufficient to characterize non-Gaussian fields. 
For example, it vanishes if the field distribution is symmetric 
p(x) = p( − x). One must then estimate fourth-order Fourier mo-

ments, the trispectrum, which has O(L3d) coefficients.
There are two main problems for the polyspectra coefficients to 

become proper potential functions Φ(x) in the maximum entropy 
models. First, the number of coefficients increases sharply with 
the order. Second, high-order moments are not robust and diffi-
cult to estimate from a few realizations (32). For random fields 
with a heavy tail distribution, which is ubiquitous in complex sys-
tems (33–37), higher order moments may not even exist. Those 
two problems are common for high-order moments and have 
been demonstrated in real-world applications (38, 39). In the fol-
lowing two sections, we introduce modifications to this approach 
to solve those problems.

Wavelet polyspectra
Many physical fields exhibit multiscale structures induced by 
nonlinear dynamics, which implies regularity of p(x) in frequency. 
The wavelet transform groups Fourier frequencies by wide loga-
rithmic bands, providing a natural way to compress the Fourier 
polyspectra. The compression not only reduces the model size 
but also improves estimator convergence. We use the wavelet 
transform to compute a compressed power spectrum estimate, 
as well as a reduced set of O( log2 L) third- and O( log3 L) fourth- 
order wavelet moments, allowing for efficient estimation of the 
polyspectra.

Wavelet transform
A wavelet is a localized wave-form ψ[u] for u ∈ Rd which has a zero 
average ∫

Rd ψ[u] du = 0. We shall define complex-valued wavelets 
ψ[u] = g[u] eiξ.u, where g[u] is a real window whose Fourier trans-
form ĝ[k] is centered at k = 0 so that ψ̂[k] = ĝ[k − ξ] is localized in 
the neighborhood of the frequency ξ. Figure S1 shows ψ and 
ψ̂ for a d = 2 dimensional Morlet wavelet described in 
supplementary material B. The wavelet transform is defined by 
rotating ψ[u] with a rotation r in Rd and by dilating it with dyadic 
scales 2j > 1. It defines

ψλ[u] = 2−jd ψ[2−jr−1u] with λ = 2−j rξ. (8) 

Its Fourier transform is ψ̂λ[k] = ĝ[2jr−1(k − ξ)], which is centered at 
the frequency λ and concentrated in a ball whose radius is propor-

tional to 2−j.
To decompose a field x[u] defined over a grid of width L, the 

wavelet is sampled on this grid. Wavelet coefficients are calcu-
lated as convolutions with periodic boundary conditions

Wx[u, λ] = x ⋆ ψλ[u] =


u′
x[u′] ψλ[u − u′]. (9) 

It measures the variations of x in a spatial neighborhood of u of 

length proportional to 2j, and it depends upon the values of x̂ in 

a frequency neighborhood of k = λ of length proportional to 2−j. 

The scale 2j is limited to 1 ≤ j ≤ J, and for practical application to 
fields with a finite size L, the choice of J is limited by J < log L. 
Left part of Fig. 1 illustrates the wavelet transform of an image.

The rotation r is chosen within a rotation group of cardinal R, 
where R does not depend on L. Wavelet coefficients need to be cal-
culated for R/2 rotations because Wx[u, − λ] = Wx[u, λ]∗ for real 
fields. In d = 2 dimensions, the R rotations have an angle 2πℓ/R, 
and we set R = 8 in all our numerical applications, which boils 
down to four different wavelet orientations. The total number of 
wavelet frequencies λ is RJ = O( log L)b as opposed to Ld Fourier 
frequencies.

A wavelet transform is also stable and invertible if ψ satisfies a 
Littlewood-Paley condition, which requires an additional convolu-
tion with a low-pass scaling function ψ0 centered at the frequency 
λ = 0. The specifications are detailed in supplementary material B.

Wavelet power spectrum
Given scaling regularity, one can compress the O(Ld) power 
spectrum coefficients into RJ = O( log L) coefficients using a 
logarithmic binning defined by wavelets. This is obtained by 
averaging the power spectrum with weight functions as the 
Fourier transform of wavelets, which are band-pass windows, 
Avek(E{|x̂[k]|2} |ψ̂λ[k]|2). The limited number of wavelet power spec-
trum coefficients has reduced estimation variance. In fact, they 
are also the diagonal elements of the wavelet covariance matrix, 
Wx[u, λ]Wx[u, λ]∗ = |Wx[u, λ]|2, therefore an empirical estimation 
can also be written as an average over u:

M2 = Ave
u
|Wx[u, λ]|2. (10) 

Similar to the power spectrum, phase cancellation due to trans-
lation invariance means that the off-diagonal blocks, i.e. the 
cross-correlations between different wavelet frequency bands 
are nearly zero because the support of two wavelets ψ̂λ and ψ̂λ′

are almost disjoint, as illustrated in Fig. 2a.
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Selected third- and fourth-order wavelet moments
One may expect to compress the polyspectra in a similar manner 
with a wavelet transform, taking advantage of the regularities of 
the field probability distribution. However, it is nontrivial to loga-
rithmically bin the polyspectra because more than one independ-
ent frequency is involved and the phase cancellation condition 
needs to be considered.

