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Stability of linear KdV equation in a network
with bounded and unbounded lengths

Hugo Parada1, Emmanuelle Crépeau1 and Christophe Prieur2

Abstract—In this work, we study the exponential stability
of a system of linear Korteweg-de Vries (KdV) equations
interconnected through the boundary conditions on a
star-shaped network structure. On each branch of the
network we define a linear KdV equation defined on a
bounded domain (0, ℓj) or the half-line (0,∞). We start
by proving well-posedness using semigroup theory and
then some hidden regularity results. Then, we state the
exponential stability of the linear KdV equation by acting
with a damping term on not all the branches. This is
proved by using compactness argument deriving a suitable
observability inequality.

I. INTRODUCTION

In [1], the Korteweg-de Vries (KdV) equation was first
proposed to model the behavior of long water waves in
a channel. This famous nonlinear third-order dispersive
equation arises in various physical systems, including
water waves, tsunamis, transmission of electrical signals
in nerve fibers, plasma, cosmology, etc (see for instance
[2]–[4]). It is a prototypical example of a soliton equa-
tion, which admits solutions in the form of solitary waves
that preserve their shape and speed during propagation.
If we study the KdV equation in a bounded domain, the
following model was suggested in [5]

∂tu+ ∂xu+ ∂3xu+ u∂xu = 0.

The KdV equation has been the subject of extensive
research in recent years, with particular focus on its
controllability and stabilization properties, which are
detailed for instance in [6] and [7]. When it is defined
on a network, the KdV equation was proposed to model
the pressure of the arterial tree [8]. We also mention [9]
where controllability properties were studied and [10],
[11] where the exponential stability was achieved by
acting with damping terms with time-delay and satura-
tion, respectively (see [12] for more problems related to
KdV in networks). The main difference of this work with
the previously cited is that, we consider a star-shaped
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network mixing bounded and unbounded lengths as for
example [13], [14] in the case of wave equation.
With respect to the KdV equation defined on the half-
line, we can mention, for instance, [5], [15] which
focus on the well-posedness properties. In [16], the exact
controllability of the linear KdV equation defined on the
half-line was obtained by using Carleman estimates. A
first result of exponential stability of the KdV equation
in the half-line considering a localized damping was
derived in [17] under the assumption that the damping
term a(x) ≥ c > 0 in (0, δ) ∪ (b,∞) with b > δ (see
[18] for a similar problem in the context of KdV-Burger
equation in the whole-line and half-line). Then, in [19]
exponential decay of the energy in weighted spaces was
derived, and it was noticed that the interval (0, δ) can be
dropped. We can mention also [20] where similar ideas
of [19] were applied in the case of a Gear-Grimshaw
system modeling long waves. To ease the reading of the
paper, some technical notations are recapitulated in the
Appendix.
In [8] the stabilization problem for the KdV equation
on a star-shaped network with bounded lengths was
addressed. See also [17] where the asymptotic behaviour
of the KdV equation in the half-line was investigated.
Inspired by theses works, we study the exponential
stabilization problem of the linear KdV equation defined
on a star-shaped network, where the branches mix fi-
nite intervals and half-lines. We consider a network of
N = NF +N∞ damped linear KdV equations each one
of them defined on Ij for j ∈ J1, NK, i.e

(∂tuj +∂xuj +∂
3
xuj +ajuj)(t, x) = 0, ∀x ∈ Ij , t > 0,

where the intervals Ij = (0, ℓj), with ℓj > 0 for
j ∈ J1, NF K and Ij = (0,∞) for j ∈KNF , NK. These
equations are connected by the transmission conditions
at 0 as follows

uj(t, 0) = uj′(t, 0), j, j′ ∈ J1, NK,

(
continuity
condition

)
,

N∑
j=1

∂2
xuj(t, 0) = −αu1(t, 0), t > 0,

(
null flux
condition

)
,

where α > N
2 . The central node conditions are in-

spired by [8], [10], [11]. In the case j = J1, NF K, we



complement the system with the classical null boundary
conditions at the right end,

uj(t, ℓj) = ∂xuj(t, ℓj) = 0, t > 0,

and initial condition uj(0, x) = u0j (x), x ∈ Ij . We
denote the network structure by T (see Figure 1). The
system studied in this work reads as:
(LKdV)

