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Stability of linear KdV equation in a network with bounded and unbounded lengths

In this work, we study the exponential stability of a system of linear Korteweg-de Vries (KdV) equations interconnected through the boundary conditions on a star-shaped network structure. On each branch of the network we define a linear KdV equation defined on a bounded domain (0, ℓj) or the half-line (0, ∞). We start by proving well-posedness using semigroup theory and then some hidden regularity results. Then, we state the exponential stability of the linear KdV equation by acting with a damping term on not all the branches. This is proved by using compactness argument deriving a suitable observability inequality.

I. INTRODUCTION

In [START_REF] Korteweg | On the change of form of long waves advancing in a rectangular channel, and a new type of long stationary wave[END_REF], the Korteweg-de Vries (KdV) equation was first proposed to model the behavior of long water waves in a channel. This famous nonlinear third-order dispersive equation arises in various physical systems, including water waves, tsunamis, transmission of electrical signals in nerve fibers, plasma, cosmology, etc (see for instance [START_REF] Gardner | The effect of temperature on the width of a small-amplitude, solitary wave in a collision-free plasma[END_REF]- [START_REF] Lidsey | Cosmology and the Korteweg-de Vries equation[END_REF]). It is a prototypical example of a soliton equation, which admits solutions in the form of solitary waves that preserve their shape and speed during propagation. If we study the KdV equation in a bounded domain, the following model was suggested in [START_REF] Bona | The Korteweg-de Vries equation, posed in a quarter-plane[END_REF] ∂ t u + ∂ x u + ∂ 3

x u + u∂ x u = 0. The KdV equation has been the subject of extensive research in recent years, with particular focus on its controllability and stabilization properties, which are detailed for instance in [START_REF] Cerpa | Control of a Korteweg-de Vries equation: a tutorial[END_REF] and [START_REF] Rosier | Control and stabilization of the Korteweg-de Vries equation: recent progresses[END_REF]. When it is defined on a network, the KdV equation was proposed to model the pressure of the arterial tree [START_REF] Ammari | Feedback stabilization and boundary controllability of the Korteweg-de Vries equation on a starshaped network[END_REF]. We also mention [START_REF] Cerpa | On the boundary controllability of the Korteweg-de Vries equation on a star-shaped network[END_REF] where controllability properties were studied and [START_REF] Parada | Delayed stabilization of the Korteweg-de Vries equation on a star-shaped network[END_REF], [START_REF]Global well-posedness of the KdV equation on a starshaped network and stabilization by saturated controllers[END_REF] where the exponential stability was achieved by acting with damping terms with time-delay and saturation, respectively (see [START_REF] Cavalcante | The Korteweg-de Vries equation on a metric star graph[END_REF] for more problems related to KdV in networks). The main difference of this work with the previously cited is that, we consider a star-shaped network mixing bounded and unbounded lengths as for example [START_REF] Assel | Energy decay for the damped wave equation on an unbounded network[END_REF], [START_REF] Assel | Optimal decay rate for the local energy of a unbounded network[END_REF] in the case of wave equation. With respect to the KdV equation defined on the halfline, we can mention, for instance, [START_REF] Bona | The Korteweg-de Vries equation, posed in a quarter-plane[END_REF], [START_REF] Holmer | The initial-boundary value problem for the Kortewegde Vries equation[END_REF] which focus on the well-posedness properties. In [START_REF] Rosier | Exact boundary controllability for the linear Korteweg-de Vries equation on the half-line[END_REF], the exact controllability of the linear KdV equation defined on the half-line was obtained by using Carleman estimates. A first result of exponential stability of the KdV equation in the half-line considering a localized damping was derived in [START_REF] Linares | Asymptotic behavior of the Kortewegde Vries equation posed in a quarter plane[END_REF] under the assumption that the damping term a(x) ≥ c > 0 in (0, δ) ∪ (b, ∞) with b > δ (see [START_REF] Cavalcanti | Global well-posedness and exponential decay rates for a KdV-Burgers equation with indefinite damping[END_REF] for a similar problem in the context of KdV-Burger equation in the whole-line and half-line). Then, in [START_REF] Pazoto | Uniform stabilization in weighted sobolev spaces for the KdV equation posed on the half-line[END_REF] exponential decay of the energy in weighted spaces was derived, and it was noticed that the interval (0, δ) can be dropped. We can mention also [START_REF] Pazoto | Well-posedness and stabilization of a model system for long waves posed on a quarter plane[END_REF] where similar ideas of [START_REF] Pazoto | Uniform stabilization in weighted sobolev spaces for the KdV equation posed on the half-line[END_REF] were applied in the case of a Gear-Grimshaw system modeling long waves. To ease the reading of the paper, some technical notations are recapitulated in the Appendix.