To solve this problem, let us revisit the phase cancellation of 
two frequency bands, which causes their correlation to be zero,

E{Wx[u, λ] Wx[u′, λ′]∗} ∼ 0, (11) 

for λ ≠ λ′. To create a nonzero correlation, we must realign the sup-
port of Wx[u, λ] and Wx[u′, λ′] in Fourier space through nonlinear 
transforms. As shown in Fig. 2b, we may apply a square modulus 
to one band in the spatial domain, which recenters its frequency 

support at origin. Indeed, |x ⋆ ψλ|
2 = (x ⋆ ψλ)(x ⋆ ψλ)

∗ has a Fourier 
support twice as wide as that of x ⋆ ψλ, and will overlap with an-
other wavelet band with lower frequency than λ. The transformed 

fields |x ⋆ ψλ|
2 can be interpreted as maps of locally measured 

power spectra. Correlating this map with another wavelet band 
x ⋆ ψ′λ gives some third-order moments

E{|Wx|2[u, λ] Wx[u′, λ′]∗} (12) 

that are a priori nonzero. Furthermore, for wide classes of mul-
tiscale processes having a regular power spectrum, it suffices to 
only keep the coefficients at u = u′ because of random phase 
fluctuation (see supplementary material B). For stationary 

random fields, they can be estimated with an empirical average 
over u,

M3 = Ave
u

(|Wx|2[u, λ] Wx[u, λ′]∗). (13) 

Now we obtain a set of statistics characterizing the dependence of 
Fourier coefficients in two wavelet bands in a collective way, which 
are selected third-order moments. They can be interpreted as a 
logarithmic frequency binning of certain bispectrum coefficients. 

There are about R2J2 = O( log2 L) such coefficients, which is a sub-

stantial compression compared to the O(L2d) full bispectrum coeffi-
cients. Similarly, we consider the cross correlation between two 
wavelet bands both transformed by the square modulus operation 
and obtain a wavelet binning of fourth-order moments,

E{|Wx[u, λ]|2 |Wx[u′, λ′]|2} − E{|Wx[u, λ]|2}E{|Wx[u′, λ′]|2}. (14) 

For stationary fields, this covariance only depends on u − u′. A fur-
ther reduction of such a large covariance function is possible be-
cause its Fourier transform over u − u′ has two properties. First, it 
typically does not have higher frequency components than the ini-
tial wavelet transforms involved (see Fig. 2) as the phase fluctua-
tions have been eliminated by the square modulus, and second, 
for fields with multiscale structures, it is regular and can be ap-
proximated with another logarithmic frequency binning. Thus, 
we can compress the large covariance function with a second 
wavelet transform, and estimate it by an empirical average over u:

M4 = Ave
u

(W|Wx|2[u, λ, γ]W|Wx|2[u, λ′, γ]∗), (15) 

Fig. 1. Steps to build a feasible model for a random field x from only one or a few realizations. We first build a low-dimensional representation Φ(x) of the 
random field, which specifies a maximum entropy model. The representation Φ(x) is obtained by conducting the wavelet transform Wx and its modulus 
|Wx|, and then computing the means and covariance of all wavelet channels (Wx, |Wx|). Such a covariance matrix is further binned and sampled using 
wavelets to reduce its dimensionality, which is called the scattering spectra S̅(x). Finally, These scattering spectra are renormalized and reduced in 
dimension by thresholding its Fourier coefficients along rotation and scale parameters Φ(x) = PS̅, making use of the regularity properties of the field. For 
many physical fields, this representation can be as small as only around ∼ 102 coefficients for a 256×256 field.

Fig. 2. a) For λ ≠ λ′, the Fourier supports of x ⋆ ψλ and x ⋆ ψλ′ typically do not overlap. b) The Fourier support of |x ⋆ ψλ|
2 is twice larger and centered at 0 and 

hence overlaps with x ⋆ ψλ′ if |λ′| ≤ |λ|. c) The Fourier support of |x ⋆ ψλ| is also centered at 0 and hence overlaps with x ⋆ ψλ′ if |λ′| < |λ|.
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where (W|Wx|2)[u, λ, γ] = |x ⋆ ψλ|
2 ⋆ ψγ[u], and the central frequen-

cies of the second wavelets verifies |λ| ≥ |λ′| > |γ|. There are about 

R3J3 = O( log3 L) such coefficients, which is also a substantial com-

pression compared to the O(L3d) full trispectrum coefficients.