(∂tuj + ∂xuj + ∂3
xuj + ajuj)(t, x) = 0, ∀x ∈ Ij ,

t > 0, j ∈ J1, NK,
uj(t, 0) = uj′(t, 0), j, j′ ∈ J1, NK,
N∑

j=1

∂2
xuj(t, 0) = −αu1(t, 0), t > 0,

uj(t, ℓj) = ∂xuj(t, ℓj) = 0, t > 0, j ∈ J1, NF K,
uj(0, x) = u0

j (x), x ∈ Ij , j ∈ J1, NK,

where α > N
2 and the damping terms (aj)j∈J1,NK ∈

L∞(T ), act locally on the branches.

Fig. 1. Network structure for NF = 4 and N∞ = 3.

Our purpose is to achieve the exponential stability by
acting with the damping terms not necessarily in all the
branches. Let Iact ⊂ J1, NK the set of action index,
formally the damping terms are taken in the following
way.

• Not action index: For j ∈ J1, NK \ Iact, aj ≡ 0.
• Locally action: For j ∈ Iact, aj(x) ≥ cj > 0 in a

nonempty open set ωj of Iact.
• Structure of action set in the half-line case: For

the index j ∈KNF , NK ∩ Iact, we take a specific
structure of the set ωj = (bj ,∞), for bj > 0 given.

This properties are summarized in

(1)


aj ≡ 0 for j ∈ J1, NK \ Iact,
aj(x) ≥ cj > 0 in ωj ⊂ Ij , for j ∈ Iact,

ωj = (bj ,∞), for j ∈KNF , NK ∩ Iact.

For the system (LKdV) we define the natural L2(T )
energy of a solution by

(2) E(t) =
1

2

N∑
j=1

∫
Ij

|uj(t, x)|2dx.

Formally, we can check after several integrations by
parts (see [10], [11] for similar computations) that for

every sufficiently smooth solution of (LKdV) the energy
satisfies1

(3)

Ė(t) =−
(
α− N

2

)
|u1(t, 0)|2 −

1

2

N∑
j=1

|∂xuj(t, 0)|2

−
N∑

j=1

∫
Ij

aj(x)|uj(t, x)|2dx.

Observe that, as aj ≥ 0, the term ajuj provides
dissipation to the energy, then Ė(t) ≤ 0. The main
contribution of this work is to prove that indeed the terms
ajuj provide exponential stability of (LKdV).

The article is organized as follows. In Section II,
the well-posedness of (LKdV) is proven using semi-
group theory. In Section III a hidden regularity result
is obtained. In Section IV, the stabilization problem
is studied, and an observability inequality is used to
prove exponential stability. Some concluding remarks
and perspectives are collected in Section V.

II. WELL-POSEDNESS OF LKDV
In what follows, we use the well-known definitions of

classical and mild solutions, we refer to [21, Chapter 4].
Note that (LKdV) can be written as

(4)
{
ut(t) = Au(t), t > 0
u(0) = u0,

where the operator A is defined by

Au = −(∂x + ∂3x + a)u,

D(A) =

{
u ∈ H3(T ) ∩H2

e(T ),

N∑
j=1

d2uj

dx2
(0) = −αu1(0)

}
.

Let u ∈ D(A), then, after some integrations by parts

(u,Au)L2(T ) =−
(
α− N

2

)
|u1(0)|2 −

1

2

N∑
j=1

|∂xuj(0)|2

−
N∑

j=1

∫
Ij

aj |uj |2dx

≤0.

Easy calculations show that A∗ is defined by
A∗v = (∂x + ∂3x − a)v,

D(A∗) =

{
v ∈ H3(T ) ∩H1

e(T ),
dvj
dx

(0) = 0

∀j ∈ J1, NK,
N∑

j=1

d2vj
dx2

(0) = (α−N)v1(0)

}
.