In [START_REF] Ammari | Feedback stabilization and boundary controllability of the Korteweg-de Vries equation on a starshaped network[END_REF] the stabilization problem for the KdV equation on a star-shaped network with bounded lengths was addressed. See also [START_REF] Linares | Asymptotic behavior of the Kortewegde Vries equation posed in a quarter plane[END_REF] where the asymptotic behaviour of the KdV equation in the half-line was investigated. Inspired by theses works, we study the exponential stabilization problem of the linear KdV equation defined on a star-shaped network, where the branches mix finite intervals and half-lines. We consider a network of N = N F + N ∞ damped linear KdV equations each one of them defined on I j for j ∈ 1, N , i.e

(∂ t u j + ∂ x u j + ∂ 3 x u j + a j u j )(t, x) = 0, ∀x ∈ I j , t > 0,
where the intervals I j = (0, ℓ j ), with ℓ j > 0 for j ∈ 1, N F and I j = (0, ∞) for j ∈ N F , N . These equations are connected by the transmission conditions at 0 as follows

           uj(t, 0) = u j ′ (t, 0), j, j ′ ∈ 1, N , continuity condition , N j=1 ∂ 2 x uj(t, 0) = -αu1(t, 0), t > 0, null flux condition ,
where α > N 2 . The central node conditions are inspired by [START_REF] Ammari | Feedback stabilization and boundary controllability of the Korteweg-de Vries equation on a starshaped network[END_REF], [START_REF] Parada | Delayed stabilization of the Korteweg-de Vries equation on a star-shaped network[END_REF], [START_REF]Global well-posedness of the KdV equation on a starshaped network and stabilization by saturated controllers[END_REF]. In the case j = 1, N F , we complement the system with the classical null boundary conditions at the right end, u j (t, ℓ j ) = ∂ x u j (t, ℓ j ) = 0, t > 0, and initial condition u j (0, x) = u 0 j (x), x ∈ I j . We denote the network structure by T (see Figure 1). The system studied in this work reads as:

(LKdV)                        (∂tuj + ∂xuj + ∂ 3 x uj + ajuj)(t, x) = 0, ∀x ∈ Ij, t > 0, j ∈ 1, N , uj(t, 0) = u j ′ (t, 0), j, j ′ ∈ 1, N , N j=1 ∂ 2 x uj(t, 0) = -αu1(t, 0), t > 0, uj(t, ℓj) = ∂xuj(t, ℓj) = 0, t > 0, j ∈ 1, NF , uj(0, x) = u 0 j (x), x ∈ Ij, j ∈ 1, N ,
where α > N 2 and the damping terms (a j ) j∈ 1,N ∈ L ∞ (T ), act locally on the branches. Our purpose is to achieve the exponential stability by acting with the damping terms not necessarily in all the branches. Let I act ⊂ 1, N the set of action index, formally the damping terms are taken in the following way.

• Not action index: For j ∈ 1, N \ I act , a j ≡ 0.