Scattering spectra
In general, the estimation of high-order moments has a high vari-
ance because high-order polynomials amplify the effect of out-
liers. An interesting idea learned from the scattering transform 
approach (7, 8) is that the multiplication (Wx)(W∗x) = |Wx|2 used 
in the higher order moments [10, 13, 15] can be replaced by the 
wavelet modulus |Wx|, which produces qualitatively similar esti-
mators but with improved robustness and better efficiency in 
presence of sparse structuresc (17). The resulting moments after 
such a replacement only depend on the mean and covariance ma-
trix of (Wx, |Wx|), which are low-order transforms of the original 
field x.

Local statistics of wavelet modulus have been studied to ana-
lyze properties of image textures (41). Their mathematical proper-
ties have been analyzed to capture non-Gaussian characteristics 
of random fields (18, 19) in relation to scattering moments (7, 8). 
Scattering spectra have been defined on 1D time series (27), 
from the joint covariance of a wavelet transform and its modulus: 
(Wx, |Wx|). We extend it to fields of arbitrary dimension d and 
length L, in relation to Fourier high-order moments, and define 
models of dimension O( log3 L).

First and second wavelet moments, sparsity
For non-Gaussian fields x, wavelet coefficients Wx[u, λ] define 
fields which are often sparse (42, 43). This is a non-Gaussian prop-
erty that can be captured by first-order wavelet moments 
E{|Wx[u, λ]|}. If x is a Gaussian random field then Wx[u, λ] remains 

Gaussian but complex-valued so, and we have E{|Wx|}2

E{|Wx|2}
=

π
4

. This ra-

tio decreases when the sparsity of Wx[u, λ] increases. The ex-
pected value of |Wx| is estimated by

S1(x)[λ] = Ave
u
|Wx[u, λ]| (16) 

and the ratio is calculated with the second-order wavelet spec-
trum estimator

S2(x)[λ] = M2(x)[λ] = Ave
u

(|Wx|2[u, λ]). (17) 

Cross-spectra between scattering channels
Let us now replace |Wx|2 by |Wx| in the selected third- and fourth- 
order wavelet moments described in the previous section. The 
third-order moments [13] become E{|Wx[u, λ]|Wx[u, λ′]∗}. Such mo-
ments are a priori nonzero if the Fourier transforms of |Wx[u, λ]| = 
|x ⋆ ψλ| and Wx[u, λ′] = x ⋆ ψλ′ overlap. This is the case if |λ′| < |λ| as 
illustrated in Fig. 2. Eliminating the square thus preserves nonzero 
moments which can capture dependencies between different fre-
quencies λ and λ′. The third-order moment estimators given by Eq. 
13 can thus be replaced by lower cross-correlations between |Wx|
and Wx at |λ| ≥ |λ′|

S3(x)[λ, λ′] = Ave
u

(|Wx|[u, λ]Wx[u, λ′]∗). (18) 

Replacing |Wx|2 by |Wx| in the fourth-order wavelet moments [15] 
amounts to estimating the covariance matrix of wavelet modulus 
fields |Wx|. As the u − u′ dependency of this covariance can also be 

characterized by a second wavelet transform, this amounts in 
turn to estimate the covariance of scattering transforms 
W|Wx|[u, λ, γ] = |x ⋆ ψλ| ⋆ ψγ[u]

S4(x)[λ, λ′, γ] = Ave
u

(W|Wx|[u, λ, γ]W|Wx|[u, λ′, γ]∗), (19) 

for |λ| ≥ |λ′| ≥ |γ|. It provides a wavelet spectral estimation of the 
covariance of |Wx|.

Combining the moment estimators of Eqs. 16–19 defines a vec-
tor of scattering spectra

S(x) = (S1(x), S2(x), S3(x), S4(x)). (20) 

It provides a mean and covariance estimation of the joint wavelet 
and wavelet modulus vectors (Wx, |Wx|). It resembles the second-, 
third-, and fourth-order Fourier spectra but has much fewer coef-
ficients and better information concentration. Considering the 
conditions satisfied by λ, λ′, and γ, the exact dimension of S(x) is 

RJ + R2J(J − 1)/8 + R3J(J2 − 1)/48, of the order O( log3 L).

Renormalization
Scattering spectra coefficients must often be renormalized to im-
prove the sampling of maximum entropy models. Indeed, multi-
scale random processes often have a power spectrum that has a 
power law decay E{|x̂[k]|2} ∼ |k|−η over a wide range of frequencies, 
long-range correlations corresponding to a strong decay from 
large to small scales. The wavelet spectrum also has a power-law 
decay E{|Wx[u, λ]|2} ∼ |λ|−η. This means that if we build a maximum 
entropy model with Φ(x) = S(x) then the coordinate of Φ(x) of low 
frequencies λ have a much larger amplitude and variance than 
at high frequencies. The microcanonical model is then dominated 
by low frequencies and is unable to constrain high-frequency mo-
ments. The same issue appears when computing the θ0 parame-
ters of a macrocanonical model defined in Eq. 3, for which it has 
been shown that renormalizing to 1 the variance of wavelet coef-
ficients at all scales avoid numerical instabilities (44). Without 
such a normalization, the calculation of θ0 parameters at different 
frequencies is ill-conditioned, which turns into a “critical slowing 
down” of iterative optimization algorithms. The proposed normal-
ization is closely related to Wilson renormalization.