Similarly, we get that for all v ∈ D(A∗)

(v,A∗v)L2(T ) =−
(
α− N

2

)
|v1(0)|2 −

1

2

NF∑
j=1

|∂xvj(ℓj)|2

−
N∑

j=1

∫
Ij

aj |vj |2dx

≤0.

1We consider solutions such that for j ∈KNF , NK satisfies
uj(·, x) → 0 when x→ ∞.



Finally, A and A∗ are dissipative, and A is a densely
defined closed operator, thus by [21, Corollary 4.4,
Chapter 1] A is the infinitesimal generator of a C0

semigroup of contractions on L2(T ). Systems (LKdV)
and (4) are equivalent, thus we deduce the following
result.

Theorem 1. Let u0 ∈ L2(T ), then, there exists a
unique mild solution u ∈ C([0,∞);L2(T )) of (LKdV).
Moreover, if u0 ∈ D(A), then u is a classical solution
and u ∈ C([0,∞);D(A)) ∩ C1([0,∞);L2(T )).

III. HIDDEN REGULARITY

The main idea of this section is to prove the following
regularity result:

Proposition 1. Let u0 ∈ L2(T ). Consider u the asso-
ciate mild solution of (LKdV), then, u ∈ X1. Moreover,
the following estimates hold

• There exists C > 0 such that, for all j ∈ J1, NF K;

(5)
∫ T

0

∫
Ij

|∂xuj |2dxdt ≤ C∥u0∥2L2(T ),

• For any x0 > 0, there exists Cx0
> 0 such that, for

all j ∈KNF , NK;

(6)
∫ T

0

∫ x0+1

x0

|∂xuj |2dxdt ≤ Cx0∥u0∥2L2(T ).

Proof. Let j ∈ J1, NK, multiplying (LKdV) by uj and
integrating on [0, s]×Ij , after some integrations by parts
and summing from j ∈ J1, NK we get

N∑
j=1

∫
Ij

|uj(s, x)|2dx+

N∑
j=1

∫ s

0

|∂xuj(t, 0)|2dt

+ (2α−N)

∫ s

0

|u1(t, 0)|2dt+ 2

N∑
j=1

∫ s

0

∫
Ij

aj |uj |2dxdt

=

N∑
j=1

∫
Ij

|uj(0, x)|2dx,

which gives us that

(7)

∥u∥2C([0,T ];L2(T )) + (2α−N)∥u1(·, 0)∥2L2(0,T )

+ ∥∂xu(·, 0)∥2L2(0,T ) + 2

N∑
j=1

∫ T

0

∫
Ij

aj |uj |2dxdt

≤ ∥u0∥2L2(T ).

Similarly, multiplying the first line of (LKdV) by xuj ,
integrating on [0, T ]×Ij after some integrations by parts
we get

(8)

1

2

∫
Ij

x|uj(T, x)|2dx+
3

2

∫ T

0

∫
Ij

|∂xuj |2dxdt

+

∫ T

0

∫
Ij

ajx|uj |2dxdt =
1

2

∫
Ij

x|u0
j |2dx

+
1

2

∫ T

0

∫
Ij

|uj |2dxdt−
∫ T

0

u1(t, 0)∂xuj(t, 0)dt.

We get from (8) for all j ∈ J1, NF K,∫ T

0

∫
Ij

|∂xuj |2dxdt ≤C
(
∥u0

j∥2L2(Ij)
+ ∥u∥2L2(0,T ;L2(T ))

+ ∥u1(·, 0)∥2L2(0,T )

+∥∂xuj(·, 0)∥2L2(0,T )

)
.

In this case, we derive (5) by using (7). We focus now on
the case, j ∈KNF , NJ. Inspired by [22, Theorem 2.1],
let x0 > 0 and K1,x0 , K1,x0 > 0 depending only x0.
Consider ψ ∈ C∞(R) an increasing function such that
(see Figure 2)
(9)

ψ(x) = 0, for x ≤ x0
2
,

ψ(x) = 1, for x ≥ 3x0
2

+ 1,

ψ′(x) ≥ K1,x0 , for x ∈ [x0, x0 + 1],

ψ′(x) ≥ 0, |ψ(k)(x)| ≤ K2,x0 , for x ∈ R, k ∈ J0, 3K.