• Locally action: For j ∈ I act , a j (x) ≥ c j > 0 in a nonempty open set ω j of I act . • Structure of action set in the half-line case: For the index j ∈ N F , N ∩ I act , we take a specific structure of the set ω j = (b j , ∞), for b j > 0 given. This properties are summarized in (1)

     a j ≡ 0 for j ∈ 1, N \ I act , a j (x) ≥ c j > 0 in ω j ⊂ I j , for j ∈ I act , ω j = (b j , ∞), for j ∈ N F , N ∩ I act .
For the system (LKdV) we define the natural L 2 (T ) energy of a solution by ( 2)

E(t) = 1 2 N j=1 I j |uj(t, x)| 2 dx.
Formally, we can check after several integrations by parts (see [START_REF] Parada | Delayed stabilization of the Korteweg-de Vries equation on a star-shaped network[END_REF], [START_REF]Global well-posedness of the KdV equation on a starshaped network and stabilization by saturated controllers[END_REF] for similar computations) that for every sufficiently smooth solution of (LKdV) the energy satisfies1 

(3)

Ė(t) = -α - N 2 |u1(t, 0)| 2 - 1 2 N j=1 |∂xuj(t, 0)| 2 - N j=1 I j aj(x)|uj(t, x)| 2 dx.
Observe that, as a j ≥ 0, the term a j u j provides dissipation to the energy, then Ė(t) ≤ 0. The main contribution of this work is to prove that indeed the terms a j u j provide exponential stability of (LKdV).

The article is organized as follows. In Section II, the well-posedness of (LKdV) is proven using semigroup theory. In Section III a hidden regularity result is obtained. In Section IV, the stabilization problem is studied, and an observability inequality is used to prove exponential stability. Some concluding remarks and perspectives are collected in Section V.

II. WELL-POSEDNESS OF LKDV

In what follows, we use the well-known definitions of classical and mild solutions, we refer to [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]Chapter 4]. Note that (LKdV) can be written as

(4) u t (t) = Au(t), t > 0 u(0) = u 0 ,
where the operator A is defined by

Au = -(∂ x + ∂ 3 x + a)u, D(A) = u ∈ H 3 (T ) ∩ H 2 e (T ), N j=1 d 2 uj dx 2 (0) = -αu1(0) .
Let u ∈ D(A), then, after some integrations by parts

(u, Au) L 2 (T ) = -α - N 2 |u1(0)| 2 - 1 2 N j=1 |∂xuj(0)| 2 - N j=1 I j aj|uj| 2 dx ≤0.
Easy calculations show that A * is defined by

A * v = (∂ x + ∂ 3 x -a)v, D(A * ) = v ∈ H 3 (T ) ∩ H 1 e (T ), dvj dx (0) = 0 ∀j ∈ 1, N , N j=1 d 2 vj dx 2 (0) = (α -N )v1(0) .
Similarly, we get that for all v ∈ D(A * )

(v, A * v) L 2 (T ) = -α - N 2 |v1(0)| 2 - 1 2 N F j=1 |∂xvj(ℓj)| 2 - N j=1 I j aj|vj| 2 dx ≤0.
Finally, A and A * are dissipative, and A is a densely defined closed operator, thus by [21, Corollary 4.4, Chapter 1] A is the infinitesimal generator of a C 0 semigroup of contractions on L 2 (T ). Systems (LKdV) and ( 4) are equivalent, thus we deduce the following result.

Theorem 1. Let u 0 ∈ L 2 (T ), then, there exists a unique mild solution u ∈ C([0, ∞); L 2 (T )) of (LKdV).