We renormalize the scattering spectra by the variance of wave-
let coefficients, σ2[λ] = AveiS2(x̅i)[λ], which can be estimated from a 
few samples. The renormalized scattering spectra are

S̅(x) = (S̅1(x), S̅2(x), S̅3(x), S̅4(x)) (21) 

defined by

S̅1(x)[λ] =
S1(x)[λ]

σ[λ]
, S̅2(x)[λ] =

S2(x)[λ]
σ2[λ]

S̅3(x)[λ, λ′] =
S3(x)[λ, λ′]

σ[λ]σ[λ′]
, S̅4(x)[λ, λ′, γ] =

S4(x)[λ, λ′, γ]
σ[λ]σ[λ′]

.

(22) 

The microcanonical models proposed in this paper are built from 
these renormalized statistics and/or their reduced version de-
scribed below.

Dimensionality reduction for physical fields
Although much smaller than the polyspectra representation, the 
scattering spectra ̅S representation still has a large size. Assuming 
isotropy and scale invariance of the field x, a first-dimensional 
reduction can be performed that relies on the equivariance prop-
erties of scattering spectra with respect to rotation and scaling 
(see supplementary material C). However, such invariances can-
not be assumed in general. In this section, we propose to construct 
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a low-dimensional representation by only assuming regularity 
under rotation or scaling of the scales involved in the scattering 
spectra representation. A simplified version of such a dimensional 
reduction has been introduced in Ref. (9). We refer the reader to 
supplementary material D for technical details.

The goal of the reduction is to approximate the covariance co-
efficients S̅3 and S̅4, the most numerous, using only a few coeffi-
cients. This can be seen as a covariance matrix estimation 
problem. To do so, we first use a linear transform to sparsify the 
covariance matrix and then perform a threshold clipping on the 
coefficients to reduce the representation. We consider a linear 
transform FS̅ = (S̅1, S̅2, FS̅3, FS̅4) with a predetermined linear trans-
form F which stands for a 2D or 3D Fourier transform along all ori-
entations, as well as a 1D cosine transform along scales, for ̅S3 and 
S̅4. For fields with statistical isotropy or self-similarity, all har-
monics related to the action of global rotation and scaling on 
the field x should be consistent with zero, except for the zeroth 
harmonic. For general physical fields, we expect the statistics 
S̅(x) to have regular variations to the action of rotation or scaling 
of the different scales involved in its computation, which implies 
that its Fourier harmonics FS̅(x) have a fast decay away from the 
0th harmonic and FS̅(x) is a sparse representation.

Thresholding on a sparse representation is widely used in im-
age processing for compression (45). We use threshold clipping 
on the sparse representation FS̅ to significantly reduce the size 
of the scattering spectra. Furthermore, when empirically estimat-
ing large but sparse covariance matrices such as FS, thresholding 
provides Stein estimators (46) which have lower variance and are 
consistent, e.g. (47–50). As ̅S1 or ̅S2 are already small, we keep all of 
their coefficients.

There are different strategies available to set the threshold for 
clipping. We adopt a simple strategy which keeps those coeffi-
cients with μ(FS̅) > 2σ(FS̅), where μ(FS̅) and σ(FS̅) are the means 
and SDs of individual coefficients of FS̅. These adaptive threshold-
ing estimators achieve a higher rate of convergence and are easy 
to implement (49). With multiple realizations from simulations, 
μ(FS̅) and σ(FS̅) can be estimated directly. In the case where only 
a single sample field is available, σ(FS̅) can be estimated from dif-
ferent patches of that sample field, e.g. (51). We call PS̅ the coeffi-
cients after thresholding projection:

PS̅ = (S̅1, S̅2, PS̅3, PS̅4) = thresholding FS̅. (23) 

The compact yet informative set of scattering spectra PS̅ is the re-

presentation Φ(x) = PS̅(x) proposed in this paper to construct max-
imum entropy models.

Numerical results
We have introduced maximum entropy models based on small 
subsets of O( log3 L) scattering spectra moments S̅ and projected 
moments PS̅, claiming that it can provide accurate models of large 
classes of multiscale physical fields, and reproduce O(L3d) power 
spectrum, bispectrum and trispectrum Fourier moments. This 
section provides a numerical justification of this claim with five 
types of 2D physical fields from realistic simulations. In order to 
reduce the variance of the validation statistics, we consider in 
this section a model estimated on several realizations of a field. 
However, our model also produces convincing realizations when 
estimated on a single realization (see Fig. S2 for a visual assess-
ment). All computations are reproducible with the software avail-
able on https://github.com/SihaoCheng/scattering_transform.