Fig. 2. Graph of the function ψ(x).

Multiplying the j − th equation of (LKdV) by
uj(t, x)ψ(x), and integrating over (0,∞) we get after
some integrations by parts
(10)

1

2

d

dt

∫ ∞

0

|uj |2ψ(x)dx+
3

2

∫ ∞

0

|∂xuj |2ψ′(x)dx

+

∫ ∞

0

aj |uj |2ψ(x)dx =
1

2

∫ ∞

0

|uj |2(ψ′(x) + ψ′′′(x))dx.

Recalling the definition of ψ (9), we observe that

K1,x0

∫ x0+1

x0

|∂xuj |2dx ≤
∫ x0+1

x0

|∂xuj |2ψ′(x)dx

≤
∫ ∞

0

|∂xuj |2ψ′(x)dx.

With this in mind and (9) we obtain from (10)
1

2

d

dt

∫ ∞

0

|uj |2ψ(x)dx+
3

2
K1,x0

∫ ∞

0

|∂xuj |2ψ′(x)dx

=
3

2
K2,x0

∫ ∞

0

|uj |2dx.

We conclude the proof of (6) integrating t between [0, T ]
and using (7). 2

Remark 1. We can build a function ψ satisfying (9)
in the following way: consider the bump function κ ∈
C∞(R) defined by κ(x) = e−

1
x , for x > 0 and κ(x) = 0

for x ≤ 0. Then, letting

ψ(x) =
κ(x− x0

2
)

κ(x− x0
2
) + κ( 3x0

2
+ 1− x)

,

it is not difficult to check that the above function satisfies
all the hypotheses of (9).



IV. EXPONENTIAL STABILITY

In this section, we prove our results related with
the exponential stability in L2(T ). First, note that to
prove the exponential stability, it is enough to prove the
following observability inequality, with E defined in (2),

(11)

E(0) ≤Cobs

∫ T

0

(
|u1(t, 0)|2 +

N∑
j=1

|∂xuj(t, 0)|2

+

N∑
j=1

∫
Ij

aj |uj |2dx

)
dt,

for a suitable Cobs > 0 that does not depend on u.
Indeed, using (11) and dissipation law (3) we can show
the existence of 0 < γ < 1 such that E(t) ≤ γE(0),
finally as (LKdV) is invariant by translation in time,
we derive the exponential decay. This idea was used in
several works as [10], [11], [17], [23]. We recall the set
of critical lengths for the KdV equation N introduced
by Rosier in [24] and defined by

N =

{
2π

√
k2 + kl + l2

3
, k, l ∈ N∗

}
,

and we define Ic = {j ∈ J1, NF K; ℓj ∈ N} the set of
critical lengths, I∞ =KNF , NK and I∗c (resp I∗∞) be the
subset of Ic (resp I∞) where we remove one index.
Now, we establish our main results.

Theorem 2. Let Iact ⊇ I∗c ∪ I∞ or Iact ⊇ Ic ∪ I∗∞,
assume that the damping terms (aj)j∈J1,NK satisfy (1).
Then, there exist C, µ > 0 such that for all u0 ∈ L2(T ),
the energy of the unique mild solution of (LKdV)
satisfies E(t) ≤ CE(0)e−µt for all t > 0.

Remark 2. About the choice of action index: Theo-
rem 2 states that to achieve the exponential stability we
can act as any of the following cases:

• Take active damping in all except one branches with
critical length and in all the half-lines. This is case
Iact ⊇ I∗c ∪ I∞.

• Take active damping in all except one half-lines a
and in all the branches with critical length. This is
case Iact ⊇ Ic ∪ I∗∞.

This action set is inspired by [8] where in the case of NF

KdV equations on a star-shaped network, an exponential
stability result was proved with set of action index I∗c .
Moreover as we will see in Proposition 2, this choice is
optimal.