Moreover, if u 0 ∈ D(A), then u is a classical solution and u ∈ C([0, ∞); D(A)) ∩ C 1 ([0, ∞); L 2 (T )).
III. HIDDEN REGULARITY The main idea of this section is to prove the following regularity result: Proposition 1. Let u 0 ∈ L 2 (T ). Consider u the associate mild solution of (LKdV), then, u ∈ X 1 . Moreover, the following estimates hold

• There exists C > 0 such that, for all j ∈ 1, N F ;

(5)

T 0 Ij |∂ x u j | 2 dxdt ≤ C∥u 0 ∥ 2 L 2 (T ) ,
• For any x 0 > 0, there exists C x0 > 0 such that, for all j ∈ N F , N ;

T 0 x0+1 x0 |∂ x u j | 2 dxdt ≤ C x0 ∥u 0 ∥ 2 L 2 (T ) . (6) 
Proof. Let j ∈ 1, N , multiplying (LKdV) by u j and integrating on [0, s]×I j , after some integrations by parts and summing from j ∈ 1, N we get

N j=1 I j |uj(s, x)| 2 dx + N j=1 s 0 |∂xuj(t, 0)| 2 dt + (2α -N ) s 0 |u1(t, 0)| 2 dt + 2 N j=1 s 0 I j aj|uj| 2 dxdt = N j=1 I j |uj(0, x)| 2 dx,
which gives us that ( 7)

∥u∥ 2 C([0,T ];L 2 (T )) + (2α -N )∥u1(•, 0)∥ 2 L 2 (0,T ) + ∥∂xu(•, 0)∥ 2 L 2 (0,T ) + 2 N j=1 T 0 I j aj|uj| 2 dxdt ≤ ∥u 0 ∥ 2 L 2 (T ) .
Similarly, multiplying the first line of (LKdV) by xu j , integrating on [0, T ]×I j after some integrations by parts we get (8)

1 2 I j x|uj(T, x)| 2 dx + 3 2 T 0 I j |∂xuj| 2 dxdt + T 0 I j ajx|uj| 2 dxdt = 1 2 I j x|u 0 j | 2 dx + 1 2 T 0 I j |uj| 2 dxdt - T 0 u1(t, 0)∂xuj(t, 0)dt.
We get from ( 8) for all j ∈ 1, N F ,

T 0 I j |∂xuj| 2 dxdt ≤C ∥u 0 j ∥ 2 L 2 (I j ) + ∥u∥ 2 L 2 (0,T ;L 2 (T )) + ∥u1(•, 0)∥ 2 L 2 (0,T ) +∥∂xuj(•, 0)∥ 2 L 2 (0,T ) .
In this case, we derive (5) by using [START_REF] Rosier | Control and stabilization of the Korteweg-de Vries equation: recent progresses[END_REF]. We focus now on the case, j ∈ N F , N . Inspired by [22, Theorem 2.1], let x 0 > 0 and K 1,x0 , K 1,x0 > 0 depending only x 0 . Consider ψ ∈ C ∞ (R) an increasing function such that (see Figure 2) Multiplying the j -th equation of (LKdV) by u j (t, x)ψ(x), and integrating over (0, ∞) we get after some integrations by parts [START_REF] Parada | Delayed stabilization of the Korteweg-de Vries equation on a star-shaped network[END_REF] 1 2

(9)          ψ(x) = 0, for x ≤ x 0 2 , ψ(x) = 1, for x ≥ 3x 0 2 + 1, ψ ′ (x) ≥ K1,x 0 , for x ∈ [x0, x0 + 1], ψ ′ (x) ≥ 0, |ψ (k) (x)| ≤ K2,x 0 , for x ∈ R, k ∈ 0, 3 .
d dt ∞ 0 |uj| 2 ψ(x)dx + 3 2 ∞ 0 |∂xuj| 2 ψ ′ (x)dx + ∞ 0 aj|uj| 2 ψ(x)dx = 1 2 ∞ 0 |uj| 2 (ψ ′ (x) + ψ ′′′ (x))dx.
Recalling the definition of ψ (9), we observe that

K1,x 0 x 0 +1 x 0 |∂xuj| 2 dx ≤ x 0 +1 x 0 |∂xuj| 2 ψ ′ (x)dx ≤ ∞ 0 |∂xuj| 2 ψ ′ (x)dx.
With this in mind and ( 9) we obtain from (10)