Dataset of physical fields
We use five 2D physical fields to test the maximum entropy mod-
els. The five fields are chosen to cover a range of properties in 
terms of scale dependence, anisotropy, sparsity, and morphology: 

(A) Cosmic lensing: simulated convergence maps of gravitational 
lensing effects induced by the cosmological matter density 
fluctuations (52, 53).

(B) Dark matter: logarithm of 2D slices of the 3D large-scale distri-
bution of dark matter in the Universe (54). The logarithm al-
lows for the filamentary cosmic web structures to stand out 
and thus increases the morphological diversity of our exam-
ples, which we discuss more in supplementary material G.

(C) 2D turbulence: turbulence vorticity fields of incompressible 
fluid stirred at the scale around 32 pixels, simulated from 
2D Navier–Stokes equations (55).

(D) Magnetic turbulence: column density of 3D isothermal magnet-
ic–hydrodynamic turbulent simulations (9). The field is an-
isotropic due to a mean magnetic field in the horizontal 
direction.

(E) Anisotropic turbulence: 2D slices of a set of 3D turbulence sim-
ulations (56, 57). To create anisotropy, we have squeezed the 
fields along the vertical direction.

These simulations are sampled on a grid of 256×256 pixels with 
periodic boundary conditionsd and normalized to have zero 
mean and unity SD, respectively. Samples of each field are dis-
played in the first row of Fig. 3. To clearly show the morphology 
of small-scale structures, we zoom in to a 128×128 region.

Model description and visual validation
We fit our maximum entropy model using wavelet polyspectra 
and scattering spectra, respectively, with the following constraint:

‖Ave
j

Φ(xj) − Ave
i

Φ(x̅i)‖
2 ≤ ϵ, (24) 

where the second average is computed on an ensemble of 100 
realizations x̅i for each physical simulation (for field D, we use 
only 20 realizations due to the availability of simulations), and 
the field generation is performed simultaneously for 10 fields xj, 

making our microcanonical model closer to its macrocanonical 
limit. The microcanonical sampling algorithm is described in 
supplementary material A.

Examples of field generation results are given in Fig. 3. The se-
cond row shows samples generated based on the high-order nor-

malized wavelet moments Φ(x) = M̅(x) = (M̅2(x), M̅3(x), M̅4(x)), 

where M̅2 = S̅2, M̅3(x)[λ, λ′] = M3(x)[λ, λ′]
σ2[λ]σ[λ′ ] , and M̅4(x)[λ, λ′] = M4(x)[λ, λ′]

σ2[λ]σ2[λ′] are 

defined similarly to S̅ in Eq. 22. For the choice of wavelets, we 
use J = 7 dyadic scales, and we set R = 8 which samples 4 orienta-

tions within π, resulting in dim M̅ = 11, 677 coefficients for M̅. The 

third row in Fig. 3 shows results from a reduced set Φ(x) = PM̅(x), 

which is a 2σ Fourier thresholded representation of M̅ defined in 

exactly the same way as PS̅ in Eq. 23. The thresholding yields 

dim PM̅ = 147, 286, 547, 1,708, 926 for fields A–E, respectively. A 
visual check shows that these models fail to recover all morpho-
logical properties in our examples especially when a thresholding 
reduction is applied. This issue is a manifestation of the numerical 
instability of high-order moments.

In the fourth row, we present sample fields modeled with the 
scattering spectra S with dim PS̅ = 11, 705 for J = 7 and R = 8. 
A visual check reveals its ability to restore coherent spatial 
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structures including clumps, filaments, curvy structures, etc. 
The low-order nature and numerical stability of S also significant-
ly fasten the sampling compared to the high-order moments 
M̅ (200 vs. 800 steps to converge). The last row shows sample 
fields modeled by a much smaller set PS, which has 

dim PS̅ = 204, 364, 489, 615, 304 coefficients for fields A–E, re-
spectively. This model is ∼ 102 times smaller, while generating 
samples visually indistinguishable from the full set model with 
Φ(x) = S(x). In addition, the ratio between the dimensionality of 
the field dim x = Ld (the number of pixels) and the model dim Φ 

A B C D E

Fig. 3. Visual comparison of realistic physical fields and those sampled from maximum entropy models based on wavelet higher order moments M̅ and 
wavelet scattering spectra S̅ statistics. The first row shows five example fields from physical simulations of cosmic lensing, cosmic web, 2D turbulence, 
magnetic turbulence, and squeezed turbulence. The second and third rows show syntheses based on the selected high-order wavelet statistics estimated 
from 100 realizations. They are obtained from a microcanonical sampling with 800 steps. The fourth and fifth rows show similar syntheses based on the 
scattering spectra statistics, with only 200 steps of the sampling run. This figure shows visually that the scattering spectra can model well the statistical 
properties of morphology in many physical fields, while the high-order statistics either fail to do so or converge at a much slower rate. To clearly show the 
morphology of structures at small scales, we show a zoom-in of 128 × 128 pixels regions. Finally, to quantitatively validate the goodness of the scattering 
model, we show the marginal PDF (histogram) comparison in the last row.
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is more than 100. For interested readers, we also present the im-
provement of modeling from using power spectrum alone to the 
full scattering spectra in supplementary material F.