Proof. As we said at the beginning of Section IV,
it is enough to prove (11). To prove it, we follow a
contradiction argument as in [24]. Suppose that (11) is
false, then there exists (u0,n)n∈N ⊂ L2(T ) such that
∥u0,n∥L2(T ) = 1 and such that

(12)

∥un
1 (t, 0)∥L2(0,T ) −→ 0,

∥∂xun(t, 0)∥L2(0,T ) −→ 0,

N∑
j=1

∫ T

0

∫
Ij

aj |un
j |2dxdt −→ 0, as n→ ∞,

where un, is the unique mild solution of (LKdV) given
by Theorem 1 with initial data u0,n. By Proposition 1,
we get that (un)n∈N is bounded in X1 and as ∂tunj =
−∂xunj −∂3xunj −ajunj , we get that (∂tunj )n∈N is bounded
in X−2. Using [25, Corollary 4] we can extract a
subsequence still denoted by (un)n∈N which converges
in X0. The idea now is to see that (u0,n)n∈N is a Cauchy
sequence in L2(T ). Multiplying the first line of (LKdV)
by (T − t)uj and integrating on [0, T ]× Ij , after some
integrations by parts we can get
(13)

∥u0∥2L2(T ) ≤C
(

1

T
∥u∥2L2([0,T ];L2(T )) + ∥u1(·, 0)∥2L2(0,T )

+ ∥∂xu(·, 0)∥2L2(0,T )

+

N∑
j=1

∫ T

0

∫
Ij

aj |uj |2dxdt

)
.

Thus, as (un)n∈N is convergent in X0, with (12) and
(13), we get that (u0,n)n∈N is a Cauchy sequence in
L2(T ). Let u0 = limn→∞ u0,n and u the unique mild
solution of (LKdV) associated to u0. Then, u is the
solution of
(14)

∂tuj + ∂xuj + ∂3
xuj = 0, ∀x ∈ Ij ,

t ∈ (0, T ), j ∈ J1, NK,
uj(t, 0) = ∂xuj(t, 0) = 0, ∀j ∈ J1, NK,
N∑

j=1

∂2
xuj(t, 0) = 0, t ∈ (0, T ),

uj(t, ℓj) = ∂xuj(t, ℓj) = 0, t > 0, j ∈ J1, NF K,
uj ≡ 0 in (0, T )× ωj , j ∈ Iact,

uj(0, x) = u0
j (x), x ∈ Ij , j ∈ J1, NK,

∥u0∥L2(T ) = 1.

Here we have two cases:
◦ Iact ⊇ I∗c ∪ I∞. In this case, for j ∈ I∞, w = uj

solves
∂tw + ∂xw + ∂3

xw = 0, ∀x ∈ (0,∞), t ∈ (0, T ),

w(t, 0) = ∂xw(t, 0) = 0, t ∈ (0, T ),

w ≡ 0 in (0, T )× ωj .

Then, by Holmgren’s Theorem [26] (see also [17, Theo-
rem 1.1]), w ≡ 0 in (0,∞)× (0, T ). Then, we have the
following remaining problem

∂tuj + ∂xuj + ∂3
xuj = 0, ∀x ∈ (0, ℓj), t ∈ (0, T ),

j ∈ J1, NF K,
uj(t, 0) = ∂xuj(t, 0) = 0, ∀j ∈ J1, NF K,
NF∑
j=1

∂2
xuj(t, 0) = 0, t ∈ (0, T ),

uj(t, ℓj) = ∂xuj(t, ℓj) = 0, t > 0, j ∈ J1, NF K,
uj ≡ 0 in (0, T )× ωj , j ∈ I∗c ,∑NF

j=1 ∥u
0
j∥2L2(0,ℓj)

= 1.

The above system is exactly the same studied in [8].
Thus, by [8, Theorem 3.1] as we are acting in I∗c we get
uj ≡ 0 for j ∈ J1, NF K and finally, u ≡ 0 which is a
contradiction with the fact ∥u0∥L2(T ) = 1.