1 2 d dt ∞ 0 |uj| 2 ψ(x)dx + 3 2 K1,x 0 ∞ 0 |∂xuj| 2 ψ ′ (x)dx = 3 2 K2,x 0 ∞ 0 |uj| 2 dx.
We conclude the proof of (6) integrating t between [0, T ] and using [START_REF] Rosier | Control and stabilization of the Korteweg-de Vries equation: recent progresses[END_REF]. 2

Remark 1. We can build a function ψ satisfying (9) in the following way: consider the bump function κ ∈ C ∞ (R) defined by κ(x) = e -1 x , for x > 0 and κ(x) = 0 for x ≤ 0. Then, letting

ψ(x) = κ(x -x 0 2 ) κ(x -x 0 2 ) + κ( 3x 0 2 + 1 -x)
, it is not difficult to check that the above function satisfies all the hypotheses of (9).

IV. EXPONENTIAL STABILITY In this section, we prove our results related with the exponential stability in L 2 (T ). First, note that to prove the exponential stability, it is enough to prove the following observability inequality, with E defined in ( 2), ( 11)

E(0) ≤C obs T 0 |u1(t, 0)| 2 + N j=1 |∂xuj(t, 0)| 2 + N j=1 I j aj|uj| 2 dx dt,
for a suitable C obs > 0 that does not depend on u. Indeed, using [START_REF]Global well-posedness of the KdV equation on a starshaped network and stabilization by saturated controllers[END_REF] and dissipation law (3) we can show the existence of 0 < γ < 1 such that E(t) ≤ γE(0), finally as (LKdV) is invariant by translation in time, we derive the exponential decay. This idea was used in several works as [START_REF] Parada | Delayed stabilization of the Korteweg-de Vries equation on a star-shaped network[END_REF], [START_REF]Global well-posedness of the KdV equation on a starshaped network and stabilization by saturated controllers[END_REF], [START_REF] Linares | Asymptotic behavior of the Kortewegde Vries equation posed in a quarter plane[END_REF], [START_REF] Perla Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF]. We recall the set of critical lengths for the KdV equation N introduced by Rosier in [START_REF] Rosier | Exact boundary controllability for the Kortewegde Vries equation on a bounded domain[END_REF] and defined by

N = 2π k 2 + kl + l 2 3 , k, l ∈ N * ,
and we define I c = {j ∈ 1, N F ; ℓ j ∈ N } the set of critical lengths, I ∞ = N F , N and I * c (resp I * ∞ ) be the subset of I c (resp I ∞ ) where we remove one index. Now, we establish our main results.

Theorem 2. Let I act ⊇ I * c ∪ I ∞ or I act ⊇ I c ∪ I * ∞
, assume that the damping terms (a j ) j∈ 1,N satisfy (1). Then, there exist C, µ > 0 such that for all u 0 ∈ L 2 (T ), the energy of the unique mild solution of (LKdV) satisfies E(t) ≤ CE(0)e -µt for all t > 0.

Remark 2. About the choice of action index: Theorem 2 states that to achieve the exponential stability we can act as any of the following cases:

• Take active damping in all except one branches with critical length and in all the half-lines. This is case

I act ⊇ I * c ∪ I ∞ .
• Take active damping in all except one half-lines a and in all the branches with critical length. This is case I act ⊇ I c ∪ I * ∞ . This action set is inspired by [START_REF] Ammari | Feedback stabilization and boundary controllability of the Korteweg-de Vries equation on a starshaped network[END_REF] where in the case of N F KdV equations on a star-shaped network, an exponential stability result was proved with set of action index I * c . Moreover as we will see in Proposition 2, this choice is optimal.