Statistical validation
We now quantify the consistency between the scattering spectra 
models and the original fields using a set of validation statistics 
V(x) defined below, including marginal PDF, structure functions 
SFn, power spectrum P, and normalized bispectrum B̅ and trispec-
trum T̅. The validation statistics are shown in Figs. 3 and 4, where 
black curves represent the expected value μoriginal of these statis-
tics, estimated from 100 realizations x̅i of the original simulated 
fields (except for field D for which we have only 20 realizations). 
Gray regions around the black curves represent the SDs σoriginal 

of those statistics estimated on the original fields. Blue curves 
are statistics μ

S̅,model estimated on fields modeled with S. 
Similarly, μ

PS̅,model are estimated on fields modeled with the re-
duced set PS. Both these averages are estimated from the 10 fields 
simultaneously sampled from the corresponding microcanonical 
models.

The marginal probability distribution function (PDF) is meas-
ured as the histogram of sample fields and shown in Fig. 3. It aver-
ages out all spatial information and keeps only the overall 
asymmetry and sparsity properties of the field. The marginal in-
formation is not explicitly encoded in the scattering spectra, but 
for all the five physical fields we examine here, it is recovered 
even with the reduced model PS̅, where only ∼ 102 scattering spec-
tra coefficients are used.

Given that the high dimensionality of the full set of polyspectra 
coefficients, as well as the computational cost of estimating them 
properly, we adopt an isotropic shell binning for the power spec-
trum, bispectrum, and trispectrum. Although this reduces the 
number of coefficients as well as their variance, working with iso-
tropic statistics prevents the characterization of anisotropic fea-
tures, for instance in fields D and E, unlike with scattering 
spectra. Validation results with these isotropic polyspectra are 
given in Fig. 4.

The shell binning is defined as follow. We first divide the 
Fourier space into 10 annuli with the frequencies linearly spaced 
from 0 to 0.4 cycles/pixel. Then, we average the power and poly 
spectra coefficients coming from the same annulus combinations. 
For instance, the power spectrum yields

P[i] = Ave
k inannuli i

x̂[k]x̂[ − k]. (25) 

To decorrelate the information from the power spectrum and 
higher orders, we normalized the binned bi- and tri-spectra by P[i]:

B̅[i1, i2, i3] =
Ave

kn inannuli in
x̂[k1]x̂[k2]x̂[k3]

����������������
P[i1]P[i2]P[i3]

 , (26) 

T̅[i1, i2, i3, i4] =
Ave

kn inannuli in
x̂[k1]x̂[k2]x̂[k3]x̂[k4]

���������������������
P[i1]P[i2]P[i3]P[i4]

 , (27) 

where the kn d-dimensional wave-vectors are respectively aver-

aged in the ithn frequency annuli, and satisfy 


n kn = 0. To clearly 
reveal the diversity of different type of physical fields, the trispec-

trum T̅ coefficients shown in Fig. 4 are subtracted by the reference 
value of Gaussian white noise, evaluated numerically on 1,000 in-
dependent realizations. Details about the numbers and the order-

ing of B̅ and T̅ are given in supplementary material E.

In Fig. 4, we also show the validation with structure functions, 
which are nth order moments of the field increments as a function 
of the position separation Δu

SFn[Δu] = Ave
u
|x[u] − x[u + Δu]|n. (28) 

In our 2D case, we further average over Δu with different orienta-
tions to obtain a structure function only depending on the magni-
tude of the separation |Δu|. Initially proposed by Kolmogorov for 
the study of turbulent flows (58), they are widely used to analyze 
non-Gaussian properties of multiscale processes (59).

We quantify the discrepancy between the model and original 
field distributions by the outlier fraction of validation statistics 
outside the 2σ range,

|μmodel − μoriginal|/σoriginal > 2. (29) 

For each of the five types of fields, we observe the following frac-
tions. The binned power spectrum has fractions of P: 0, 0, 20, 0, 

0% for the models using all S̅ statistics and 0, 10, 40, 10, 0% for 

the thresholding models with PS̅. The power spectrum deviation 
of field C is likely caused by the longer convergence steps required 
by smooth fields, as our generative models start from white noise 
with strong small-scale fluctuations. Indeed increasing the steps 

to 800 reduces the outlier fraction of the PS̅ model to 10%. For B̅ 

and T̅, the outlier fractions are all below 5% except for the models 
of field A, where the bispectrum coefficients have 13% of outliers. 
Those outliers all have the smallest scale involved, and disappear 
if the high-frequency cut is moved from 0.4 to 0.35 cycles/pixel. 
The low fractions demonstrate consistency between our maximum 
entropy models and ensembles of the original physical fields.