◦ Iact ⊇ Ic∪I∗∞. Let j ∈ I∗∞, the same argument used
in the previous case shows that uj ≡ 0 in (0,∞)×(0, T ).
Similarly, by Holmgren’s Theorem [26], for all j ∈ Ic
uj ≡ 0 in (0, ℓj)× (0, T ). Now, for j ∈ J1, NF K∩ (Ic)

c,
uj solves

∂tuj + ∂xuj + ∂3
xuj = 0, ∀x ∈ (0, ℓj), t ∈ (0, T ),

uj(t, 0) = ∂xuj(t, 0) = 0,

uj(t, ℓj) = ∂xuj(t, ℓj) = 0, t > 0.

Then as ℓj /∈ N by [24, Lemma 3.5], uj ≡ 0 in (0, ℓj)×
(0, T ). Finally, let j the unique integer in KNF , NK ∩
(I∗∞)c, then w = uj solves

∂tw + ∂xw + ∂3
xw = 0, ∀x ∈ (0,∞), t ∈ (0, T ),

w(t, 0) = ∂xw(t, 0) = 0, t ∈ (0, T ),

∂2
xw(t, 0) = 0, t ∈ (0, T ).

It is enough to see that, due to the three null boundary
conditions in 02, the unique solution is w ≡ 0. This
conclude the proof of Theorem 2. 2

Theorem 2 is optimal in number of action branches. For
instance, if we take a smaller set of action index, we
cannot derive the result as shows the next proposition.

Proposition 2. Let Iact ⊊ I∗c ∪ I∞ or Iact ⊊ Ic ∪
I∗∞, assume that the damping terms (aj)j∈J1,NK satisfy
(1). Then, there exists a nontrivial solution of (14). In
particular, there exists a solution to (LKdV) different to
0, that does not converge to 0 as t tends to infinity and
thus (LKdV) is not asymptotically stable with this weak
assumption.

Proof. It is enough to consider the case where we
remove one index more in the action sets defined in the
assumption of Theorem 2. Let I∗∗c (resp I∗∗∞ ) be the
subset of Ic (resp I∞ ) where we remove two indexes.
Let us show that, under these conditions, there exists a
solution of (14).
◦ Iact = I∗∗c ∪ I∞. We get for all j ∈ I∞ uj ≡ 0.

Thus, we get the optimality from [8, Lemma 3.2].

◦ Iact = I∗c ∪ I∗∞. Following the computations of the
proof of Theorem 2, we obtain the following system,

∂tuj + ∂xuj + ∂3
xuj = 0, ∀x ∈ Ij , t ∈ (0, T ), j = 1, 2,

u1(t, 0) = ∂xu1(t, 0) = 0, t ∈ (0, T ),

u2(t, 0) = ∂xu2(t, 0) = 0, t ∈ (0, T ),

u1(t, 2π) = ∂xu1(t, 2π) = 0, t ∈ (0, T ),

∂2
xu1(t, 0) + ∂2

xu1(t, 0) = 0, t ∈ (0, T ),

uj(0, x) = u0
j (x), x ∈ Ij , j = 1, 2,

∥u0∥L2(T ) = 1.

Consider the stationary functions u1(x) =
K1(1 − cos(x)) and u2(x) = K2(1 − cos(x)) for
x ∈ (0, 2π) and u2(x) = 0 for x ≥ 2π. We observe

2See for instance [16] where an implicit controllability result is
obtained by imposing three boundary conditions at 0.

that u1 and u2 satisfy a linear KdV equation. Moreover,
u1(0) = ∂xu1(0) = u1(2π) = ∂xu1(2π) = 0, u2(0) =
∂xu2(0) = 0 and ∂2xu1(0) + ∂2xu1(0) = K1 + K2.
Therefore, if K1 = −K2 we get a nontrivial solution of
(14).

◦ Iact = Ic ∪ I∗∗∞ . Consider the case NF = 0. Then
we obtain the system

∂tuj + ∂xuj + ∂3
xuj = 0, ∀x ∈ (0,∞), t ∈ (0, T ), j = 1, 2,

u1(t, 0) = ∂xu1(t, 0) = 0, t ∈ (0, T ),

u2(t, 0) = ∂xu2(t, 0) = 0, t ∈ (0, T ),

∂2
xu1(t, 0) + ∂2

xu1(t, 0) = 0, t ∈ (0, T ),

uj(0, x) = u0
j (x), x ∈ (0,∞),

∥u0∥L2(T ) = 1.