Proof. As we said at the beginning of Section IV, it is enough to prove [START_REF]Global well-posedness of the KdV equation on a starshaped network and stabilization by saturated controllers[END_REF]. To prove it, we follow a contradiction argument as in [START_REF] Rosier | Exact boundary controllability for the Kortewegde Vries equation on a bounded domain[END_REF]. Suppose that ( 11) is false, then there exists (u 0,n ) n∈N ⊂ L 2 (T ) such that ∥u 0,n ∥ L 2 (T ) = 1 and such that ( 12)

∥u n 1 (t, 0)∥ L 2 (0,T ) -→ 0, ∥∂xu n (t, 0)∥ L 2 (0,T ) -→ 0, N j=1 T 0 I j aj|u n j | 2 dxdt -→ 0, as n → ∞,
where u n , is the unique mild solution of (LKdV) given by Theorem 1 with initial data u 0,n . By Proposition 1, we get that (u n ) n∈N is bounded in X 1 and as ∂ t u n j = -∂ x u n j -∂ 3 x u n j -a j u n j , we get that (∂ t u n j ) n∈N is bounded in X -2 . Using [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF]Corollary 4] we can extract a subsequence still denoted by (u n ) n∈N which converges in X 0 . The idea now is to see that (u 0,n ) n∈N is a Cauchy sequence in L 2 (T ). Multiplying the first line of (LKdV) by (T -t)u j and integrating on [0, T ] × I j , after some integrations by parts we can get [START_REF] Assel | Energy decay for the damped wave equation on an unbounded network[END_REF] 

∥u 0 ∥ 2 L 2 (T ) ≤C 1 T ∥u∥ 2 L 2 ([0,T ];L 2 (T )) + ∥u1(•, 0)∥ 2 L 2 (0,T ) + ∥∂xu(•, 0)∥ 2 L 2 (0,T ) + N j=1 T 0 I j aj|uj| 2 dxdt .
Thus, as (u n ) n∈N is convergent in X 0 , with ( 12) and ( 13), we get that (u 0,n ) n∈N is a Cauchy sequence in L 2 (T ). Let u 0 = lim n→∞ u 0,n and u the unique mild solution of (LKdV) associated to u 0 . Then, u is the solution of ( 14)

                               ∂tuj + ∂xuj + ∂ 3 x uj = 0, ∀x ∈ Ij, t ∈ (0, T ), j ∈ 1, N , uj(t, 0) = ∂xuj(t, 0) = 0, ∀j ∈ 1, N , N j=1 ∂ 2 x uj(t, 0) = 0, t ∈ (0, T ), uj(t, ℓj) = ∂xuj(t, ℓj) = 0, t > 0, j ∈ 1, NF , uj ≡ 0 in (0, T ) × ωj, j ∈ Iact, uj(0, x) = u 0 j (x), x ∈ Ij, j ∈ 1, N , ∥u 0 ∥ L 2 (T ) = 1.
Here we have two cases:

• I act ⊇ I * c ∪ I ∞ . In this case, for j ∈ I ∞ , w = u j solves      ∂tw + ∂xw + ∂ 3 x w = 0, ∀x ∈ (0, ∞), t ∈ (0, T ), w(t, 0) = ∂xw(t, 0) = 0, t ∈ (0, T ), w ≡ 0 in (0, T ) × ωj.
Then, by Holmgren's Theorem [START_REF] Hörmander | The analysis of linear partial differential operators I: Distribution theory and Fourier analysis[END_REF] (see also [17, Theorem 1.1]), w ≡ 0 in (0, ∞) × (0, T ). Then, we have the following remaining problem

                             ∂tuj + ∂xuj + ∂ 3 x uj = 0, ∀x ∈ (0, ℓj), t ∈ (0, T ), j ∈ 1, NF , uj(t, 0) = ∂xuj(t, 0) = 0, ∀j ∈ 1, NF , N F j=1 ∂ 2 x uj(t, 0) = 0, t ∈ (0, T ), uj(t, ℓj) = ∂xuj(t, ℓj) = 0, t > 0, j ∈ 1, NF , uj ≡ 0 in (0, T ) × ωj, j ∈ I * c , N F j=1 ∥u 0 j ∥ 2 L 2 (0,ℓ j ) = 1.
The above system is exactly the same studied in [START_REF] Ammari | Feedback stabilization and boundary controllability of the Korteweg-de Vries equation on a starshaped network[END_REF]. Thus, by [8, Theorem 3.1] as we are acting in I * c we get u j ≡ 0 for j ∈ 1, N F and finally, u ≡ 0 which is a contradiction with the fact ∥u 0 ∥ L 2 (T ) = 1.