For field A, a similar deviation is also observed in high-order 
structure functions. For this field, it can be seen from Fig. 4 that 
even though many coefficients are not defined as outliers, they 
all tend to have a lower value than the original ones. This effect 
may originate from the log-normal tail of the cosmic density field 
(35), whose Gibbs potential includes terms in the form of log x, in 
contrast to the form of |x| in scattering spectra or xn in high-order 
statistics. However, regardless of this difficulty, these outliers are 
all still within a 3σ range, demonstrating that the scattering spec-
tra provide a good approximation though not exact model for 
fields with such heavy tails.

The marginal PDF, structure functions, power spectrum, and 
polyspectra probe different aspects of the random field p(x). The 
polyspectra especially probe a huge variety of feature configura-
tions. For all the validation statistics, we observe general agree-
ment between the model and original fields. Such an agreement 
is a nontrivial success of the scattering spectra model, as those 
statistics are not generically constrained by the scattering spectra 
for arbitrary random fields. They indeed significantly differ from 
the scattering spectra in the way they combine spatial informa-
tion at different frequencies and in the nonlinear operation 
adopted. The agreement implies, as we have argued, that sym-
metry and regularity can be used as strong inductive bias for phys-
ical fields and the scattering spectra, with those priors build-in, 
can efficiently and robustly model physical fields.

Visual interpretation of scattering spectra 
coefficients
The key advantage of the scattering spectra compared to usual 
convolutional neural networks is their structured nature: their 
computation corresponds to the combination of known scales 
and orientations in a fixed way. Beyond the limited number of 
symmetries, the structured nature of the scattering spectra 
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allows us to both quantify and interpret the morphology of struc-
tures, which is one of the original goals to design these statistics.

The values of scattering spectra can be shown directly (see 
Fig. S3) to analyze non-Gaussian properties of the field. 
Moreover, the meaning of its coefficients can also be visualized 
through our maximum entropy generative models. As one grad-
ually changes the value of some summary statistics, the morph-
ology of structures in the generated fields also changes. A 
similar exploration for a smaller set of scattering transform coef-
ficients has been explored in Ref. (17), and we show such results 
with the much more expressive scattering spectra coefficients in 
Fig 5. Such exploration using synthesis is also similar to the fea-
ture visualization efforts for convolutional neural networks (60).

The central panel is a realization of field B from physical simu-
lations. The other four panels are generated fields with two 

collective modifications of the scattering spectra: the vertical dir-
ection shows the effect of multiplying all S̅3 and S̅4 coefficients by 
a factor of 1/3 or 3. It indicates that the amplitude of ̅S3 and ̅S4 con-
trols the overall non-Gaussian properties of the field and in par-
ticular the sparsity of its structures. The horizontal direction 
corresponds to adjusting the orientation dependence. We set 
the coefficients with parallel wavelet configurations (i.e. 
S̅3[‖λ|, |λ′|, l1 = l2] and S̅4[|λ|, |λ′|, |γ|, l1 = l2 = l3]) as references and 
keep them unchanged. Then, we make the difference from other 
coefficients to those references to be 2 times or –2 times the origin-
al difference. Visually, it controls whether structures are more 
point-like or more curvy-like in the field. In this experiment, the 
generated field is initialized with the original field instead of white 
noise, in order to clearly show the correspondence between the 
field structure and scattering spectra coefficients.

Fig. 4. Validation of the scattering maximum entropy models for the five physical fields A–E by various test statistics. The curves for field E represent the 
original statistics and those for A–D are shifted upwards by an offset. In general, our scattering spectra models well reproduce the validation statistics of 
the five physical fields.
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Application to identifying symmetry
As an expressive representation whose coefficients are equivar-
iant under standard group transformation, the scattering spectra 
can also be used to detect and identify the various statistical in-
variances commonly present in physical fields. Besides the afore-
mentioned rotation and scaling invariance, more can also be 
included, such as the flipping of coordinate or field values.

The simplest way to check asymmetry to a transformation like 
rotation or flip is to check if the scattering spectra S are changed 
after applying such a transform. A more sophisticated way that 
can also quantify partial symmetries is to linearly decompose S̅ 
into symmetric and asymmetric parts and then compute the frac-
tion of asymmetric coefficients surviving the thresholding reduc-
tion. We further normalize this fraction by that in the full set to 
eliminate the dependence on image size:

asymmetry index =
dim(PS̅asym)

dim(PS̅)
/

dim(S̅asym)

dim(S̅)
. (30) 

When it is zero, the random field p(x) should be invariant to the 
transform up to the expressivity of our representation. For the five 
random fields analyzed in this study, we measure their asymmetry 
indices with respect to rotation and scaling. The corresponding an-
isotropy and scale dependence indices are (A) 0, 0.16; (B) 0, 0.53; (C) 0, 
0.66; (D) 0.32, 0.45; (E) 0.28, 0.29. As expected, the cosmic lensing 
field (field A) is closest to isotropic and scale-free, because the scale 
range of the simulated field (approximately 80 Mpc in physical size) 
falls in the nonlinear scale of cosmic structure formation and thus 
consists of peaks with all sizes and strengths. The cosmic web (B) 
and 2D turbulence (C) fields are isotropic but not scale-free, because 
they have particular physical scales above which the field becomes 
Gaussian: for cosmic web it is around 150 Mpc (25 pixel), and for tur-
bulence it is the scale of driving force (32 pixel), both in the middle of 
the scale range of our simulations. The last two turbulence fields 
have anisotropic physical input, but the latter largely probes the “in-
ertial regime” of turbulence, which is scale-free.