Similarly as in the previous case, u1(x) = K1(1 −
cos(x)) for x ∈ (0, 2π) and u1(x) = 0 for x ≥ 2π,
u2(x) = K2(1− cos(x)) for x ∈ (0, 2π) and u2(x) = 0
for x ≥ 2π, such that K1 = −K2. Therefore in
both cases we get a solution to (LKdV) different to 0
with does not converge to 0 as t → ∞ as stated in
Proposition 2. 2

V. CONCLUSION

This paper has studied the exponential stabilization of
a linear KdV equation defined on a star-shaped network
in the case where the branches model a bounded domain
or the half-line. The well-posedness was shown by using
linear semigroup theory and a hidden regularity result
was also proved. The strategy to prove the exponential
stability was to use this hidden regularity and compact-
ness ideas in a contradiction argument. The optimality
of the stabilization result in the sense of action edges
was proved too.

Some future research lines include to extend this
results in the case of the nonlinear KdV equation and
implement a numerical scheme to illustrate our results.
This both problems are challenging, in the case of the
nonlinear KdV equation defined on a star-network [8] in
addition to the internal nonlinearity, we have a nonlinear
term in the transmission condition, that makes well-
posedness and stabilization more complicated. In the
case of a numerical scheme, even in the case of a single
KdV equation defined on the half-line, it is not an easy
problem. As was pointed in [27] this arises the issue
of cutting the spatial domain and thus add two extra
boundary conditions, by the propagation direction of the
KdV equation the model only applies in a short time
scale.
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[26] L. Hörmander, The analysis of linear partial differential opera-
tors I: Distribution theory and Fourier analysis. Springer, 2015.

[27] J. L. Bona, S. M. Sun, and B.-Y. Zhang, “A nonhomogeneous
boundary-value problem for the Korteweg–de Vries equation
posed on a finite domain,” Communications in Partial Differential
Equations, vol. 28, no. 7-8, pp. 1391–1436, 2003.

APPENDIX

This appendix recaps some definitions used along the
paper. Let a < b, two real numbers, we set

Ja, bK = N ∩ [a, b], Ka, bK = N ∩ (a, b].

Let K = {kj : j ∈ J1, NK} be the set of the N = NF +
N∞ edges of a network T described as the intervals Ij
for j ∈ J1, NK, where{

Ij = (0, ℓj) with ℓj > 0 j ∈ J1, NF K,
Ij = (0,∞) j ∈KNF , NK.

The network T is defined by T =
⋃N

j=1 kj . We
introduce the product spaces: H3(T ) =

∏N
j=1H

3(Ij),
L∞(T ) =

∏N
j=1 L

∞(Ij) and L2(T ) =
∏N

j=1 L
2(Ij),

endowed with

(u, v)L2(T ) =

N∑
j=1

∫
Ij

ujvjdx, ∀u, v ∈ L2(T ).

Let s = 1,2 and for j ∈ J1, NF K consider the space

Hs
r (Ij) =

{
v ∈ Hs(Ij),

(
d

dx

)i−1

v(ℓj) = 0, i ∈ J1, sK

}
,

where the index r is related to the null right boundary
conditions, and the space Hs

e(T ) defined by

Hs
e(T ) =

u = (u1, . . . , uN )⊤ ∈
NF∏
j=1

Hs
r (Ij)×

N∏
j=NF+1

Hs(Ij),

uj(0) = uj′ (0), j, j
′ ∈ J1, NK

}
,with s = 1, 2,

∥u∥2H1
e(T ) =

N∑
j=1

∥uj∥2H1(Ij)
, for s = 1.

For s = −2,−1, 0, 1 we set

Xs =

NF∏
j=1

L2(0, T ;Hs(0, ℓj))× (L2(0, T ;Hs
loc(0,∞)))N∞ .
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