• I act ⊇ I c ∪I * ∞ . Let j ∈ I * ∞ , the same argument used in the previous case shows that u j ≡ 0 in (0, ∞)×(0, T ). Similarly, by Holmgren's Theorem [START_REF] Hörmander | The analysis of linear partial differential operators I: Distribution theory and Fourier analysis[END_REF], for all j ∈ I c u j ≡ 0 in (0, ℓ j ) × (0, T ). Now, for j ∈ 1, N F ∩ (I c ) c , u j solves

     ∂tuj + ∂xuj + ∂ 3
x uj = 0, ∀x ∈ (0, ℓj), t ∈ (0, T ), uj(t, 0) = ∂xuj(t, 0) = 0, uj(t, ℓj) = ∂xuj(t, ℓj) = 0, t > 0.

Then as ℓ j / ∈ N by [24, Lemma 3.5], u j ≡ 0 in (0, ℓ j )× (0, T ). Finally, let j the unique integer in N F , N ∩ (I * ∞ ) c , then w = u j solves

     ∂tw + ∂xw + ∂ 3 x w = 0, ∀x ∈ (0, ∞), t ∈ (0, T ), w(t, 0) = ∂xw(t, 0) = 0, t ∈ (0, T ), ∂ 2 
x w(t, 0) = 0, t ∈ (0, T ).

It is enough to see that, due to the three null boundary conditions in 0 2 , the unique solution is w ≡ 0. This conclude the proof of Theorem 2. 2 Theorem 2 is optimal in number of action branches. For instance, if we take a smaller set of action index, we cannot derive the result as shows the next proposition.

Proposition 2. Let I act ⊊ I * c ∪ I ∞ or I act ⊊ I c ∪ I * ∞ ,
assume that the damping terms (a j ) j∈ 1,N satisfy (1). Then, there exists a nontrivial solution of [START_REF] Assel | Optimal decay rate for the local energy of a unbounded network[END_REF]. In particular, there exists a solution to (LKdV) different to 0, that does not converge to 0 as t tends to infinity and thus (LKdV) is not asymptotically stable with this weak assumption.

Proof. It is enough to consider the case where we remove one index more in the action sets defined in the assumption of Theorem 2. Let I * * c (resp I * * ∞ ) be the subset of I c (resp I ∞ ) where we remove two indexes. Let us show that, under these conditions, there exists a solution of [START_REF] Assel | Optimal decay rate for the local energy of a unbounded network[END_REF].

• I act = I * * c ∪ I ∞ . We get for all j ∈ I ∞ u j ≡ 0. Thus, we get the optimality from [8, Lemma 3.2].

• I act = I * c ∪ I * ∞ .
Following the computations of the proof of Theorem 2, we obtain the following system,

                     ∂tuj + ∂xuj + ∂ 3 x uj = 0, ∀x ∈ Ij, t ∈ (0, T ), j = 1, 2, u1(t, 0) = ∂xu1(t, 0) = 0, t ∈ (0, T ), u2(t, 0) = ∂xu2(t, 0) = 0, t ∈ (0, T ), u1(t, 2π) = ∂xu1(t, 2π) = 0, t ∈ (0, T ), ∂ 2 x u1(t, 0) + ∂ 2 x u1(t, 0) = 0, t ∈ (0, T ), uj(0, x) = u 0 j (x), x ∈ Ij, j = 1, 2, ∥u 0 ∥ L 2 (T ) = 1.
Consider the stationary functions u 1 (x) = K 1 (1 -cos(x)) and u 2 (x) = K 2 (1 -cos(x)) for x ∈ (0, 2π) and u 2 (x) = 0 for x ≥ 2π. We observe 2 See for instance [START_REF] Rosier | Exact boundary controllability for the linear Korteweg-de Vries equation on the half-line[END_REF] where an implicit controllability result is obtained by imposing three boundary conditions at 0. that u 1 and u 2 satisfy a linear KdV equation. Moreover,