Limitations
While a broad range of physical fields satisfy the implicit priors of 
the scattering spectra, one does expect regimes for which the de-
scription will not be appropriate. The so-called φ4 field in physics 
comes as a first problematic example. It is the maximum entropy 

Fig. 5. Visual interpretation of the scattering spectra. The central field is 
one realization of field B in physical simulations. The other four panels are 
generated fields with two simple collective modifications of the scattering 
spectra coefficients.

Fig. 6. Example of failures and applications beyond typical physical fields. The modeled field of the central panel has been recentered for easier 
comparison with the original ones.
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field under the power spectrum and pointwise fourth-order mo-
ment x4 constraints, but this characterization is unstable to spe-
cify a nonconvex pdf which is a pointwise property as opposed 
to the delocalized Fourier moments and it is highly unstable at 
critical points (44). The first column in Fig. 6 shows an original 
φ4 field at its critical temperature and that generated from the 
full set of scattering spectra. In contrast to previous examples, 
this type of field is not successfully reproduced.

On the other hand, when built based on one example field x1 and 
generating only one realization x̅1 (i.e. in Eq. 24 both i and j are 1), 
our model has a risk of over-fitting: it almost exactly copies the ori-
ginal field with an arbitrary translation and does not provide 
enough randomness. It can also be seen as a transition from gen-
erative modeling regime into a coding regime. This is related to 
the fact that for maximum entropy models, when the number of 
constraints amounts to a considerable fraction of the number of to-
tal degree of freedom, the microcanonical distribution deviates sig-
nificantly from the macrocanonical distribution, and has a much 
lower entropy. The middle panel of Fig. 6 illustrates this effect, 
where the relative position of triangles of the modeled field is exact-
ly copied from the original field. It happens only when the field is 
sparse, and when the full set ̅S is used. This problem can be avoided 
by increasing the number of input fields or generated fields, or an 
early stop in the microcanonical sampling.

For physical fields with multiscale structures, it is expected 
that the distribution function p(x) does not change much under 
a slight deformation. When modeling such fields, it is important 
to have a representation that has the same property. Being built 
from wavelet decomposition and contracting operator, the scat-
tering spectra also linearize small deformation in the field space, 
which plays an important role in lowering its variance (see 
Ref. (8)). However, when modeling structured fields whose distri-
bution functions are not regular under deformation, this means 
that the generative model will simply produce structures that 
are close enough up to small deformations. This typical type of 
failure is shown in the third example of Fig. 6.

Conclusion
We build maximum entropy models for non-Gaussian random 
fields based on the scattering spectra statistics. Our models pro-
vide a low-dimensional structured representation that captures 
key properties encountered in a wide range of stationary physical 
fields, namely: (i) stability to deformations as a result of local con-
servation laws in Physics for mass, energy, momentum, charge, 
etc.; (ii) invariance and regularity to rotation and scaling; and 
(iii) scale interactions typically not described by high-order statis-
tics. Those are the priors included in the scattering spectra.

Our models provide a practical tool for generating mock fields 
based on some example physical fields. In sharp contrast to neural 
network models, our representation has the key advantage of 
being interpretable and can be estimated on a few realizations. 
This is crucial in Physics where generating fields in experiments 
or simulations is costly or when nonstationarity limits the amount 
of clean recorded data. Our proposed approach enables a new 
range of data/simulation analyses, e.g. (23, 24), involving exten-
sions to the modeling of cross-regularities when multiple chan-
nels are available, e.g. (22).

Notes
a This single moment can be directly constrained, and we do not dis-

cuss it in the following.

b Here, we assume the choice of R is independent of field dimension d. 
Another possible choice is to require a constant ratio between the 
radial and tangential sizes of the d-dimension oriented wavelets. 
Then, R is proportional to the ratio between the surface area of a 
d–1-sphere and the volume of a d–1-ball, proportionally to 
Γ(n/2 + 1/2)/Γ(n/2). It results in an approximate scaling of RJ = 
O(d log L) when d is small and O(

��
d
√

log L) when d is large.
c More than a 100 years ago, astronomer Eddington (40, p. 147) ex-
pressed in his book a favor of mean-modulus error over mean- 
square error for similar reasons.

d When working without this condition, statistics can be computed 
by padding the images.
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