Kolmogorov Entropy for Convergence Rate in Incomplete Functional Time Series: Application to Percentile and Cumulative Estimation in High Dimensional Data - Archive ouverte HAL
Article Dans Une Revue Entropy Année : 2023

Kolmogorov Entropy for Convergence Rate in Incomplete Functional Time Series: Application to Percentile and Cumulative Estimation in High Dimensional Data

Ouahiba Litimein
  • Fonction : Auteur
Fatimah Alshahrani
Boubaker Mechab
  • Fonction : Auteur

Résumé

The convergence rate for free-distribution functional data analyses is challenging. It requires some advanced pure mathematics functional analysis tools. This paper aims to bring several contributions to the existing functional data analysis literature. First, we prove in this work that Kolmogorov entropy is a fundamental tool in characterizing the convergence rate of the local linear estimation. Precisely, we use this tool to derive the uniform convergence rate of the local linear estimation of the conditional cumulative distribution function and the local linear estimation conditional quantile function. Second, a central limit theorem for the proposed estimators is established. These results are proved under general assumptions, allowing for the incomplete functional time series case to be covered. Specifically, we model the correlation using the ergodic assumption and assume that the response variable is collected with missing at random. Finally, we conduct Monte Carlo simulations to assess the finite sample performance of the proposed estimators.
Fichier principal
Vignette du fichier
entropy-25-01108.pdf (803.84 Ko) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-04170382 , version 1 (01-02-2024)

Identifiants

Citer

Ouahiba Litimein, Fatimah Alshahrani, Salim Bouzebda, Ali Laksaci, Boubaker Mechab. Kolmogorov Entropy for Convergence Rate in Incomplete Functional Time Series: Application to Percentile and Cumulative Estimation in High Dimensional Data. Entropy, 2023, 25 (7), pp.1108. ⟨10.3390/e25071108⟩. ⟨hal-04170382⟩
54 Consultations
34 Téléchargements

Altmetric

Partager

More