u 1 (0) = ∂ x u 1 (0) = u 1 (2π) = ∂ x u 1 (2π) = 0, u 2 (0) = ∂ x u 2 (0) = 0 and ∂ 2 x u 1 (0) + ∂ 2 x u 1 (0) = K 1 + K 2 . Therefore, if K 1 = -K 2 we
get a nontrivial solution of (14).

• I act = I c ∪ I * * ∞ . Consider the case N F = 0. Then we obtain the system

                 ∂tuj + ∂xuj + ∂ 3 x uj = 0, ∀x ∈ (0, ∞), t ∈ (0, T ), j = 1, 2, u1(t, 0) = ∂xu1(t, 0) = 0, t ∈ (0, T ), u2(t, 0) = ∂xu2(t, 0) = 0, t ∈ (0, T ), ∂ 2 x u1(t, 0) + ∂ 2 x u1(t, 0) = 0, t ∈ (0, T ), uj(0, x) = u 0 j (x), x ∈ (0, ∞), ∥u 0 ∥ L 2 (T ) = 1.
Similarly as in the previous case, u 1 (x) = K 1 (1cos(x)) for x ∈ (0, 2π) and u 1 (x) = 0 for x ≥ 2π, u 2 (x) = K 2 (1 -cos(x)) for x ∈ (0, 2π) and u 2 (x) = 0 for x ≥ 2π, such that K 1 = -K 2 . Therefore in both cases we get a solution to (LKdV) different to 0 with does not converge to 0 as t → ∞ as stated in Proposition 2. 2

V. CONCLUSION

This paper has studied the exponential stabilization of a linear KdV equation defined on a star-shaped network in the case where the branches model a bounded domain or the half-line. The well-posedness was shown by using linear semigroup theory and a hidden regularity result was also proved. The strategy to prove the exponential stability was to use this hidden regularity and compactness ideas in a contradiction argument. The optimality of the stabilization result in the sense of action edges was proved too. Some future research lines include to extend this results in the case of the nonlinear KdV equation and implement a numerical scheme to illustrate our results. This both problems are challenging, in the case of the nonlinear KdV equation defined on a star-network [START_REF] Ammari | Feedback stabilization and boundary controllability of the Korteweg-de Vries equation on a starshaped network[END_REF] in addition to the internal nonlinearity, we have a nonlinear term in the transmission condition, that makes wellposedness and stabilization more complicated. In the case of a numerical scheme, even in the case of a single KdV equation defined on the half-line, it is not an easy problem. As was pointed in [START_REF] Bona | A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain[END_REF] this arises the issue of cutting the spatial domain and thus add two extra boundary conditions, by the propagation direction of the KdV equation the model only applies in a short time scale.
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 1 Fig. 1. Network structure for N F = 4 and N∞ = 3.

Fig. 2 .

 2 Fig. 2. Graph of the function ψ(x).

We consider solutions such that for j ∈ N F , N satisfies u j (•, x) → 0 when x → ∞.
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APPENDIX

This appendix recaps some definitions used along the paper. Let a < b, two real numbers, we set

Let K = {k j : j ∈ 1, N } be the set of the N = N F + N ∞ edges of a network T described as the intervals I j for j ∈ 1, N , where

The network T is defined by T = N j=1 k j . We introduce the product spaces:

Let s = 1,2 and for j ∈ 1, N F consider the space

where the index r is related to the null right boundary conditions, and the space H s e (T ) defined by

For s = -2, -1, 0, 1 we set

L 2 (0, T ; H s (0, ℓj)) × (L 2 (0, T ; H s loc (0, ∞))) N∞ .